Zero-sum problems with subgroup weights

S. D. Adhikari¹, A. A. Ambily² & B. Sury^{3 *}

 1 Harish-Chandra Research Institute, Ch
hatnag Road, Jhunsi, Allahabad 211019, India (email : adhikari@mri.ernet.in)

² Statistics & Mathematics Unit, Indian Statistical Institute, 8th Mile Mysore Road, Bangalore 560059, India (email : ambily@isibang.ac.in)
³ Statistics & Mathematics Unit, Indian Statistical Institute, 8th Mile Mysore Road, Bangalore 560059, India (email : sury@isibang.ac.in)

Abstract

In this note, we generalize some theorems on zero-sums with weights from [1], [4] and [5] in two directions. In particular, we consider \mathbb{Z}_p^d for a general d and subgroups of \mathbf{Z}_p^* as weights.

Mathematics Subject Classification 2001 : 11B13 Keywords : Cauchy-Davenport theorem, Chevalley-Warning theorem, Zerosum problems

1 Davenport and Harborth constants for subgroup weights

For a finite abelian group G and any non-empty $A \subset \mathbb{Z}$, the Davenport constant of G with weight A, denoted by $D_A(G)$, is defined (see [2], [3] and [5] for instance) to be the least natural number k such that for any sequence (x_1, \ldots, x_k) of k (not necessarily distinct) elements in G, there exists a nonempty subsequence $(x_{j_1}, \ldots, x_{j_l})$ and $a_1, \ldots, a_l \in A$ such that $\sum_{i=1}^l a_i x_{j_i} = 0$. Clearly, if G is of order n, one may consider A to be a non-empty subset of $\{0, 1, \ldots, n-1\}$ and we avoid the trivial case $0 \in A$.

^{*}Corresponding author

For natural numbers n and d, considering the additive group $G = (\mathbb{Z}/n\mathbb{Z})^d$, for a subset $A \subset \mathbb{Z}/n\mathbb{Z} \setminus \{0\}$, we shall use the symbol $D_A(n, d)$ to denote $D_A(G)$ in this case; for the case d = 1, the notation $D_A(n)$ has been used (see [2], [4], [5], for instance) for $D_A(n, 1)$.

Similarly, for $A \subseteq \mathbb{Z}/n\mathbb{Z} \setminus \{0\}$, the constant $f_A(n, d)$ is defined (see [1]) to be the smallest positive integer k such that for any sequence $(\mathbf{x_1}, \dots, \mathbf{x_k})$ of k (not necessarily distinct) elements of $(\mathbb{Z}/n\mathbb{Z})^d$, there exists a subsequence $(\mathbf{x_{j_1}}, \dots, \mathbf{x_{j_n}})$ of length n and $a_1, \dots, a_n \in A$ such that

$$\sum_{i=1}^n a_i \mathbf{x_{j_i}} = \mathbf{0},$$

where **0** is the zero element of the group $(\mathbb{Z}/n\mathbb{Z})^d$. When d = 1, this was denoted by $E_A(n)$ in [2] and [4]. The conjectured relation $E_A(n) = D_A(n) + n - 1$, between the constants $E_A(n)$ and $D_A(n)$, has been proved by Yuan and Zeng ([14]); and the related general conjecture has also been established by Grynkiewicz, Marchan and Ordaz ([7]) recently.

These constants are respectively the analogues of the Davenport constant (see [10], for instance) and some constant considered by Harborth [8] and others ([6], [9], [12], [13]). We shall be mainly interested in the numbers $D_U(p,d)$ and $f_U(p,d)$, where n = p, a prime and U a subgroup of \mathbb{Z}_p^* . Here, and henceforth, for a positive integer n, we shall write \mathbb{Z}_n , and \mathbb{Z}_n^* in place of $\mathbb{Z}/n\mathbb{Z}$, and $\{a \leq n : (a, n) = 1\}$ respectively, for simplicity.

We shall often use the following simple observation : If $U \leq \mathbb{Z}_p^*$ is a subgroup, then

$$U = Ker(x \mapsto x^{|U|}) = Im(x \mapsto x^{(p-1)/|U|}).$$

Proposition 1.

