
QUATERNIONS AND ROTATIONS IN R
3

VISHWAMBHAR PATI

Abstract. In this expository note, we show that (a) rotations in 3-dimensional space are completely described
by an axis of rotation and an angle of rotation about that axis. It is then natural to enquire about the axis
and angle of rotation of the composite of two rotations whose axes and angles of rotation are given. We then
(b) use the algebra of quaternions to answer this question.

1. Rotations

We recall that Euclidean space R
n comes equipped with the natural dot product or inner product defined by

〈v, w〉 =

n
∑

i=1

viwi

for two vectors v = (v1, .., vn) and w = (w1, ..., wn) ∈ R
n. We will denote the i-th basis vector (0, .., 1, ..0)

with 1 in the i-th spot and 0 elsewhere by ei. The collection {ei}ni=1 is called the standard basis of R
n. If

v =
∑n
i=1 viei is a vector in R

n, its length or norm is defined as ‖v‖ = 〈v, v〉1/2 =
(
∑n
i=1 v

2
i

)1/2
. A set of

vectors {v1, ..., vr} is called an orthonormal set if 〈vi, vj〉 = δij for all 1 ≤ i, j ≤ r (Here δij is the Kronecker
delta symbol defined by δij = 1 if i = j, and δij = 0 if i 6= j).

If an orthonormal set is a basis, it is called an orthonormal basis. For example, the standard basis {ei}ni=1

of R
n is an orthonormal basis.

Definition 1.1 (Orthogonal transformations and rotations in R
n). A linear transformation T : R

n → R
n is

called an orthogonal transformation if it preserves all inner products. i.e. if 〈Tv, Tw〉 = 〈v, w〉 for all v, w ∈ R
n.

The set of all orthogonal transformations of R
n is denoted as O(n). An orthogonal transformation T is called a

rotation if its determinant det T > 0. The set of all rotations of R
n is denoted as SO(n). Thus SO(n) ⊂ O(n).

We note that a linear transformation T : R
n → R

n determines an n×n matrix with respect to the standard
basis as follows. We expand the the image of the j-th standard basis vector ej under T in terms of the standard
basis:

Tej =

n
∑

i=1

Tijei (1)

Thus the j-th column of the matrix [Tij ] is the image Tej of the j-th basis vector ej . Clearly, with this same
prescription we are free to define the matrix of a linear transformation with respect to any fixed chosen basis
of R

n, though in the present discussion we will mostly use the standard basis. If v =
∑n
j=1 vjej , then for the

linear transformation T we have from the relation (1) above:

Tv = T





∑

j

vjej



 =
∑

j

vjTej =

n
∑

i=1





n
∑

j=1

Tijvj



 ei

In other words, if we use the common representation of the vector v as a column vector (with column entries
vi), also denoted by v, then the column vector representing Tv is given by the matrix product T.v.

We next examine the condition on Tij for T to be an orthogonal transformation, and for it to be a rotation.
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Proposition 1.2 (Matrix characterisation of orthogonal transformations and rotations). The linear transfor-
mation T : R

n → R
n is an orthogonal transformation if and only if T tT = TT t = I, where T t denotes the

transpose of T defined by T tij = Tji. This is summarised by saying that the column vectors (resp. row vectors)
of the matrix of T form an orthonormal set. For an orthogonal transformation T , det T = ±1. Finally, an
orthogonal transformation T is a rotation if det T = 1.

Proof: If T is orthogonal we have δij = 〈ei, ej〉 = 〈Tei, T ej〉 for all i and j. Plugging in Tei =
∑

k Tkiek
and Tej =

∑

m Tmjem, we find δij = 〈Tei, T ej〉 =
∑

k,m TkiTmj 〈ek, em〉 =
∑

k,m TkiTmjδkm =
∑

k T
t
ikTkj =

(T tT )ij . Thus T is orthogonal implies T tT = I. This shows that T t = T−1, and hence also that TT t = I.

Conversely, if T tT = I, it follows by reversing the steps above that 〈Tei, T ej〉 = 〈ei, ej〉 for all i and j. This
implies that 〈Tv, Tw〉 =

∑

i,j viwj 〈Tei, T ej〉 =
∑

i,j viwj 〈ei, ej〉 = 〈v, w〉 for all v, w ∈ R
n. This proves the

first assertion. Writing out the relation T tT = I (resp. TT t = I) shows that the column (resp. row) vectors
of T form an orthonormal set.

