Indian Statistical Institute, Bangalore
 M.S. (QMS) First Year
 Second Semester - Statistics for Decision Making II

Mid Term Exam Duration: 2 Hrs Date: 24-02-2023 Max Marks: 50

This paper carries 60 Marks. Answer as many questions as you can.

1. A dietician likes to find out the effectiveness of the diet plan she provides for her patients. The plan is considered effective if the patient loses his/her weight by at least 2 kg in 90 days. Given the scenario, explain how you will conduct the study, the null and alternate hypotheses, the test statistics, etc.
[10]
2. Let $y_{1}, y_{2}, \cdots, y_{n}$ be a random sample of n observations on a random variable Y with the probability density function

$$
\begin{equation*}
f(y)=\frac{1}{\theta^{2}} y e^{-y / \theta}, \quad 0 \leq y<\infty, \quad 0<\theta<\infty \tag{6}
\end{equation*}
$$

Find the maximum likelihood estimator for θ.
3. In a random sample of 85 automobile engine crankshaft bearings, 10 have a surface finish that is rougher than the specifications allow. A modification is made in the surface finishing process and that, subsequently, a second random sample of 85 axle shafts is obtained. The number of defective shafts in this second sample is 8 .
a. Obtain an approximate 95% confidence interval on the difference in the proportion of defective bearings produced under the two processes.
b. Based on confidence interval, can we say the modification is able to reduce number of defective?
$[6+2=8]$
4. A die is thrown 60 times. The number of times it lands with $1,2,3,4,5$ and 6 face up is 5 , $8,9,8,10$ and 20 , respectively. Based on the above can we say that the die is biased. [Use $\alpha=0.05]$
5. Engineers are making breakthroughs to create synthetic silk fibres that can improve everything from car bumpers to bullet-proof vests or to make artificial blood vessels. One research group reports the summary statistics for the toughness ($\mathrm{MJ} / \mathrm{m} 3$) of processed fibres.

$$
n=18, \quad \bar{x}=22.6, \quad s=15.7
$$

a. Construct a 95% confidence interval for the mean toughness of these fibres. Assume that the population is normal.
b. Interpret the meaning of confidence interval.
6. The following are the average weekly losses of worker-hours due to accidents in 10 industrial plants before and after a certain safety program was put into operation:

Plant:	1	2	3	4	5	6	7	8	9	10
Before:	45	73	46	124	33	57	83	34	26	17
After:	38	64	42	119	35	51	77	29	22	11

Use the 0.05 level of significance to test whether the safety program is effective.
7. In the context of hypothesis test explain the following briefly
a. Test statistics, confidence interval of parameter and p-value in rejecting H_{0}.
b. Show that for a fixed sample size n, α (type- 1 error) increases as β (type-2 error) decreases, and vice versa.