(i) For any subgroup U ≤ Z_p^{*}, we have d(D_U(p, 1) - 1) < D_U(p, d) ≤ d(p-1)/|U| + 1. Equality holds on the right if U = Z_p^{*}, the subgroup {1} or the set of quadratic residues. Also, in general D_U(p, d) = d(p-1)/|U| + 1 if D_U(p, 1) = p-1/|U| + 1.

- (ii) For any subgroup $U \leq \mathbb{Z}_n^*$, we have $D_U(n,d) \geq d(l-1)+1$, where l is the least natural number for which U has a zero-sequence of length l. In particular, if n = p, a prime, then $D_U(p,d) = \frac{d(p-1)}{|U|} + 1$ if $l > \frac{p-1}{|U|}$.
- (iii) If p is odd and $U \leq \mathbb{Z}_p^*$ contains 1, -1 (in particular, if $\frac{p-1}{|U|}$ is odd), then $D_U(p,d) \leq \log_2(p^d+1)$.

Proof of (i).

The inequality $d(D_U(p,1)-1) < D_U(p,d)$ is evident. For the other inequality, write $D = \frac{d(p-1)}{|U|} + 1$ for simplicity of notation. Let $\mathbf{a_1}, \dots, \mathbf{a_D} \in (\mathbb{Z}/p\mathbb{Z})^d$ be arbitrary. Write $\mathbf{a_i} = (a_{i1}, \dots, a_{id})$ for all $i \leq D$. Consider the *D* polynomials

$$\sum_{i=1}^{D} a_{ij} X_i^{(p-1)/|U|} , \ j \le d.$$

The sum of the degrees of these homogeneous polynomials is d(p-1)/|U|which is less than D. By the Chevalley-Warning theorem, there is a solution $X_i = x_i \in \mathbb{Z}_p$ with not all x_i zero. Writing $I = \{i : x_i \neq 0\}$, and $u_i = x_i^{(p-1)/|U|}$ for $i \in I$, we have $u_i \in U$ as observed above. So, we have

$$\sum_{i\in I} u_i \mathbf{a_i} = \mathbf{0} \in (\mathbb{Z}/p\mathbb{Z})^d,$$

which means that $D(U, p, d) \leq D = \frac{d(p-1)}{|U|} + 1.$

To prove the equalities asserted, use these inequalities and the following zero-sum free sequences. The sequence $(1, 0, \dots, 0), (0, 1, \dots, 0), \dots, (0, 0, \dots, 1)$ shows $D_U(p, d) > d$, when $U = \mathbb{Z}_p^*$. For the case $U = \{1\}$, we can consider the sequence comprising of each of

$$(1, 0, \dots, 0), (0, 1, \dots, 0), \dots, (0, \dots, 0, 1)$$

repeated p-1 times. Finally, if U is the set of quadratic residues, then write $\mathbb{Z}_p^* = U \sqcup \alpha U$. Then, the sequence of 2d elements

$$(1, 0, \dots, 0), (-\alpha, 0, \dots, 0), (0, 1, \dots, 0), (0, -\alpha, 0, \dots, 0),$$

 $\dots, (0, \dots, 0, 1), (0, \dots, 0, -\alpha)$

of $(\mathbb{Z}/p\mathbb{Z})^d$ can have no zero-subsequence. Thus, $D_U(p,d) > 2d$. This proves (i).

Proof of (ii).

Consider the sequence of length $\frac{d(p-1)}{|U|}$ in $(\mathbb{Z}/p\mathbb{Z})^d$ comprising of each of

 $(1, 0, \dots, 0), (0, 1, \dots, 0), \dots, (0, \dots, 0, 1)$

repeated $\frac{p-1}{|U|}$ times. If it has a subsequence, say $\mathbf{a_1}, \dots, \mathbf{a_k}$ and elements u_1, \dots, u_k in U such that $\sum_{i=1}^k u_i \mathbf{a_i} = \mathbf{0} \in (\mathbb{Z}/p\mathbb{Z})^d$, then looking at each co-ordinate, we have min $\{l : U \text{ has a zero-sequence of length } l\} \leq \frac{p-1}{|U|}$, a contradiction of the hypothesis. Thus (ii) is proved.

Proof of (iii).

