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Abstract

In this note, we generalize some theorems on zero-sums with weights
from [1], [4] and [5] in two directions. In particular, we consider Zd

p

for a general d and subgroups of Z∗p as weights.
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1 Davenport and Harborth constants for sub-

group weights

For a finite abelian group G and any non-empty A ⊂ Z, the Davenport
constant of G with weight A, denoted by DA(G), is defined (see [2], [3] and
[5] for instance) to be the least natural number k such that for any sequence
(x1, . . . , xk) of k (not necessarily distinct) elements in G, there exists a non-
empty subsequence (xj1 , . . . , xjl

) and a1, . . . , al ∈ A such that
∑l

i=1 aixji
= 0.

Clearly, if G is of order n, one may consider A to be a non-empty subset of
{0, 1, . . . , n− 1} and we avoid the trivial case 0 ∈ A.

∗Corresponding author
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For natural numbers n and d, considering the additive group G = (Z/nZ)d,
for a subset A ⊂ Z/nZ \ {0}, we shall use the symbol DA(n, d) to denote
DA(G) in this case; for the case d = 1, the notation DA(n) has been used
(see [2], [4], [5], for instance) for DA(n, 1).

Similarly, for A ⊆ Z/nZ\{0}, the constant fA(n, d) is defined (see [1]) to
be the smallest positive integer k such that for any sequence (x1, · · · ,xk) of
k (not necessarily distinct) elements of (Z/nZ)d, there exists a subsequence
(xj1 , · · · ,xjn) of length n and a1, · · · , an ∈ A such that

n∑
i=1

aixji = 0,

where 0 is the zero element of the group (Z/nZ)d. When d = 1, this was
denoted by EA(n) in [2] and [4]. The conjectured relation EA(n) = DA(n)+
n − 1, between the constants EA(n) and DA(n), has been proved by Yuan
and Zeng ([14]); and the related general conjecture has also been established
by Grynkiewicz, Marchan and Ordaz ([7]) recently.

These constants are respectively the analogues of the Davenport constant
(see [10], for instance) and some constant considered by Harborth [8] and
others ([6], [9], [12], [13]). We shall be mainly interested in the numbers
DU(p, d) and fU(p, d), where n = p, a prime and U a subgroup of Z∗p. Here,
and henceforth, for a positive integer n, we shall write Zn, and Z∗n in place
of Z/nZ, and {a ≤ n : (a, n) = 1} respectively, for simplicity.

We shall often use the following simple observation :
If U ≤ Z∗p is a subgroup, then

U = Ker(x 7→ x|U |) = Im(x 7→ x(p−1)/|U |).

Proposition 1.

(i) For any subgroup U ≤ Z∗p, we have

d(DU(p, 1)− 1) < DU(p, d) ≤ d(p−1)
|U | + 1.

Equality holds on the right if U = Z∗p, the subgroup {1} or the set of
quadratic residues.
Also, in general DU(p, d) = d(p−1)

|U | + 1 if DU(p, 1) = p−1
|U | + 1.
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(ii) For any subgroup U ≤ Z∗n, we have DU(n, d) ≥ d(l − 1) + 1, where l
is the least natural number for which U has a zero-sequence of length
l. In particular, if n = p, a prime, then DU(p, d) = d(p−1)

|U | +1 if l > p−1
|U | .

(iii) If p is odd and U ≤ Z∗p contains 1,−1 (in particular, if p−1
|U | is odd),

then DU(p, d) ≤ log2(p
d + 1).

Proof of (i).
The inequality d(DU(p, 1)−1) < DU(p, d) is evident. For the other inequality,

write D = d(p−1)
|U | + 1 for simplicity of notation. Let a1, · · · , aD ∈ (Z/pZ)d be

arbitrary. Write ai = (ai1, · · · , aid) for all i ≤ D. Consider the D polynomials

D∑
i=1

aijX
(p−1)/|U |
i , j ≤ d.

The sum of the degrees of these homogeneous polynomials is d(p − 1)/|U |
which is less than D. By the Chevalley-Warning theorem, there is a solution
Xi = xi ∈ Zp with not all xi zero. Writing I = {i : xi 6= 0}, and ui =

x
(p−1)/|U |
i for i ∈ I, we have ui ∈ U as observed above. So, we have

∑
i∈I

uiai = 0 ∈ (Z/pZ)d,

which means that D(U, p, d) ≤ D = d(p−1)
|U | + 1.

