Indian Statistical Institute

Bangalore centre

Mid Semester Exam 2019 SDM-2

This paper carries 60 Marks.
Answer as many questions as you can, but the maximum score you can get is $\mathbf{5 0}$ only.
Date: 01-03-2019
Max.marks:50
Time: 3 Hrs

1. From a normal population of measurements with unknown mean μ and unknown variance σ^{2}, a random sample of size n is drawn.
Derive a $100(1-\alpha) \%$ prediction interval of a the next observation x_{0}.
2. Let X be a random variable with mean μ and variance σ^{2} and let $X_{1}, X_{2, \ldots \ldots .}, X_{n}$ be a random sample of size n from the population of X . Show that the estimate $\mathrm{G}=K \sum_{i=1}^{n-1}\left(X_{i+1}-X_{i}\right)^{2}$ is unbiased for estimating σ^{2} for an appropriate choice of K. Find the appropriate value of K.
3. Let X_{1} and X_{2} be independent chi-square random variables with n_{1} and n_{2} degrees of freedom respectively. Then show that the ratio $\mathrm{F}=\frac{\mathrm{X} 1 / \mathrm{n} 1}{\mathrm{X} 2 / \mathrm{n} 2}$ has the probability density function $\left.\left.\mathrm{g}(\mathrm{f})=\left\{\Gamma_{1}^{\left(\mathrm{n}+\mathrm{n}_{2}\right) / 2}\left(\mathrm{n}_{1} / \mathrm{n}_{2}\right)_{1}^{\mathrm{n}}{ }_{1} f^{\left(\frac{\mathrm{n} 1}{2}-1\right)}\right\} / \Gamma_{1}^{(\mathrm{n}}{ }_{1} / 2\right) \Gamma^{(\mathrm{n} / 2)}\left[\left(\mathrm{n}_{1} f / \mathrm{n}_{2}\right)+1\right)\right]_{1}^{\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right) / 2}, 0<f<\infty$.
4. A soft-drink machine at a steak house is regulated so that the amount of drink dispensed is approximately normally distributed with a mean of 200 millilitres and a standard deviation of 15 millilitres. The machine is checked periodically by taking a sample of 9 drinks and computing the average content. If x-bar falls in the interval $191<x$-bar < 209, the machine is thought to be operating satisfactorily; otherwise, we conclude that $\mu \neq 200$ milliliters.
(a) Find the probability of committing a type I error when $\mu=200$ millilitres.
(b) Find the probability of committing a type II error when $\mu=215$ millilitres.

$$
[6+6=12]
$$

5. In a random sample of $n=500$ families owning television sets in the city of Bangalore, it is found that $x=340$ subscribe to a particular movie channel MOVIE. Find a 95%
confidence interval for the true proportion of families with television sets in this city that subscribe to MOVIE. How large a sample is required if we want to be 95% confident that our estimate of the said true proportion is within 0.02 of the true value?
6. Explain the following with example:
a) Efficiency
b) Method of Maximum Likelihood Estimation
c) Type-I \& Type-II error