Note firstly that if (p-1)/|U| is odd, then $1, -1 \in U$ by the observation in the beginning. Write $D = \lceil \log_2(p^d + 1) \rceil$ and consider any sequence a_1, \dots, a_D of length D in $(\mathbb{Z}/p\mathbb{Z})^d$. For each of the $2^D - 1$ nonempty subsets J of $\{1, 2, \dots, D\}$, look at the sum $\sum_{j \in J} a_j \in (\mathbb{Z}/p\mathbb{Z})^d$. Note $2^D - 1 \geq p^d$. If these $2^D - 1$ sums are all distinct elements of $(\mathbb{Z}/p\mathbb{Z})^d$, then they must be the various elements of this group and one of them is zero. If these sums are not distinct, there exist two subsets $J_1 \neq J_2$ of $\{1, 2, \dots, D\}$ such that $\sum_{j \in J_1} a_j = \sum_{i \in J_2} a_i$. Cancelling off all the terms corresponding to $J_1 \cap J_2$, we have a nonempty subset J_0 and $\epsilon_j \in \{1, -1\}$ such that $\sum_{j \in J_0} \epsilon_j a_j = 0 \in (\mathbb{Z}/p\mathbb{Z})^d$. This completes the proof.

Remarks.

- (i) If $U \neq \mathbb{Z}_p^*$ is a subgroup of \mathbb{Z}_p^* such that $-1 \in U$, then $\{1, -1\}$ is a zero-sum in U of length 2 and hence min $\{l : U \text{ has a zero-sequence of length } l\} = 2$ and the condition in (ii) of the proposition is not satisfied for the subgroup U of \mathbb{Z}_p^* . For instance, if $p \equiv 1 \pmod{4}$ and U is the set of quadratic residues mod p, then we are in this situation.
- (ii) The bound $D_U(p,d) \leq \frac{d(p-1)}{|U|} + 1$ may not be tight in general. For example, if U is a subgroup of \mathbb{Z}_p^* of index 3, for p = 7, 13, 19, we have $D_U(p,1) < 4$.
- (iii) The value of $D_U(p, d)$ for the case $U = \{1\}$ is well known. In fact, this case corresponds to the classical Davenport constant and the value is known for all finite abelian p-groups (Olson [10]). We shall be using the result in the particular case in the next proposition.

Proposition 2.

Let $A = \{1, 2, \dots, r\}$, where r is an integer such that 1 < r < p. We have

- (i) $D_A(p,d) \leq \left\lceil \frac{d(p-1)+1}{r} \right\rceil$, where for a real number $x, \lceil x \rceil$ denotes the smallest integer > x,
- (ii) We have

$$D_A(p,d) > \left[\frac{p}{r}\right] d.$$

Proof of (i).

Write $D = \begin{bmatrix} \frac{d(p-1)+1}{r} \end{bmatrix}$. Let $S = \mathbf{a_1}, \dots, \mathbf{a_D} \in (\mathbb{Z}/p\mathbb{Z})^d$ be arbitrary. Considering the sequence

$$S' = (\overbrace{\mathbf{a}_1, \mathbf{a}_1, \cdots, \mathbf{a}_1}^{r \text{ times}}, \overbrace{\mathbf{a}_2, \mathbf{a}_2, \cdots, \mathbf{a}_2}^{r \text{ times}}, \cdots, \overbrace{\mathbf{a}_D, \mathbf{a}_D, \cdots, \mathbf{a}_D}^{r \text{ times}}),$$

obtained from S by repeating each element r times, and observing that the length of this sequence is $\geq d(p-1) + 1$ and from Part (i) of Proposition 1, $D_U(p,d) = d(p-1) + 1$ when U is the subgroup {1}, the result follows.

Proof of (ii).

Considering the sequence comprising of each of

$$(1, 0, \dots, 0), (0, 1, \dots, 0), \dots, (0, \dots, 0, 1)$$

repeated $\left\lfloor \frac{p}{r} \right\rfloor$ times, let (t_1, t_2, \cdots, t_d) be a sum of some of the elements of this sequence with weights a_i from the set $A = \{1, 2, \dots, r\}$. If $(0, \dots, 0, 1, 0, \dots, 0)$ with 1 at the *i*-th place is involved in the sum, then we have $0 < t_i \leq \left[\frac{p}{r}\right]r < 1$ p, and the result follows.

Remarks.

