DEPARTMENT OF SQC&OR Indian Statistical Institute, Banglore Operations Research I

Time: 2 hour<u>Mid-Term</u>Maximum Marks: 30

Instructions: Attempt any 3 questions out of 4.

1. (10 points) A firm uses lathes, milling machines and grinding machines to produce two machine parts. The following table represents the machining times required for each part, the machining times available on different machines and the profit on each machine part.

Types of machine	Tin	ne required for machine part	Maximum time available	
Types of machine	Ι	II	per week(minutes)	
Lathes	12	6	3000	
Milling machines	4	10	2000	
Grinding machines	2	3	900	
Profit per unit	40	100		

Find the number of parts I and II to be manufactured per week to maximize the profit.

2. (10 points) Solve the following linear programming problem: Maximize $Z = 2x_1 + 3x_2 + 4x_3$ subject to

$$\begin{array}{rcrcrcrcrc} 3x_1 + x_2 + 4x_3 &\leq & 600\\ 2x_1 + 4x_2 + 2x_3 &\geq & 480\\ 2x_1 + 3x_2 + 3x_3 &= & 540\\ x_1, x_2, x_3 &\geq & 0. \end{array}$$

3. (a) (5 points) Solve the following assignment problem:

	Ι	II	III	IV	V
А	11	17	8	16	20
В	9	7	12	6	15
С	13	16	15	12	16
D	21	24	17	28	26
Е	14	10	12	11	13

(b) (5 points) Find a basic feasible solution for the following transportation problem using Vogel's approximation method.

	To					
		1	2	3	4	Supply
	A	7	3	8	6	60
From	B	4	2	5	10	100
	C	2	6	5	1	40
Demand		20	50	50	80	

4. (10 points) A distribution system has the following data:

Factory	Capacity(units)	Warehouse	Demand(units)
А	45	Ι	25
В	15	II	55
\mathbf{C}	40	III	20

The transportation cost per unit associated with each route is as follows:

	Ι	II	III
Α	10	7	8
В	15	12	9
С	7	8	12

Find the optimum transportation schedule and the minimum total cost of transportation.