Since T orthogonal imples T tT = I, we have det(T tT ) = det(T t) det T = (det T )2 = det I = 1. Hence
det T = ±1. The second and third assertions follow. ✷

The above matrix description of orthogonal transformations and rotations leads to the following important
property of the sets O(n) and SO(n).

Proposition 1.3 (The group structure on O(n) and SO(n)). The sets G = O(n) or SO(n) are groups. That
is, they have a product or group operation defined by composition : T.S := T ◦ S, where (T ◦ S)v = T (Sv) for
v ∈ R

n. Furthermore, this operation satisfies the following axioms of a group:

(i): (Associativity) T.(S.R) = (T.S).R for all T, S,R ∈ G.
(ii): (Existence of identity) There is an identity transformation I ∈ G such that T.I = I.T = T for all
T ∈ G.

(iii): (Existence of inverse) For each T ∈ G, there exists an element T−1 ∈ G such that T.T−1 = T−1.T = I.

Indeed, since SO(n) ⊂ O(n) inherits the group operation from O(n), we call SO(n) a subgroup of O(n).
The group O(n) is called the orthogonal group of R

n and SO(n) the special orthogonal group of R
n.

Proof: We first remark that the matrix of the composite transformation T.S, by definition, is given by :

(T.S)ej =
∑

i

(T.S)ijei

However the left hand side, by definition and (1), is

T (Sej) = T

(

∑

k

Skjek

)

=
∑

k

Skj(Tek) =
∑

k

Skj

(

∑

i

Tikei

)

=
∑

i

(

∑

k

TikSkj

)

ei

which implies that (T.S)ij =
∑

k TikSkj . That is, if we compose orthogonal transformations, the matrix of the
composite transformation is the product of their respective matrices.

Let T, S ∈ O(n). Since 〈(T.S)v, (T.S)w〉 = 〈T (Sv), T (Sw)〉 = 〈Sv, Sw〉 = 〈v, w〉 from the fact that T
and S ∈ O(n), it follows that T.S ∈ O(n). If further S, T ∈ SO(n), then detT = detS = 1. But then
det(T.S) = (detT )(detS) = 1, showing that S.T ∈ SO(n) as well. This proves the existence of a binary
operation on O(n) and SO(n).

The assertion (i) follows because multiplication of matrices (or for that matter, composition of maps) is
easily verified to be associative. The statement (ii) is obvious, since the identity transformation I ∈ SO(n) and
in O(n) as well. The assertion (iii) follows by the previous Proposition 1.2, where we saw that T t = T−1, and
also that T ∈ O(n) implies T t ∈ O(n), because the conditions TT t = I and T tT = I are equivalent. Further
T ∈ SO(n) implies detT t = detT = 1, so that T−1 = T t ∈ SO(n) as well. ✷
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2. Rotations in R
2 and R

3

The following propositions give a quantitative characterisation of all the matrices that define rotations in
R

2 and R
3.

Proposition 2.1 (Planar Rotations). If T ∈ SO(2), then the matrix of T is given by:
(

cos θ − sin θ
sin θ cos θ

)

which, geometrically, describes a counterclockwise rotation in R
2 by the angle θ ∈ [0, 2π). If we denote this

rotation by Rθ, then it is easily checked that Rθ.Rφ = Rθ+φ = Rφ+θ. (Here θ + φ means we go modulo 2π,
viz. integer multiples of 2π have to be subtracted to get the value of θ + φ to lie in [0, 2π)). In particular, the
group SO(2) is abelian, viz T.S = S.T for all T, S ∈ SO(2). Geometrically, we can think of the group SO(2)
as the group S1, defined as the circle consisting of complex numbers in C of modulus 1 (and group operation
being multiplication of complex numbers).