To prove the equalities asserted, use these inequalities and the following
zero-sum free sequences. The sequence (1, 0, · · · , 0), (0, 1, · · · , 0), · · · , (0, 0, · · · , 1)
shows DU(p, d) > d, when U = Z∗p. For the case U = {1}, we can consider
the sequence comprising of each of

(1, 0, · · · , 0), (0, 1, · · · , 0), · · · , (0, · · · , 0, 1)

repeated p− 1 times. Finally, if U is the set of quadratic residues, then write
Z∗p = U t αU . Then, the sequence of 2d elements

(1, 0, · · · , 0), (−α, 0, · · · , 0), (0, 1, · · · , 0), (0,−α, 0, · · · , 0),

· · · · · · , (0, · · · , 0, 1), (0, · · · , 0,−α)
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of (Z/pZ)d can have no zero-subsequence. Thus, DU(p, d) > 2d. This proves
(i).

Proof of (ii).

Consider the sequence of length d(p−1)
|U | in (Z/pZ)d comprising of each of

(1, 0, · · · , 0), (0, 1, · · · , 0), · · · , (0, · · · , 0, 1)

repeated p−1
|U | times. If it has a subsequence, say a1, · · · , ak and elements

u1, · · · , uk in U such that
∑k

i=1 uiai = 0 ∈ (Z/pZ)d, then looking at each
co-ordinate, we have min {l : U has a zero-sequence of length l} ≤ p−1

|U | , a

contradiction of the hypothesis. Thus (ii) is proved.

Proof of (iii).
Note firstly that if (p−1)/|U | is odd, then 1,−1 ∈ U by the observation in the
beginning. Write D = dlog2(p

d + 1)e and consider any sequence a1, · · · , aD

of length D in (Z/pZ)d. For each of the 2D − 1 nonempty subsets J of
{1, 2, · · · , D}, look at the sum

∑
j∈J aj ∈ (Z/pZ)d. Note 2D − 1 ≥ pd. If

these 2D − 1 sums are all distinct elements of (Z/pZ)d, then they must be
the various elements of this group and one of them is zero. If these sums
are not distinct, there exist two subsets J1 6= J2 of {1, 2, · · · , D} such that∑

j∈J1
aj =

∑
i∈J2

ai. Cancelling off all the terms corresponding to J1 ∩ J2,
we have a nonempty subset J0 and εj ∈ {1,−1} such that

∑
j∈J0

εjaj = 0 ∈
(Z/pZ)d. This completes the proof.

Remarks.

(i) If U 6= Z∗p is a subgroup of Z∗p such that −1 ∈ U , then {1,−1} is a
zero-sum in U of length 2 and hence min {l : U has a zero-sequence of
length l} = 2 and the condition in (ii) of the proposition is not satisfied
for the subgroup U of Z∗p. For instance, if p ≡ 1 (mod 4) and U is
the set of quadratic residues mod p, then we are in this situation.

(ii) The bound DU(p, d) ≤ d(p−1)
|U | + 1 may not be tight in general. For

example, if U is a subgroup of Z∗p of index 3, for p = 7, 13, 19, we have
DU(p, 1) < 4.

(iii) The value of DU(p, d) for the case U = {1} is well known. In fact, this
case corresponds to the classical Davenport constant and the value is
known for all finite abelian p -groups (Olson [10]). We shall be using
the result in the particular case in the next proposition.
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Proposition 2.
Let A = {1, 2, · · · , r}, where r is an integer such that 1 < r < p. We have

(i) DA(p, d) ≤
⌈

d(p−1)+1
r

⌉
, where for a real number x, dxe denotes the

smallest integer ≥ x,

(ii) We have

DA(p, d) >
[p

r

]
d.

Proof of (i).

Write D =
⌈

d(p−1)+1
r

⌉
. Let S = a1, · · · , aD ∈ (Z/pZ)d be arbitrary.

Considering the sequence

S ′ = (

r times︷ ︸︸ ︷
a1, a1, · · · , a1,

r times︷ ︸︸ ︷
a2, a2, · · · , a2, · · · ,

r times︷ ︸︸ ︷
aD, aD, · · · , aD),

obtained from S by repeating each element r times, and observing that the
length of this sequence is ≥ d(p− 1) + 1 and from Part (i) of Proposition 1,
DU(p, d) = d(p− 1) + 1 when U is the subgroup {1}, the result follows.

