Indian Statistical Institute, Bangalore

MS (QMS) First Year
Second Semester - Advanced Statistical Process Control

Back Paper Exam
Date: Jun 13, 2019
Maximum marks: 100
Duration: 3 hours
1.

$$
[5+15=20]
$$

a) Specify the conditions, under which a group control chart can be established in a process.
b) A machine has four heads. Samples of $n=5$ units are selected from each head, and \bar{x} and R values of the characteristic are computed. Setup group control chart for this process.

Head

Sample No.	1		2		3		4	
	\bar{x}	R	\bar{x}	R	\bar{x}	R	\bar{x}	R
1	23	2	24	1	26	2	23	3
2	21	1	23	2	22	4	24	4
3	24	2	22	5	23	3	27	2
4	35	3	24	3	22	1	21	5
5	24	1	20	2	21	1	23	1
6	23	2	21	1	24	2	22	2
7	21	1	23	2	28	5	24	1
9	22	2	24	4	21	2	25	2
10	20	2	22	3	22	1	21	3
9	21	1	25	1	23	3	23	5

2. Prepare a short run version of c-chart for the given 100\% inspection data of a component.

Sample No.	Variety	No. Impacted	No. Rejected
1	A	240	22
2	B	236	13
3	B	137	9
4	C	421	33
5	D	329	17

6	A	210	15
7	B	410	18
8	B	323	24
9	C	323	29
10	B	167	7

3. Write short notes on (any four):-
a) SPC implementation
b) $\mathrm{SPC} v / \mathrm{s}$ EPC
c) Dominance System
d) Chain Sampling
e) Taguchi concept of loss function
4.

a) State the β-correction procedure.
b) Derive the β-correction factor.
c) State the Control method.
5. Compute the β-correction table from the consecutive 16 observation for the product characteristic $25 \pm 5 \mathrm{~mm}$.
$25,20,20,20,25,25,27,25,22,22,28,25,25,28,28,30$.
6.

$$
[10+5=15]
$$

a) State the continuous sampling methods (csp-1, csp-2, csp-3).
b) Compute the $P(A)$ for the quality $p-0.01$ and 0.015 for the csp plan $i=50, f=\frac{1}{3}$.
7. Calculate the probability of acceptance for a chain sampling plan for the following lot quality $p=0.005,0.01$ and 0.015 .