Proof: We know that T ∈ SO(2) implies firstly that T ∈ O(2), so that by the Proposition 1.2 above, the
matrix:

T =

(

a11 a12

a21 a22

)

satisfies the condition T tT = I, which implies that a2
11 + a2

21 = 1 = a2
12 + a2

22 and a11a12 + a21a22 = 0. The
first relation implies, since aij are all real numbers, that a11 = cos θ and a21 = sin θ for some θ ∈ [0, 2π). The
conditions a11a12 + a21a22 = 0 and a2

12 + a2
22 = 1 now imply that (a12, a22) = ±(− sin θ, cos θ). The sign +

is now determined by the condition that det T = a11a22 − a12a21 = 1 since T ∈ SO(2). This shows that T is
of the form stated. The second assertion is an easy consequence of trigonometric formulas, and is left to the
reader.

For the last remark, note that if we write a vector v = xe1 + ye2 ∈ R
2 as the complex number z = x + iy

(where i =
√

−1), then eiθz = (cos θ + i sin θ)(x + iy) = (x cos θ − y sin θ) + i(x sin θ + y cos θ). Thus the
components of eiθz are exactly the same as those of the rotated vector Rθv. ✷.

Exercise 2.2. Describe the matrix of a general element T ∈ O(2).

Now we can understand rotations in R
3. The next proposition says that a rotation in R

3 is only slightly
more complicated than a planar rotation. Indeed, once we pin down the “axis of rotation”, it is just a planar
rotation in the plane perpendicular to this axis.

Proposition 2.3 (Rotations in 3-space). Let T ∈ SO(3). Then there is a vector v ∈ R
3 such that the line

R v ⊂ R
3 is fixed by T . This line is called the axis of rotation of T . If we restrict T to the plane H which is

perpendicular to v (denoted by H = (Rv)⊥), then this restriction T|H is just a planar rotation as described in
the last proposition.

In fact, if we choose a new basis of R
3 defined by f3 = v

‖v‖ , and f1, f2 an orthonormal basis of H such that

the vector cross product f1 × f2 = f3 (viz. {f1, f2, f3} gives a right-handed orthonormal basis of R
3) then the

matrix of T with respect to the new basis {fi}3
i=1 is given by:

T =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1
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Proof: We need to use the characteristic polynomial of T defined by:

PT (X) := det(XI − T )

It is easily seen that :
PT (X) = X3 + aX2 + bX − 1

where a, b ∈ R, and the constant term is −det T , which is −1 because T ∈ SO(3). A root ot this characteristic
polynomial PT is called an eigenvalue of T . We first make the

Claim 1: 1 is an eigenvalue of T .

If β is any real root of PT , then PT (β) = det (βI − T ) = 0. This implies that (βI − T ) is a singular linear
transformation of R

3, and hence must kill some non-zero vector v ∈ R
3. This implies: (βI − T )v = 0, i.e.

β v = Tv. That is, v ∈ R
3 is an eigenvector of T corresponding to the real eigenvalue β. Furthermore T ∈ O(n)

implies β2 〈v, v〉 = 〈βv, βv〉 = 〈Tv, Tv〉 = 〈v, v〉, and since v 6= 0, 〈v, v〉 > 0, so that β2 = 1. Hence a real root
β of PT is forced to be ±1. Also, the real cubic polynomial PT has either (i) two non-real complex conjugate
roots α, α and a real root β, or (ii) all three real roots.

The negative of the constant term = 1 is the product of the roots. So in the first case (i) we get 1 =|α |2 β.
This implies that β > 0, and hence β = 1. In the second case (ii), all the three real roots are ±1, and all
cannot be (−1) since their product is 1. Hence in both cases β = 1 is a root of PT (i.e. an eigenvalue). This
proves Claim 1.

Thus the eigenvector v corresponding to the eigenvalue 1 satisfies Tv = v, i.e. it is fixed by T . Since T is
linear, all scalar multiples of v, viz. all of the line Rv in the direction v, is fixed by T . This is the required
“axis of rotation” of T .

