Indian Statistical Institute, Bangalore MS (QMS) First Year Second Semester - Advanced Statistical Process Control

Midterm Exam Maximum marks: 50 Date: March 01, 2018 Duration: 3 hours

1. Suggest suitable process control method for each process type (with proper justification). $[5 \ge 2 = 10]$

S1. No.	Description	Product Chart
a)	Quality of product depends on skill and experience of operator	Discrete
b)	Product quality is maintained by a cutting tool. After few parts	Continuous
	the cutting tool to the adjusted to maintain the dimension	
c)	Suggest the control chart when C_{pk} value > 2.5	Continuous
d)	6 parts are produced together every time in an Injection	Discrete
	Moulding Operation	
e)	The raw material quality is critical for the output quality	Continuous

2.

[5 + 5 = 10]

a) Describe the method of SPC implementation in a manufacturing process.

b) In a short run production system, a machine produces three similar parts having dimension 10 $\frac{+}{-}$ 0.5, 8 $\frac{+}{-}$ 0.4 and 12 $\frac{+}{-}$ 0.7 respectively. Suggest a suitable control chart technique and calculate the control limit which ensure $C_{pk} \ge 1.33$ for all parts.

3. A machine has 4 heads. Samples of n = 3 were collected from each head and subgroup \bar{x} and *R* value are given for 10 such subgroups. Construct a group control chart and also comment about the process. [10]

Head								
	1		2		3		4	
Sample	\overline{x}	R	\overline{x}	R	\overline{x}	R	\overline{x}	R
1	51	1	55	1	53	3	53	5
2	52	3	57	2	52	4	55	1
3	51	2	55	1	54	2	58	4
4	54	2	58	2	51	1	53	2
5	53	1	54	4	50	3	54	2
6	55	2	52	3	54	2	52	6
7	54	4	51	1	53	1	58	5
8	53	3	50	2	57	1	53	1
9	52	1	49	1	52	1	49	2
10	51	2	53	3	51	2	50	3

4.

[2 + 2 + 2 + 4 = 10]

a) Define the need for multivariate process control.

b) Define phase I and phase II limit of Hotelling; T^2 control chart.

c) When T^2 control limits can be approximated to X^2 control chart.

d) Consider a T^2 control chart for monitoring P = 6 quality characteristics. Suppose that the subgroup size n = 5 and then were 25 subgroups available to estimate sample covariance matrix.

i) Find out phase II limit with $\propto = 0.01$.

ii) Compare this limit with the X^2 limit.

5. A product has 2 quality characteristics. The nominal value of this quality characteristics and their sample covariance matrix have been determined from the analysis of 30 preliminary subgroups of size n = 10 as [5 + 5 = 10]

$$\bar{\bar{x}} \begin{bmatrix} 3.0\\ 3.5 \end{bmatrix} s = \begin{bmatrix} 1.40 & 1.02\\ 1.02 & 1.35 \end{bmatrix}$$

a) Calculate the phase I limit with $\propto = 0.01$.

b) Another 2 samples were collected, does the process is in statistical control.

Sample No.	$\bar{x_1}$	\bar{x}_2
1	2.4	3.0
2	3.1	3.7

6.

[3 + 2 = 5]

a) State the procedure of pre-control chart technique assuming that the product characteristic is normally distributed and the natural tolerance ($\mu_{-}^{+}30$) coincide with the tolerance.

b) What will be the pre-control limit when $C_{pk} = 1.33$.