Piper-6.
 L Elements of Maths 1 - End-Sem Question Paper

MS LIS First Year

November ?, 2015

Instructions: Answer all the questions. The maximum you can score is 60 marks. Marks corresponding to each question is indicated in bold. Maximum time allotted is 3 hrs.
(1) [3] Suppose $2+4 i$ is a root of $x^{2}+b x+c=0$, where $b, c \in \mathbb{R}$. Find b and c.
(2) [7] Suppose that there are 100 identical chocolates and 5 kids. In how many ways can these chocolates be distributed among the kids such that each kid receives at least 1 chocolate and no two kids receive the sume number of chocolates.
(3) $[4+4]$ Suppose that there are n distinct pairs of shoes. Show that the number of ways (denote it by $f(n)$) in which the shoes can be paired such that no left shoe is paired with its correct right shoe
(a) satisfies the recurrence $f(n)=(n-1)[f(n-1)+f(n-2)]$ with $f(1)=0, f(2)=1$.
(b) and $f(n)=n!\left(\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}\right)$ for $n \geq 1$.
(4) [5] Use Binomial theorem or a combinatorial argument or otherwise prove the following identity $\sum_{i=0}^{n}\binom{n}{i}\binom{n}{n-i}=\binom{2 n}{n}$
(5) [4] Compute $\sum_{i=0}^{n} i 2^{i}$
(6) [3] Suppose that x, y and z are positive integers. Use AM-GM inequality or otherwise show that $\left(\frac{x}{y}+\frac{y}{z}\right)\left(\frac{y}{z}+\frac{z}{x}\right)\left(\frac{z}{x}+\frac{x}{y}\right) \geq 8$
(7) [4] Suppose C_{1} is a circle with radius 1 unit centred at (1,1). We recursively define C_{i} as the circle with smaller radius than that of C_{i-1} that touches C_{i-1}, X and Y axes for each $i \geq 2$. Compute the sum of areas of circles C_{i}
(8) $[3+3]$ Prove that the circles $(x-1)^{2}+(y-2)^{2}=9$ and $(x-3)^{2}+(y-5)^{2}=1$ intersect. Find the equation of the straight line passing through the points of intersection of these circles.
(9) $[3+3]$ Prove that the points $(1,2),(3,4)$ and $(6,8)$ are non-collinear. Find the equation of the circle passing through these points.
(10) [4] How many circles of radius 3 units pass through (1,2) and (3, 4)? Justify. (Hint: The line segment joining the given points would be a chord if such a circle exists)
(11) [4] Find the farthest point on the circle $x^{2}+y^{2}=4$ to the point $(0,1)$. Justify your answer.
(12) [6] Let C be the circle centred at $(0, \sqrt{3})$ with radius 3 units. Prove that there do not exist more than two points on C with both their co-ordinates rational.