Now, set H := (Rv)⊥ := {w ∈ R
3 : 〈w, v〉 = 0}, the orthogonal plane to v. The relation Tv = v and the fact

that T is an orthogonal transformation implies 〈Tw, v〉 = 〈Tw, Tv〉 = 〈v, w〉 = 0 for each w ∈ H. This shows
that T sends vectors in H to other vectors in H. The restriction T|H is then an orthogonal transformation of
H (it still preserves inner products). It is clear that detT = det T|H .1, and hence T|H also has determinant 1.
Now the matrix from of T follows from Proposition 2.1. ✷

Main question of this note: Suppose we are given two rotations A,B ∈ SO(3) in terms of their axes and
angles of rotation in accordance with the Proposition 2.3 above. Can we figure out the axis of rotation and
angle or rotation of the composite A.B in terms of the given data ?

The following sections will be devoted to answering this question. First we need some preliminaries on the
algebra of quaternions.

3. The Algebra of Quaternions

Definition 3.1 (Quaternion multiplication). We rename the standard basis of R
4 as 1, i, j, k. The algebra of

quaternions is defined as the 4-dimensional vector space:

H := {x0.1 + x1i+ x2j + x3k : xi ∈ R}
with multiplication defined by linearity and the relations i.1 = 1.i = i; j.1 = 1.j = j; k.1 = 1.k = k; 1.1 =
1; ij = −ji = k; ki = −ik = j; jk = −kj = i; i2 = j2 = k2 = −1. From this one easily deduces that :

(x0.1 + x1i+ x2j + x3k)(y0.1 + y1i+ y2j + y3k) = z0.1 + z1.i+ z2j + z3.k

where : z0 = x0y0 − x1y1 − x2y2 − x3y3, z1 = x0y1 + x1y0 + x2y3 − x3y2, z2 = x0y2 + x2y0 + x3y1 − x1y3 and
z3 = x0y3 + x3y0 + x1y2 − x2y1.

For a quaternion x = x0.1 + x1i+ x2j + x3k we define its conjugate as x = x0 − x1i− x2j − x3k.

Notation 3.2. To simplify notation, we will now write the quaternion x above as x0 + x1i + x2j + x3k,
suppressing the basis vector 1 from the first term. Because of the way multiplication is defined, this causes no
confusion. Also x0 is called the real part of x, denoted Rex and x1i + x2j + x3k is called the imaginary part
of x, denoted Imx.
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Proposition 3.3 (Properties of quaternion multiplication). The multiplication of quaternions has the follow-
ing properties :

(i): xx = xx = ‖x‖2
=
∑3
i=0 x

2
i for all x ∈ H. Furthermore, ‖xy‖ = ‖x‖ ‖y‖ for all x, y ∈ H.

(ii): If x 6= 0 is a quaternion, then xx−1 = x−1x = 1 for x−1 := x
‖x‖2 . In particular, if x is of unit length

(i.e. a unit quaternion), then x−1 is of unit length as well.

(iii): The set H forms a non-commutative, associative algebra over R. The fact that non-zero elements have
inverses makes it what is called a division algebra. In particular, by (i) and (ii) above, the set
Spin(3) := {v ∈ H : ‖v‖ = 1} forms a non-commutative group called the group of unit quaternions.

(iv): If x ∈ H is of unit length, then left and right multiplications by x (denote them by Lx and Rx
respectively) are elements of SO(4).

Proof: The statements (i), (ii) and (iii) are straighforward verifications following from the definitions in 3.1.

To see (iv), one just brutally writes down the 4 × 4 matrices corresponding to Lx and Rx. To write the
matrix of Lx, we need to apply Lx to the basis vectors e1 = 1, e2 = i, e3 = j, e4 = k of H = R

4 and write
them down as columns as noted immediately after Definition 1.1. That is, we left multiply the basis vectors 1,
i, j and k by x, and obtain the four columns of Lx. Thus the matrix representation of Lx is:

Lx =









x0 −x1 −x2 −x3

x1 x0 −x3 x2

x2 x3 x0 −x1

x3 −x2 x1 x0









Since ‖x‖2
=
∑3
i=0 x

2
i = 1, we see that each column has norm 1. All the columns are mutually orthogonal by

inspection. Hence by Proposition 1.2, Lx is an element of O(4). Also, one can compute the determinant of

this matrix brutally, and using the fact that ‖x‖2
= 1, check that det Lx = 1. Hence Lx ∈ SO(4). The matrix

computations for Rx are similar. The details are left to the energetic reader. ✷

4. The angle and axis of rotation of the composite of two rotations

Notation 4.1. In this section it will be useful to denote vectors in R
4, viz. quaternions, by small letters (such

as v) as we have been doing earlier, and vectors in R
3 by boldface letters (such as v). We also note that we

are applying the “corkscrew or right-hand rule” for rotations, viz: The unit vector v points in the direction
of a screw that is being rotated by the given angle θ. Since a counterclockwise rotation by θ is the same as a
clockwise rotation by 2π − θ, we may change the vector v to −v, and thus assume without loss of generality,
that θ ∈ [0, π].