Proof of (ii).
Considering the sequence comprising of each of

(1, 0, · · · , 0), (0, 1, · · · , 0), · · · , (0, · · · , 0, 1)

repeated
[

p
r

]
times, let (t1, t2, · · · , td) be a sum of some of the elements of this

sequence with weights ai from the set A = {1, 2, · · · , r}. If (0, · · · , 0, 1, 0, · · · , 0)
with 1 at the i-th place is involved in the sum, then we have 0 < ti ≤

[
p
r

]
r <

p, and the result follows.

Remarks.

(i) If r divides (p− 1), then from Part (i) we have

DA(p, d) ≤
⌈

d(p− 1) + 1

r

⌉
=

(p− 1)d

r
+ 1.

On the other hand, from Part (ii) we have

DA(p, d) >
[p

r

]
d =

(p− 1)d

r
,

thus obtaining the exact value of DA(p, d) in this case.
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(ii) Since the value of the classical Davenport constant is known for all finite
abelian p -groups (Olson [10]) and for all finite abelian groups of rank 2
(Olson [11]) it is clear that results similar to the above proposition can

be obtained for groups of the form (Z/pkZ)
d

and (Z/nZ)2, for positive
integers k and n.

The following proposition generalizes some results in [5] and some in [4].

Proposition 3.

(i) For U = Z∗p, fU(p, d) = p + d, if d < p.
In particular, fU(p, p− 1) = 2p− 1.

(ii) fU(p, d) ≤ d(p−1)
|U | + p if d < p|U |

p−1
. In particular, fU(p, |U |) ≤ 2p− 1.

Moreover, if U is the group of quadratic residues, then for d ≤ (p−1)/2,
we have fU(p, d) = p + 2d.

(iii) fU(p, 1) ≥ p − 1 + DU(p, 1) for any subgroup U of Z∗p. Further, the

equality fU(p, 1) = p− 1 + DU(p, 1) holds when DU(p, 1) = 1 + p−1
|U | .

Proof of (i).
Let a1, · · · , ap+d ∈ (Z/pZ)d be arbitrary. Write ai = (ai1, · · · , aid) for all
i ≤ p + d. Considering the d + 1 polynomials

p+d∑
i=1

aijXi , j ≤ d

and
p+d∑
i=1

Xp−1
i

it follows by the Chevalley-Warning theorem that there is a nontrivial solu-
tion Xi = xi ∈ Zp because the sum of the degrees is d + p − 1 < p + d. If
I = {i : xi 6= 0} we have |I| = p because p + d < 2p. Therefore,

∑
i∈I

xiai = 0 ∈ (Z/pZ)d.

6



The fact that fU(p, d) > p + d − 1 follows by considering the following p-
zerosum-free sequence of length d + p− 1 :

(0, · · · , 0), · · · , (0, · · · , 0)︸ ︷︷ ︸
p−1 times

, (1, 0, · · · , 0), (0, 1, · · · , 0), · · · , (0, 0, · · · , 1).

Proof of (ii).
This has a similar proof. Let a1, · · · , a2p−1 ∈ (Z/pZ)d be arbitrary. Let

d < p|U |
p−1

. Write ai = (ai1, · · · , aid) for i = 1, 2, · · · , 2p − 1. Considering the
d + 1 polynomials

t∑
i=1

aijX
(p−1)/|U |
i , j ≤ d

and
t∑

i=1

Xp−1
i ,

with

t =
d(p− 1)

|U | + p,

the proof follows as before.
To see that fU(p, d) > p + d − 1 when U is the group of quadratic residues
and d ≤ (p − 1)/2, consider the sequence (0, · · · , 0) repeated p − 1 times,
along with the d elements (1, 0, · · · , 0), (0, 1, · · · , 0), · · · (0, 0, · · · , 1) and the
d elements (−t, 0, · · · , 0), (0,−t, · · · , 0), · · · (0, 0, · · · ,−t) where Z∗p = U t tU .
Clearly, it has no zero-sum of length p with weights from U .

