Indian Statistical Institute, Bangalore

M.S (QMS) First Year
First Semester -Reliability, Maintainability and Safety-I
Final Examination

Time: 3 hrs.
Date: 16/11/2022
Maximum marks :50

Instruction: This paper has six questions. Answer any five questions. Each question carries 10 marks. Try to answer all parts of a question on the same place.

1. Thickness (X) and length (Y) of a particular item are jointly distributed and vary from item to item. The dimensions X and Y are measured in mm. Assume that the joint probability density function of X and Y is given by
$f(x, y)= \begin{cases}\left(x+6 y^{2}\right) & \text { if } 1 \leq x \leq 4 \text { and } 5 \leq y \leq 8 \\ 0 & \text { Otherwise }\end{cases}$
a) Find the probability that a randomly chosen item has a thickness between 2.0 mm to 3.0 mm and length between 6.0 mm to 7.0 mm .
b) Find the marginal probability density function of Y.
$[5+5=10]$
2. A municipal bond service has three rating categories (A, B and C). Suppose in the past year, of the municipal bonds issued throughout the country 70% were rated A, 20\% were rated B, and 10% were rated C. Of the municipal bonds rated A ,50\% were issued by cities, 40% by suburbs, and 10% by rural areas. Of the municipal bonds rated B , 60% were issued by cities, 20% by suburbs, and 20% by rural areas. Of the municipal bonds rated C, 90% were issued by cities, 5% by suburbs, and 5% by rural areas.
a) If a new municipals bond is to be issued by a city, what is the probability that it will receive an A rating?
b) What proportion of municipal bonds are issued by cities?
c) What proportion of municipal bonds are issued by suburbs?
$[4+3+3=10]$
3. Five samples of an electronic component were placed on a life-testing. The components survived for 80 hrs., 100 hrs., 120 hrs., 140 hrs., and 120 hrs. respectively. Assuming constant failure rate, calculate the reliability of the component at 200 hrs . Also calculate the median time to failure.
4. Calculate the system reliability of the given series-parallel system below for the first 150 hrs . In the system, time to failure of components C1 and C2 follows Weibull and Normal distribution respectively, and component C3 has a constant failure rate. The parameters of the distributions are provided within the component in the figure.

[10]
5. a) Explain the 'Bathtub curve'.
b) 'Weibull distribution is one of the most flexible reliability models'- Explain.
[5+5=10]
6. a) The reliability function of a component is given by

$$
R(t)=1-\frac{t^{2}}{a^{2}} \quad \text { for } 0 \leq t \leq a
$$

Where a is a parameter of the distribution representing the component's maximum life. Determine the mean time to failure (MTTF) of the component.
b) Define maintainability and availability.