Definition 4.2 (Spin Representation). The group of unit quaternions G = Spin(3) (see (iii) of Proposition
3.3 above for the definition) acts on R

3 as follows. Let v = v0.1 + v1i + v2j + v3k be a quaternion of unit
length in G. Let y = y0.1 + y1i+ y2j + y3k ∈ H = R

4 be any quaternion. Consider the action of G on H by
quaternionic conjugation or adjoint action:

G× H → H

(v, y) 7→ (Ad v)(y) := vyv−1 = vyv = (Lv.Rv)y

where v = v0.1 − v1i− v2j − v3k = v−1 is the conjugate of v. Note that this action pointwise fixes the scalars
R.1 ⊂ H. Since Lv and Rv are in SO(4) by (iv) of Proposition 3.3, it follows that Ad v ∈ SO(4). Since it
fixes R.1, Ad v sends the orthogonal space consisting of imaginary quaternions R

3 := Ri + Rj + Rk ⊂ H to
imaginary quaternions. Thus G acts on R

3 via SO(3) elements, and we get the famous spin representation of
G = Spin(3) on SO(3), viz.

ρ : G → SO(3)

v 7→ ρ(v)
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where ρ(v).(y) = Im [(Ad v)y] = (Ad v)y, where y = y1i + y2j + y3k ∈ R
3 is regarded as a pure imaginary

quaternion, and “Im” denotes imaginary part. This map ρ is easily checked to be a homomorphism (viz. it
satisfies ρ(vw) = ρ(v)ρ(w) for all v, w) since Ad vw = (Ad v)(Adw). The kernel of ρ is ρ−1(Id) = Z2 =
{+1,−1}.

We now come to a key lemma needed for proving the main proposition of this note.

Lemma 4.3 (Surjectivity of the homomorphism ρ). The homomorphism ρ is surjective. If A is a rotation of
angle θ about the axis v ∈ R

3 (with the right-hand corkscrew rule of Notation 4.1) then A = ρ(v) where
v ∈ Spin(3) is given by:

v = cos
θ

2
+ sin

θ

2
(v1i+ v2j + v3k) (2)

where θ ∈ [0, π].

Proof: If A = ρ(v) for some v = v0.1 + v1i + v2j + v3k ∈ Spin(3), then let us determine the axis in R
3 that

it fixes. Clearly the unit quaternion v is fixed by conjugation Ad v, since Ad v(v) = v.v.v−1 = v. Also the real
part Re(v) = v0.1 is fixed by this conjugation. Thus

Claim 1: The fixed axis of ρ(v) in R
3 is the R-span of Im v = v1i+v2j+v3k which we identify as v =

∑3
i=1 viei.

Note that if Im v = 0, then v = ±1 and ρ(v) = Id. In this case there is nothing to be done. Thus we assume
from now on (without loss of generality) that A is not the identity, and hence that θ ∈ (0, π].

What is the interpretation of v0? Note that for a rotation A ∈ SO(3), if we write it as a θ ∈ (0, π] rotation
about the axis v, and complete v into a orthonormal basis {a,b,v} which is right handed (viz. a×b = v), then
by the last assertion of Proposition 2.3 above, with respect to this basis, A will have the matrix representation
given by:

A =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1





Claim 2: The angle of rotation θ of the rotation A above is determined by the formula :

2 cos θ = trA− 1

where trA is the trace of A, the sum of its diagonal entries. We note here the fundamental fact that the trace
is a property of the linear transformation, and not of the basis chosen for its matrix representation. Which is
why we used the convenient basis {a,b,v} described above to assert this formula for θ.