Proof of (iii).
Clearly, a sequence of length DU(p, 1)−1 which has no zero-sum subsequence
with weights in U can be augmented with the sequence (0, · · · , 0) repeated
p−1 times and the combined sequence cannot contain a zero-sum subsequence
of length p. This proves the inequality fU(p, 1) ≥ p− 1+DU(p, 1). Since the
inequality fU(p, 1) ≤ p + p−1

|U | was proved in (ii) above, one has the equality

fU(p, 1) ≤ p + p−1
|U | whenever one has DU(p, 1) ≤ 1 + p−1

|U | .

Remarks.
Similar to what we observed in the case of DU(p, d), one has that equality may
not hold in (ii) of the above proposition, in general. For instance fU(7, 2) < 13
when U is the subgroup of cubic residues.

7



The other method which is often useful in deducing results on zero-sums, is
to use the Cauchy-Davenport theorem which states :
If A1, · · · , Ah are non-empty subsets of Zp, then

|A1 + · · ·+ Ah| ≥ min
(
p,

h∑
i=1

|Ai| − h + 1
)
.

Using this, one has, for a1, · · · , ar ∈ Z∗p and for a subset A of Zp, that

|a1A + · · ·+ arA| ≥ min(p, r|A| − r + 1).

In [4], it was shown that when n = p1p2 · · · pk is square-free and coprime to
6, then fU(n, 1) = n+2k. For prime n, this is a consequence of (ii) of propo-
sition 3 above - in fact, an inductive argument can be used to deduce this
result for general square-free n. Now, we prove a generalization of proposi-
tion 11 from [4] where subgroups more general than the subgroup of squares
are treated; this is the following :

Proposition 4.
(i) Let n = p1p2 · · · pk be odd and, square-free and, let Ui ≤ Z∗pi

be nontrivial
subgroups. Consider the subgroup U ≤ Z∗n mapping isomorphically onto U1×
U2 · · ·×Uk under the isomorphism Z∗n → Z∗p1

×· · ·×Z∗pk
given by the Chinese

remainder theorem. Suppose r ≥ max { pi−1
|Ui|−1

: i ≤ k}. Further, let m ≥ rk
and let a1, · · · , am+(r−1)k be a sequence in Zn. Then, there exists a subsequence
ai1 , · · · , aim and elements u1, · · · , um ∈ U such that

∑
j ujaij = 0 ∈ Zn.

(ii) With n, U as above, fU(n, 1) ≤ n + k(maxi bi − 1) where bi =
⌈

pi−1
|Ui|−1

⌉
.

Proof.
For the first part we proceed by induction on the number k of prime factors
of n.

If k = 1, write n = p. If there are less than r elements among a1, · · · , am+r−1

which are non-zero in Zp, then at least m of them are zero. Hence, taking
m such ai’s and arbitrary units u1, · · · , um the corresponding sum is zero. If,
on the other hand, at least r among the ai’s (say, a1, · · · , ar) are in Z∗p, then
the above observation based on the Cauchy-Davenport theorem shows that

|a1U + · · ·+ arU | ≥ min(p, r|U | − r + 1).

Now, p ≤ r|U | − r + 1 since it is given that r ≥ p−1
|U |−1

.
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Hence, a1U + · · ·+ arU = Zp. So, there are u1, · · · , ur ∈ U such that

a1u1 + · · ·+ arur = −(ar+1 + · · ·+ am).

Thus, the choice ur+1 = · · · = um = 1 gives
∑m

i=1 uiai = 0. Thus, the case
k = 1 follows.

Assume that k ≥ 2 and that the result holds for smaller k.
Consider any sequence a1, · · · , am+(r−1)k in Zn.
Suppose first that, for each i ≤ k, at least r among the ai’s are units

modulo pi. So, there is t ≤ rk ≤ m such that among a1, · · · , at there are at
least r units in Zpi

for each i ≤ k. Then, we have solutions of
∑m

j=1 aju
(i)
j ≡ 0

mod pi for i = 1, · · · , k and u
(i)
j ∈ Ui for each j ≤ m. As U is a subgroup of

Z∗n corresponding to the product U1 × U2 · · · × Uk by the Chinese remainder

theorem, the group U contains elements u1, · · · , um such that uj ≡ u
(i)
j mod

pi for i = 1, · · · , k. Therefore,
∑m

j=1 ujaj ≡ 0 mod n. We are done in this
case.

