Indian Statistical Institute, Bangalore
M S(QMS) First Year
First Semester - Probability

Mid-Semester Exam
Duration: 2hrs
Date: Sept 12, 2014
Answer questions 1, 2, 3 and one from 4 and 5

1. A balanced die is rolled n times independently where $n \geq 2$. Let X denote the number of times 6 dots show up and Y denote the number of times 5 dots show up in these n rolls.
(a) What is the joint probability distribution of (X, Y) ?
(b) Find the probability distribution of $Z=X+Y$.
(c) Find $E(Z), \operatorname{Var}(Z)$ and $\operatorname{Cov}(X, Z)$.
2. Suppose the joint probability mass function of (X, Y) is given by

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cl}
p^{2}(1-p)^{y} & \text { if } 0 \leq x \leq y<\infty, x \text { and } y \text { are integers; } \\
0 & \text { otherwise },
\end{array}\right.
$$

for $0<p<1$.
(a) Find the marginal probability mass functions of X and Y.
(b) Are X and Y independent?
(c) What is the name of the probability distribution of Y ?
3. Assume that there are equal number of males and females in a particular population. Suppose that 5% of men and 1% of women are colour-blind. A colour-blind person is chosen at random. What is the probability of this person being male?
4. For events A, B and C defined on the same probability space, show that
(a) $P(A \cap B) \geq P(A)+P(B)-1$, and
(b) $P(A \cap B \cap C) \geq P(A)+P(B)+P(C)-2$.
5. Suppose $X \sim \operatorname{Bernoulli}(p), Y \sim \operatorname{Poisson}(\lambda)$ and these two are independently distributed. Let $Z=X+Y$. Find
(a) the p.m.f of Z;
(b) $E(Z)$ and $\operatorname{Var}(Z)$.