We will now show that for v = v0 + v1i + v2j + v3k ∈ G a unit quaternion, the matrix representing
Ad v = v(−)v−1 = v(−)v in the basis {1, i, j, k} of H is given by:

Ad v =









1 ∗ ∗ ∗
0 v2

0 + v2
1 − v2

2 − v2
3 ∗ ∗

0 ∗ v2
0 + v2

2 − v2
1 − v2

3 ∗
0 ∗ ∗ v2

0 + v2
3 − v2

1 − v2
3









where the asterisks denote some entries that we are not of interest here. Clearly Ad v(1) = 1, which yields the
first column above. For the second column, note that the i-component of Ad v(i) = v.i.v−1 is just the term
containing i in

v.i.v−1 = (v0 + v1i+ v3j + v3k).i.(v0 − v1i− v3j − v3k)

which is easily computed to be v2
0 + v2

1 − v2
2 − v2

3 .

Compute likewise for the j-component and k-component of Ad v(k). It follows that the 4 × 4 matrix for
Ad v has the diagonal entries shown above.
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Clearly since R.1 is fixed by Adv, and ρ(v) is the restriction of Adv to (R.1)⊥, it follows that:

tr ρ(v) = tr (Ad v) − 1 = 3v2
0 − v2

1 − v2
2 − v2

3 = 4v2
0 − 1

since ‖v‖2
=
∑3
i=0 v

2
i = 1. Thus, by using Claim 2 above, the angle of rotation θ of ρ(v) about the axis

v = v1e1 + v2e2 + v3e3 is given by:
2 cos θ = trρ(v) − 1 = 4v2

0 − 2

which leads to v2
0 = cos2 θ

2 , or

cos
θ

2
= ±v0 (3)

The two signs correspond to the fact that both ρ(v) and ρ(−v) give exactly the same rotation of R
3 = Im H.

Note that since we are requiring that θ ∈ (0, π], cos θ2 is always non-negative, and thus we may change v to −v
if necessary, so as to make v0 non-negative. Hence, choosing the positive sign for v0, it follows that

v = cos
θ

2
+ sin

θ

2
(v1i+ v2j + v3k)

where the coefficient sin θ
2 in the last three terms is needed to make v a unit quaternion, since v =

∑3
i=1 viei

is assumed to be a unit vector in the statement. This finishes the proof of our Lemma.
✷

Example 4.4. To check that our computation above is correct, let us take v = e3, say. As an imagi-
nary quaternion, this v is k. Then take a rotation A about v of angle θ (in the sense of the corkscrew
rule). The Lemma 2 above says that A = ρ(v) where v = cos θ2 + sin θ

2k. Then ρ(v)i = Adv(i) = v.i.v =
(

cos θ2 + sin θ
2k
)

i
(

cos θ2 − sin θ
2k) =

(

cos θ2 + sin θ
2k
)

(cos θ2 i+ sin θ
2j
)

=
(

cos2 θ
2 − sin2 θ

2

)

i+ 2 cos θ2 sin θ
2j

= cos θ.i+ sin θ.j. Similarly compute ρ(v)j =
(

cos θ2 + sin θ
2k
)

j
(

cos θ2 − sin θ
2k
)

= − sin θ.i+ cos θ.j.

This shows that the matrix of A is :

A =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1





as indeed, it should be, because rotating counterclockwise by θ in the xy plane moves a corkscrew in the
direction of v = e3 in keeping of the right hand rule of Notation 4.1.

Remark 4.5. Incidentally, the reader may well wonder whether the Lemma 2 above gives a formula for
a“continuous section” for ρ (viz. a continuous map σ : SO(3) → Spin(3) satisfying ρ ◦ σ = IdSO(3)). The
answer is no. The prescription above does not give a clear way for deciding what to do when θ = π. In this
case, the π rotations about both v and −v are the same, and so we have no way of prescribing a consistent
choice between v and −v to define σ all over SO(3) so as to make it continuous.

However, if we take the open subset U of all rotations in SO(3) which rotate by an angle strictly less than
π, the prescription given in the proof of Lemma 2 above provides a continuous map σ : U → Spin(3) satisfying
ρ ◦ σ = IdU . In fact, it is interesting to note that U can be topologically identified with a 3-dimensional open
ball of radius π. This topological equivalence comes from identifying the θ ∈ [0, π) rotation about the unit
vector v ∈ R

3 with the vector θv ∈ R
3.