(i) If r divides (p-1), then from Part (i) we have

$$D_A(p,d) \le \left\lceil \frac{d(p-1)+1}{r} \right\rceil = \frac{(p-1)d}{r} + 1.$$

On the other hand, from Part (ii) we have

$$D_A(p,d) > \left[\frac{p}{r}\right]d = \frac{(p-1)d}{r},$$

thus obtaining the exact value of $D_A(p, d)$ in this case.

(ii) Since the value of the classical Davenport constant is known for all finite abelian p-groups (Olson [10]) and for all finite abelian groups of rank 2 (Olson [11]) it is clear that results similar to the above proposition can be obtained for groups of the form $(\mathbb{Z}/p^k\mathbb{Z})^d$ and $(\mathbb{Z}/n\mathbb{Z})^2$, for positive integers k and n.

The following proposition generalizes some results in [5] and some in [4]. **Proposition 3.**

- (i) For $U = \mathbb{Z}_p^*$, $f_U(p, d) = p + d$, if d < p. In particular, $f_U(p, p - 1) = 2p - 1$.
- (ii) $f_U(p,d) \leq \frac{d(p-1)}{|U|} + p$ if $d < \frac{p|U|}{p-1}$. In particular, $f_U(p,|U|) \leq 2p-1$. Moreover, if U is the group of quadratic residues, then for $d \leq (p-1)/2$, we have $f_U(p,d) = p + 2d$.
- (iii) $f_U(p,1) \ge p 1 + D_U(p,1)$ for any subgroup U of \mathbf{Z}_p^* . Further, the equality $f_U(p,1) = p 1 + D_U(p,1)$ holds when $D_U(p,1) = 1 + \frac{p-1}{|U|}$.

Proof of (i).

Let $\mathbf{a_1}, \dots, \mathbf{a_{p+d}} \in (\mathbb{Z}/p\mathbb{Z})^d$ be arbitrary. Write $\mathbf{a_i} = (a_{i1}, \dots, a_{id})$ for all $i \leq p+d$. Considering the d+1 polynomials

$$\sum_{i=1}^{p+d} a_{ij} X_i \ , \ j \le d$$

and

$$\sum_{i=1}^{p+d} X_i^{p-1}$$

it follows by the Chevalley-Warning theorem that there is a nontrivial solution $X_i = x_i \in \mathbb{Z}_p$ because the sum of the degrees is $d + p - 1 . If <math>I = \{i : x_i \neq 0\}$ we have |I| = p because p + d < 2p. Therefore,

$$\sum_{i\in I} x_i \mathbf{a}_i = \mathbf{0} \in (\mathbb{Z}/p\mathbb{Z})^d.$$

The fact that $f_U(p,d) > p + d - 1$ follows by considering the following *p*-zerosum-free sequence of length d + p - 1:

$$\underbrace{(0,\dots,0),\dots,(0,\dots,0)}_{p-1 \text{ times}}, (1,0,\dots,0), (0,1,\dots,0),\dots, (0,0,\dots,1).$$

Proof of (ii).

This has a similar proof. Let $\mathbf{a_1}, \dots, \mathbf{a_{2p-1}} \in (\mathbb{Z}/p\mathbb{Z})^d$ be arbitrary. Let $d < \frac{p|U|}{p-1}$. Write $\mathbf{a_i} = (a_{i1}, \dots, a_{id})$ for $i = 1, 2, \dots, 2p-1$. Considering the d+1 polynomials

$$\sum_{i=1}^{t} a_{ij} X_i^{(p-1)/|U|} , \ j \le d$$

and

$$\sum_{i=1}^{t} X_i^{p-1},$$

with

$$t = \frac{d(p-1)}{|U|} + p,$$

the proof follows as before.

To see that $f_U(p,d) > p + d - 1$ when U is the group of quadratic residues and $d \leq (p-1)/2$, consider the sequence $(0, \dots, 0)$ repeated p-1 times, along with the d elements $(1, 0, \dots, 0), (0, 1, \dots, 0), \dots (0, 0, \dots, 1)$ and the d elements $(-t, 0, \dots, 0), (0, -t, \dots, 0), \dots (0, 0, \dots, -t)$ where $\mathbf{Z}_p^* = U \sqcup tU$. Clearly, it has no zero-sum of length p with weights from U.

Proof of (iii).

