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94.13 Group theory lends a hand to number theory

Many congruencem elementarynumbertheorycanberephrasedn the
languageof grouptheory. Apart from beinginterestingin its own right, the
group-theoreticephrasingftengivesa moreconceptuaproofof anumber-
theoreticresult suchas Fermat'slittle theorem. Considerthe group Z;, of
integerslessthan n and co-primeto n undermultiplication modulon. The

classicalWilson'scongruencgp — 1)! = -1 (modp) for a prime p canbe
viewedasthe assertion HZ a = p — 1. Eachelementcancelsout with its
ae ,;

inverseandwe areleft with the productof all thoseelementsvhich aretheir
own inverses. As p is prime, p | (&2 - 1) hasthe two solutionsa = 1,
p — 1; hencethe productof all the elementsof this groupis p — 1, which
givesthe Wilson congruence. The immediatequestionwhich arisesafter
looking at theaboveproofis: whathappendor a non-primen whenwe look

atthe product l'[Z a? Theinterestingresultwhich emergess embodiedin
ae 73

thefollowing signaturdemma- sochristenedbecausét givesusthevalues
+1 depending on whether primitive rogtedn exist or not.

Signature lemma

If s(n) denotesthe product of all the elementsof Z;, we have
s(n) = -1if n = 2, 4, p* or 2p* for someodd prime pandsomek > 1.
If nis noneof thesethens(n) = 1. In otherwords, by the well-known
characterisationof numbers which admit primitive roots, we have
s(n) = ¥1 according as to wheth&, is cyclic or not.

Proof. If 7} is cyclic, then for any generataywe have

oM
s = []d - & = gemrDem2 _ ez
i=1

In a cyclic groupof evenorder,thereis a uniquesubgroupof order2 andso
-1 is the only elementof order2 in 7Z;,. But, sinces(n) aboveclearly has
order2, it follows that s(n) = —1 when Z;, is cyclic. Note that this also
includes the trivial grougs asl = -1 in that case.

As we arein an abeliangroup,in the products(n) all elementscancel
with their inversesexceptfor thoseelementavhich aretheir own inverses.
In other wordss(n) is the product of alh e Z; which satisfya® = 1.

For a primen this is Wilson's theorem.

We supposen is arbitraryandn > 2. Now eachsuchain Z; hasa
unique b for which ab = —-1. Clearly b> = 1 aswell. Moreover, as
n = 2, b # a. Henceif N(n) denoteshe numberof elementsa suchthat
a2 = 1, thenwe haves(n) = (-1)N™2. Now clearly N (n) is the orderof
Zyl (Z‘,‘;)2 asit is the order of the kernel of the squaringmap on Z;,. But,
from the Chineseremaindeitheorem notethatundertheisomorphismof Z;;
with the productof Zy, wheren = [T pf, the squaresn Z; map onto the
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squaresn eachcomponent.HenceN (n) is a multiplicative function. Note
thatN (n) is evenfor all n > 2 sincein agroupof evenorderthe numberof
elementsof exponent? is even. Now we consideran arbitraryn > 1 and
the corresponding N(n).  As noted above, if n = IT_;p% then
N() = IT_:N(pk). Thus, if r > 1, then N(n) = 0 mod4 unless
n = 2p* for someodd prime p andsomek > 0. This gives clearly that
s(n) = (<D™ = 1if r > Lunlessn = 2 or 2p* for someodd prime p.
In the cases = 2p*withk > O we have already seen tisgh) = -1.
Finally suppose = 1, thatis, n = pkfor someprimep. If pis odd,
we havealreadycheckedthats(n) = -1. If p = 2,thens(2) = 1 = -1

and s(4) = -1. But in Zx with k > 3 it can be seenafter a little
calculationthatthe only elementsa satisfyinga? = 1are+1, 2" + 1; so
N(2) = 4 for all k> 3. In this case we therefore have

s(2) = (-)N@ = 1,
Thus we have proved the claim tis&h) = 1 if Z; is not cyclic.

Remarks

In what follows perhapsa good third year undergraduatecoursein
group theory is desirableto fully appreciatethe results. From the above
signaturelemmait becomesclear that s(n) = 1 (respectively—1) when
thereare at leasttwo (respectively exactly one)elementsof order2. This,
in turn, is equivalentto the presencef morethan one(respectivelyexactly
one) subgroup of order 2 iff. Looking at the product expression

Do, i = Lo X Ty X ... X Ly,
it is clearthat 73, hasa uniquesubgroupof order2 if, andonly if, the
2-Sylow subgroupis cyclic. Thuss(n) = -1 or 1 accordingasto whether
the 2-Sylow subgroupis cyclic or not. This points to the possibility of
generalisingit® to non-abeliangroups where the 2-Sylow subgroupsare
cyclic. In fact, one can prove the following generalisation.

A non-abelian generalisation

Let G be a finite (not necessarilyabelian) group whose 2-Sylow
subgroupsarecyclic. Letw e G beany involution (thatis, an elementof
order2). Then,if [G, G] denotesthe commutatorsubgroupof G (this
consistsof all finite productsof elementsof the form xyxy1), the coset
w[G, G] is a nontrivial elementof the quotientgroup G/ [G, G] andthe
productof all the elementf G takenin any orderbelongsto this coset(and
is, hence,nontrivial). In particular,if G is abelianwith cyclic 2-Sylow
subgroups, the product of all element$so the unique involution .

Notethatthe specialcasewhenG = Z; is cyclic givesus—1 asin the
signaturdemma. We do not give the proof of this non-abelianversionasit

Please clarify what the ‘it’ refers to.



16 THE MATHEMATICAL GAZETTE

involves a few slightly advancedools like the Schur-Zassenhauteorem
andalsobecauseave havebeeninformedthatit canbe deducedrom a still
more general result [1].
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