Now we are ready to answer the main question of this note.

Proposition 4.6 (Angle and axis of composite rotations). Let A,B ∈ SO(3). Let v, (resp. w) ∈ R
3 be the

axis of rotation of A (resp. B), by an amount θ ∈ [0, π] (resp. φ ∈ [0, π]). Assume (for computational
convenience) that both these vectors v,w are unit vectors. Also we avoid the trivial case of A or B being
the identity transformation by stipulating that θ, φ are both non-zero. Finally, we also stipulate that the unit
vectors v and w are not linearly dependent, because in that case v = ±w, and both rotations are in the same
plane and the answer is obvious from Proposition 2.1.
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Then the axis of rotation of AB is the axis defined by the vector

cos
φ

2
sin

θ

2
v + sin

φ

2
cos

θ

2
w + sin

θ

2
sin

φ

2
(v × w)

(Note that this last defined vector may not be a unit vector). Also the angle of rotation of AB is given by ψ
where

cos
ψ

2
= cos

θ

2
cos

φ

2
− sin

θ

2
sin

φ

2
〈v,w〉

Proof: Note that, in view of our stipulation that θ, φ are both non-zero, we have θ, φ ∈ (0, π]. This implies that

sin θ
2 sin φ

2 6= 0. Because v and w are stipulated to be linearly independent, this means that sin θ
2 sin φ

2 (v × w)
is a non-zero vector. Since the vector v × w is perpendicular to the plane of the unit vectors v and w, it
follows the vector claimed to be the axis of rotation of A.B in the statement is also a non-zero vector. If A
is a rotation by θ ∈ (0, π] with direction of rotation defined by v =

∑3
i=1 viei with

∑3
i=1 v

2
i = 1, then by the

Lemma 2 above, A = ρ(v) where the unit quaternion v ∈ G = Spin(3) is given by:

v = cos
θ

2
+ sin

θ

2
(v1i+ v2j + v3k)

Likewise, if the second rotation B has direction of rotation w =
∑3
i=1 wiei by an angle φ ∈ (0, π], then

B = ρ(w), where w ∈ G is the unit quaternion given by

w = cos
φ

2
+ sin

φ

2
(w1i+ w2j + w3k)

By Claim 1 in the proof of Lemma 2 above, the fixed direction of AB = ρ(v)ρ(w) = ρ(vw) is then given by
computing the imaginary part of the quaternion v.w. Indeed,

Im (v.w) =

[

w1 sin
φ

2
cos

θ

2
+ v1 sin

θ

2
cos

φ

2
+ sin

θ

2
sin

φ

2
(v2w3 − v3w2)

]

i

+

[

w2 sin
φ

2
cos

θ

2
+ v2 sin

θ

2
cos

φ

2
+ sin

θ

2
sin

φ

2
(v3w1 − v1w3)

]

j

+

[

w3 sin
φ

2
cos

θ

2
+ v3 sin

θ

2
cos

φ

2
+ sin

θ

2
sin

φ

2
(v1w2 − v2w1)

]

k

= sin
θ

2
cos

φ

2
v + cos

θ

2
sin

φ

2
w + sin

θ

2
sin

φ

2
(v × w)

which proves the first part of the proposition (where, as usual, Im H is being identified with R
3 by i 7→ e1,

j 7→ e2, k 7→ e3) .

To see the angle of rotation ψ, we know that by Claim 2 in the proof of Lemma 2, cos ψ2 is the real part of
the product quaternion vw. Thus it is

cos
ψ

2
= Re(vw) = cos

θ

2
cos

φ

2
− sin

θ

2
sin

φ

2
(v1w1 + v2w2 + v3w3)

= cos
θ

2
cos

φ

2
− sin

θ

2
sin

φ

2
〈v,w〉

which is exactly the second part of the proposition. The proposition follows. Notice how the dot product
〈v,w〉 enters into the formula for the angle, and the cross product v × w enters into the formula for the axis
of rotation. ✷
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