Clearly, a sequence of length $D_U(p, 1) - 1$ which has no zero-sum subsequence with weights in U can be augmented with the sequence $(0, \dots, 0)$ repeated p-1 times and the combined sequence cannot contain a zero-sum subsequence of length p. This proves the inequality $f_U(p, 1) \ge p - 1 + D_U(p, 1)$. Since the inequality $f_U(p, 1) \le p + \frac{p-1}{|U|}$ was proved in (ii) above, one has the equality $f_U(p, 1) \le p + \frac{p-1}{|U|}$ whenever one has $D_U(p, 1) \le 1 + \frac{p-1}{|U|}$.

Remarks.

Similar to what we observed in the case of $D_U(p, d)$, one has that equality may not hold in (ii) of the above proposition, in general. For instance $f_U(7, 2) < 13$ when U is the subgroup of cubic residues. The other method which is often useful in deducing results on zero-sums, is to use the Cauchy-Davenport theorem which states : If A_1, \dots, A_h are non-empty subsets of \mathbf{Z}_p , then

$$|A_1 + \dots + A_h| \ge \min\left(p, \sum_{i=1}^h |A_i| - h + 1\right).$$

Using this, one has, for $a_1, \dots, a_r \in \mathbf{Z}_p^*$ and for a subset A of \mathbf{Z}_p , that

$$|a_1A + \dots + a_rA| \ge \min(p, r|A| - r + 1).$$

In [4], it was shown that when $n = p_1 p_2 \cdots p_k$ is square-free and coprime to 6, then $f_U(n, 1) = n + 2k$. For prime n, this is a consequence of (ii) of proposition 3 above - in fact, an inductive argument can be used to deduce this result for general square-free n. Now, we prove a generalization of proposition 11 from [4] where subgroups more general than the subgroup of squares are treated; this is the following :

Proposition 4.

(i) Let $n = p_1 p_2 \cdots p_k$ be odd and, square-free and, let $U_i \leq \mathbf{Z}_{p_i}^*$ be nontrivial subgroups. Consider the subgroup $U \leq \mathbf{Z}_n^*$ mapping isomorphically onto $U_1 \times U_2 \cdots \times U_k$ under the isomorphism $\mathbf{Z}_n^* \to \mathbf{Z}_{p_1}^* \times \cdots \times \mathbf{Z}_{p_k}^*$ given by the Chinese remainder theorem. Suppose $r \geq max \{\frac{p_i-1}{|U_i|-1} : i \leq k\}$. Further, let $m \geq rk$ and let $a_1, \cdots, a_{m+(r-1)k}$ be a sequence in \mathbf{Z}_n . Then, there exists a subsequence a_{i_1}, \cdots, a_{i_m} and elements $u_1, \cdots, u_m \in U$ such that $\sum_j u_j a_{i_j} = 0 \in \mathbf{Z}_n$.

(ii) With n, U as above, $f_U(n, 1) \le n + k(\max_i b_i - 1)$ where $b_i = \left\lceil \frac{p_i - 1}{|U_i| - 1} \right\rceil$. **Proof.**

For the first part we proceed by induction on the number k of prime factors of n.

If k = 1, write n = p. If there are less than r elements among a_1, \dots, a_{m+r-1} which are non-zero in \mathbb{Z}_p , then at least m of them are zero. Hence, taking m such a_i 's and arbitrary units u_1, \dots, u_m the corresponding sum is zero. If, on the other hand, at least r among the a_i 's (say, a_1, \dots, a_r) are in \mathbb{Z}_p^* , then the above observation based on the Cauchy-Davenport theorem shows that

$$|a_1U + \dots + a_rU| \ge min(p, r|U| - r + 1).$$

Now, $p \le r|U| - r + 1$ since it is given that $r \ge \frac{p-1}{|U|-1}$.

Hence, $a_1U + \cdots + a_rU = \mathbf{Z}_p$. So, there are $u_1, \cdots, u_r \in U$ such that

$$a_1u_1 + \dots + a_ru_r = -(a_{r+1} + \dots + a_m).$$

Thus, the choice $u_{r+1} = \cdots = u_m = 1$ gives $\sum_{i=1}^m u_i a_i = 0$. Thus, the case k = 1 follows.

Assume that $k \geq 2$ and that the result holds for smaller k.

Consider any sequence $a_1, \dots, a_{m+(r-1)k}$ in \mathbf{Z}_n .