Now, consider the case when the sequence of ai’s contain less than r
units mod pi for some pi, say p1. Removing them, we have a sequence of
m+(r−1)k−(r−1) = m+(r−1)(k−1) elements which are all ≡ 0 mod p1.
By induction hypothesis, the case k − 1 implies that there is a subsequence
as1 , · · · , asm of this and elements u

(i)
1 , · · · , u(i)

m ∈ Ui for each i ≥ 2 such that∑m
j=1 u

(i)
j asj

≡ 0 mod pi for every i ≥ 2. Since asj
’s are all 0 mod p1, it

follows that
∑m

j=1 asj
≡ 0 mod p1. Choosing elements u1, · · · , um ∈ U by the

Chinese remainder theorem, we have
∑m

j=1 ujasj
≡ 0 mod pi for all i ≥ 1.

Thus, we have
∑m

j=1 ujasj
≡ 0 mod n = p1p2 · · · pk. This completes the proof.

Taking m = n, (ii) follows from (i); one simply uses the observation that
n ≥ kr.

Remarks.
As has been remarked following Proposition 3, the upper bounds in the above
proposition may not be tight. In fact, it can be checked that fU(13, 1) ≤ 15
where U is the subgroup consisting of cubes.

Finally, we partially generalize the result f{1,−1}(n, 2) = 2n− 1 proved in [1]
for odd n. The following Proposition treats the problem for more general
subgroups and for general d. We obtain only an upper bound.

Proposition 5.
Let U be a subset of Z∗n closed under multiplication. Suppose that for each
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prime p dividing n, the set {u mod p : u ∈ U} is a subgroup of Z∗p of order
at least d. Then,

fU(n, d) ≤ 2n− 1.

Further, equality holds when U = {1,−1}, d = 2 and n is odd.
Proof.
This will be proved by induction on the number of prime factors of n (counted
with multiplicity). The prime case is covered by Proposition 3. Write n =∏k

i=1 pli
i . Start with a sequence a1, · · · , a2n−1 of length 2n−1 in Zd

n. Look at
the subsequence a1, · · · , a2p1−1. Since {u mod p : u ∈ U} is a subgroup of Z∗p
of order at least d, Proposition 3(ii) gives a p1-subsequence, say a1, · · · , ap1

and elements u′1, · · · , u′p1
∈ {u mod p1 : u ∈ U} such that

∑p1

i=1 aiu
′
i = 0 in

(Zp1)
d. This means that

∑p1

i=1 aiui = p1b1 for some tuple b1. Keeping away
this p1-subsequence and working with the rest, we get another p1-sequence.
We may, in this manner choose 2m− 1 such subsequences (where n = mp1)
and corresponding elements in U such that

(j+1)p1∑
i=jp1+1

aiui = pbj+1 ∀ 0 ≤ j ≤ 2m− 2.

Then, by induction hypothesis, one has elements v1, · · · , vm in U and a m-
subsequence, say, b1, · · · ,bm so that

∑m
j=1 bjvj = mb0 for some d-tuple b0.

Since U is closed under multiplication modulo n, we will have then a pm-
subsequence of the original sequence and elements of U such that the sum is
0 mod n. The equality fU(n, 2) = 2n − 1 when U = {1,−1} and n is odd
is clear from considering the sequence (1, 0) repeated n− 1 times along with
the sequence (0, 1) repeated n− 1 times as well.

Remarks.
(i) There are many examples of U satisfying the hypothesis of the above
theorem apart from U = {1,−1} which was considered in [1]. For instance,
the whole of Z∗n is one such. More generally, if n = p1p2 · · · pr is square-free,
then for any subgroups Ui ≤ Z∗pi

, the Chinese remainder theorem gives us a
subgroup U of Z∗n isomorphic to the product of the Ui’s.
(ii) Using the above method, one can also prove the following result about
the Davenport constant. If n =

∏k
i=1 pli

i is the prime factorization of n, then

DU(n,r)(n, d) ≤
k∏

i=1

DU(pi,r)(pi, d)li ≤
k∏

i=1

{ d(pi − 1)

(pi − 1, r)
+ 1}li .
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Here, we have denoted by Z∗n, the group of units of Z/nZ and, for r ≥ 1,
write U(n, r) = {ur : u ∈ Z∗n}. Note that |U(pi, r)| = pi−1

(pi−1,r)
.
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