Indian Statistical Institute, Bangalore
 M.S (QMS) First Year
 First Semester - Operations Research I

Mid-Semester Exam
Duration: 2hrs
Date: Sept 11, 2014

1. State whether the following statements are true or false with due justification. $\left(3^{*} 4=12\right)$
(a) For a L.P.P $\min z=2 x_{1}+3 x_{2}$

$$
\begin{array}{ll}
\text { subject to } & x_{1} \leq 4 \\
& x_{1}+2 x_{2} \geq 7 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

the optimum solution is unbounded.
(b) The L.P.P $\max z=2 x_{1}+2 x_{2}$

$$
\begin{array}{ll}
\text { subject to } & x_{1}+x_{2} \leq 20 \\
& x_{1} \leq 15 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

has multiple solutions.
(c) The L.P.P $\max z=-5 x_{1}-12 x_{2}$

$$
\begin{array}{ll}
\text { subject to } & x_{1} \geq 7 \\
& x_{2} \geq 4 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

has no solution.
2. Express the following L.P.P in standard form and do the first iteration of simplex method

$$
\begin{aligned}
\max z= & 3 x_{1}+2 x_{2}+5 x_{3} \\
\text { subject to } & 2 x_{1}-3 x_{2} \leq 3 \\
& x_{1}+2 x_{2}+3 x_{3} \geq 5 \\
& 3 x_{1}+2 x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

3. Solve the L.P.P

$$
\begin{align*}
\min z= & x_{1}-3 x_{2}+2 x_{3} \tag{15}\\
\text { subject to } & 3 x_{1}-x_{2}+3 x_{3} \leq 7 \\
& -2 x_{1}+4 x_{2} \leq 12 \\
& -4 x_{1}+3 x_{2}+8 x_{3} \leq 10 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{align*}
$$

4. What are the different types of sensitivity analysis possible in a L.P.P. Explain briefly any one of them.
