Paper 12: Elements of Maths 2 - Mid-Semester Exam

MS LIS First Year

February 27, 2017

Instructions: There are 8 questions altogether. Marks corresponding to each question is indicated in bold. Answer as many as you can. Maximum score: 40 marks. Maximum time: 1.5 hrs.

(1) Provide an example of a binary relation on $\mathbb Z$ which is reflexive and symmetric but not transitive. Justify your answer. Hint: Use a distance measure in defining binary relation

[3]

(2) Let $f: \mathbb{R} \to \mathbb{R}$ be defined as:

$$f(x) = \begin{cases} x^2 & \text{if } x < 0\\ -x^3 & \text{if } x \ge 0 \end{cases}$$

Show that f is one-one and onto. Also, find the inverse of f.

[3+3+3]

- (3) Let X, Y be two sets such that $Y \subseteq X$ and let $f: X \to Y$ be a function.
 - (a) If X and Y are finite sets, show that f cannot be one-one.
 - (b) Can f be one-one if both X and Y are infinite sets? Justify.

[3+3]

(4) Draw the graph of the function $f(x) = |||x| - 1| - 2|, x \in \mathbb{R}$.

[3]

- (5) Suppose $f,g:[0,1]\to [0,\infty)$ are continuous functions and $0\leq a\leq b\leq 1$ are such that
 - $f(a) \ge f(x) \ \forall x \in [0,1],$
 - $g(b) \ge g(x) \ \forall x \in [0,1]$ and
 - f(a) = g(b)

Prove that there exists $c \in [0,1]$ such that $f(c)^2 + f(c) = g(c)^2 + g(c)$. Hint: Use intermediate value theorem

[4]

(6) $f, g, h : \mathbb{R} \to \mathbb{R}$ are functions such that f(3) = 6, f'(3) = 6, g(2) = 3, g'(2) = 4, and $h(x) = (f \circ g)(x) \forall x \in \mathbb{R}$. Find h'(2).

[3]

(7) Find the number of real roots of the polynomial: $(x-1)^9 + x^5 + x^3 + 1$. Justify your answer.

[4]