Suppose first that, for each $i \leq k$, at least r among the a_i 's are units modulo p_i . So, there is $t \leq rk \leq m$ such that among a_1, \dots, a_t there are at least r units in \mathbb{Z}_{p_i} for each $i \leq k$. Then, we have solutions of $\sum_{j=1}^m a_j u_j^{(i)} \equiv 0 \mod p_i$ for $i = 1, \dots, k$ and $u_j^{(i)} \in U_i$ for each $j \leq m$. As U is a subgroup of \mathbb{Z}_n^* corresponding to the product $U_1 \times U_2 \cdots \times U_k$ by the Chinese remainder theorem, the group U contains elements u_1, \dots, u_m such that $u_j \equiv u_j^{(i)} \mod p_i$ for $i = 1, \dots, k$. Therefore, $\sum_{j=1}^m u_j a_j \equiv 0 \mod n$. We are done in this case.

Now, consider the case when the sequence of a_i 's contain less than r units mod p_i for some p_i , say p_1 . Removing them, we have a sequence of m + (r-1)k - (r-1) = m + (r-1)(k-1) elements which are all $\equiv 0 \mod p_1$. By induction hypothesis, the case k-1 implies that there is a subsequence a_{s_1}, \cdots, a_{s_m} of this and elements $u_1^{(i)}, \cdots, u_m^{(i)} \in U_i$ for each $i \ge 2$ such that $\sum_{j=1}^m u_j^{(i)} a_{s_j} \equiv 0 \mod p_i$ for every $i \ge 2$. Since a_{s_j} 's are all $0 \mod p_1$, it follows that $\sum_{j=1}^m a_{s_j} \equiv 0 \mod p_1$. Choosing elements $u_1, \cdots, u_m \in U$ by the Chinese remainder theorem, we have $\sum_{j=1}^m u_j a_{s_j} \equiv 0 \mod p_i$ for all $i \ge 1$. Thus, we have $\sum_{j=1}^m u_j a_{s_j} \equiv 0 \mod n = p_1 p_2 \cdots p_k$. This completes the proof.

Taking m = n, (ii) follows from (i); one simply uses the observation that $n \ge kr$.

Remarks.

As has been remarked following Proposition 3, the upper bounds in the above proposition may not be tight. In fact, it can be checked that $f_U(13, 1) \leq 15$ where U is the subgroup consisting of cubes.

Finally, we partially generalize the result $f_{\{1,-1\}}(n,2) = 2n-1$ proved in [1] for odd n. The following Proposition treats the problem for more general subgroups and for general d. We obtain only an upper bound.

Proposition 5.

Let U be a subset of \mathbb{Z}_n^* closed under multiplication. Suppose that for each

prime p dividing n, the set $\{u \mod p : u \in U\}$ is a subgroup of \mathbb{Z}_p^* of order at least d. Then,

$$f_U(n,d) \le 2n-1.$$

Further, equality holds when $U = \{1, -1\}$, d = 2 and n is odd. **Proof.**

This will be proved by induction on the number of prime factors of n (counted with multiplicity). The prime case is covered by Proposition 3. Write $n = \prod_{i=1}^{k} p_i^{l_i}$. Start with a sequence $\mathbf{a_1}, \dots, \mathbf{a_{2n-1}}$ of length 2n-1 in \mathbb{Z}_n^d . Look at the subsequence $\mathbf{a_1}, \dots, \mathbf{a_{2p_1-1}}$. Since $\{u \mod p : u \in U\}$ is a subgroup of \mathbb{Z}_p^* of order at least d, Proposition 3(ii) gives a p_1 -subsequence, say $\mathbf{a_1}, \dots, \mathbf{a_{p_1}}$ and elements $u'_1, \dots, u'_{p_1} \in \{u \mod p_1 : u \in U\}$ such that $\sum_{i=1}^{p_1} \mathbf{a}_i u'_i = 0$ in $(\mathbb{Z}_{p_1})^d$. This means that $\sum_{i=1}^{p_1} \mathbf{a}_i u_i = p_1 \mathbf{b_1}$ for some tuple $\mathbf{b_1}$. Keeping away this p_1 -subsequence and working with the rest, we get another p_1 -sequence. We may, in this manner choose 2m - 1 such subsequences (where $n = mp_1$) and corresponding elements in U such that

$$\sum_{i=jp_1+1}^{(j+1)p_1} \mathbf{a}_i u_i = p\mathbf{b_{j+1}} \quad \forall \ 0 \le j \le 2m-2.$$

