Indian Statistical Institute, Bangalore M.S (QMS) First Year First Semester - Operations Research I				
Mid-Semester Exam	Duration: 2hrs		Date: Sept 11, 2014	
 State whether the following statements are true or false with due justification. (3*4=12) (a) For a L.P.P min z = 2x₁ + 3x₂ 				
	subject to	$x_1 \le 4$ $x_1 + 2x_2 \ge 7$ $x_1, x_2 \ge 0$		
the optimum solution is u	nbounded.			

- (b) The L.P.P max $z = 2x_1 + 2x_2$
 - subject to $x_1 + x_2 \le 20$ $x_1 \le 15$ $x_1, x_2 \ge 0$

has multiple solutions.

(c) The L.P.P max $z = -5x_1 - 12x_2$

subject to	$x_1 \ge 7$
	$x_2 \ge 4$
	$x_1, x_2 \ge 0$

has no solution.

2. Express the following L.P.P in standard form and do the first iteration of simplex method $$(2^*4{=}8)$$

$$\max z = 3x_{1} + 2x_{2} + 5x_{3}$$

subject to
$$2x_{1} - 3x_{2} \le 3$$
$$x_{1} + 2x_{2} + 3x_{3} \ge 5$$
$$3x_{1} + 2x_{2} \le 2$$
$$x_{1}, x_{2} \ge 0$$

3. Solve the L.P.P

min
$$z = x_1 - 3x_2 + 2x_3$$

subject to $3x_1 - x_2 + 3x_3 \le 7$
 $-2x_1 + 4x_2 \le 12$
 $-4x_1 + 3x_2 + 8x_3 \le 10$
 $x_1, x_2, x_3 \ge 0$

4. What are the different types of sensitivity analysis possible in a L.P.P. Explain briefly any one of them. (10)

(15)