Then, by induction hypothesis, one has elements v_1, \dots, v_m in U and a m-subsequence, say, $\mathbf{b_1}, \dots, \mathbf{b_m}$ so that $\sum_{j=1}^{m} \mathbf{b_j} v_j = m \mathbf{b_0}$ for some d-tuple $\mathbf{b_0}$. Since U is closed under multiplication modulo n, we will have then a pm-subsequence of the original sequence and elements of U such that the sum is 0 mod n. The equality $f_U(n,2) = 2n-1$ when $U = \{1,-1\}$ and n is odd is clear from considering the sequence (1,0) repeated n-1 times along with the sequence (0,1) repeated n-1 times as well.

Remarks.

(i) There are many examples of U satisfying the hypothesis of the above theorem apart from $U = \{1, -1\}$ which was considered in [1]. For instance, the whole of \mathbb{Z}_n^* is one such. More generally, if $n = p_1 p_2 \cdots p_r$ is square-free, then for any subgroups $U_i \leq \mathbb{Z}_{p_i}^*$, the Chinese remainder theorem gives us a subgroup U of \mathbb{Z}_n^* isomorphic to the product of the U_i 's.

(ii) Using the above method, one can also prove the following result about the Davenport constant. If $n = \prod_{i=1}^{k} p_i^{l_i}$ is the prime factorization of n, then

$$D_{U(n,r)}(n,d) \le \prod_{i=1}^{k} D_{U(p_i,r)}(p_i,d)^{l_i} \le \prod_{i=1}^{k} \{\frac{d(p_i-1)}{(p_i-1,r)} + 1\}^{l_i}.$$

Here, we have denoted by \mathbb{Z}_n^* , the group of units of $\mathbb{Z}/n\mathbb{Z}$ and, for $r \geq 1$, write $U(n,r) = \{u^r : u \in \mathbb{Z}_n^*\}$. Note that $|U(p_i,r)| = \frac{p_i-1}{(p_i-1,r)}$.

Acknowledgement.

We are indebted to the referee for pointing out a small gap in the earlier version of proposition 1 (iii).

References

- S.D.Adhikari, R.Balasubramanian, F.Pappalardi & P.Rath Some zerosum constants with weights, Proc. Indian Acad.Sci. (Math.Sci.) 118, No. 2, 183–188 (2008).
- [2] S.D. Adhikari and Y. G. Chen, Davenport constant with weights and some related questions II., J. Combin. Theory Ser. A 115, No. 1, 178– 184 (2008).
- [3] S. D. Adhikari, Y. G. Chen, J. B. Friedlander, S. V. Konyagin and F. Pappalardi, *Contributions to zero-sum problems*, Discrete Math. **306**, 1–10 (2006).
- [4] S.D.Adhikari, C.David & J.J.Urroz, Generalizations of some zero-sum theorems, Integers, Electronic Journal of Combinatorial Number Theory 8, A 52, (2008).
- [5] Sukumar Das Adhikari and Purusottam Rath, Davenport constant with weights and some related questions, Integers 6, A30, (2006).
- [6] N. Alon and M. Dubiner, A lattice point problem and additive number theory, Combinatorica 15, 301–309 (1995).
- [7] D. J. Grynkiewicz, L. E. Marchan and O. Ordaz, A weighted generalization of two theorems of Gao, Priprint.
- [8] H. Harborth, Ein Extremalproblem f
 ür Gitterpunkte, J. Reine Angew. Math. 262/263, 356–360 (1973).
- [9] A. Kemnitz, On a lattice point problem, Ars Combin., 16b, 151–160 (1983).

- [10] J. E. Olson, A combinatorial problem in finite abelian groups, I, J. Number Theory, 1, 8–10 (1969).
- [11] J. E. Olson, A combinatorial problem in finite abelian groups, II, J. Number Theory, 1, 195–199 (1969).
- [12] Christian Reiher, On Kemnitz's conjecture concerning lattice-points in the plane, Ramanujan J., 13, No. 1-3, 333–337 (2007).
- [13] L. Rónyai, On a conjecture of Kemnitz, Combinatorica, 20 (4), 569–573 (2000).
- [14] Pingzhi Yuan and Xiangneng Zeng, Davenport constant with weights, Preprint.