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94.13 Group theory lends a hand to number theory
Many congruencesin elementarynumbertheorycanberephrasedin the

languageof grouptheory. Apart from beinginterestingin its own right, the
group-theoreticrephrasingoftengivesamoreconceptualproofof a number-
theoreticresult suchas Fermat'slittle theorem. Considerthe group of
integerslessthan andco-primeto undermultiplication modulo . The
classicalWilson'scongruence for a prime canbe

viewedastheassertion . Eachelementcancelsout with its

inverseandwe areleft with theproductof all thoseelementswhich aretheir
own inverses. As is prime, has the two solutions ,

; hencethe productof all the elementsof this group is , which
gives the Wilson congruence.The immediatequestionwhich arisesafter
lookingat theaboveproof is: whathappensfor a non-prime whenwelook

at the product ? The interestingresultwhich emergesis embodiedin

thefollowing signaturelemma− sochristenedbecauseit givesusthevalues
 depending on whether primitive roots  exist or not.

z∗
n

n n n
(p − 1)! ≡ −1 (modp) p

∏
a ∈ z∗

p

a = p − 1

p p | (a2 − 1) a = 1
p − 1 p − 1

n

∏
a ∈ z∗

n

a

±1 modn

Signature lemma
If denotes the product of all the elements of , we have

if , or for someoddprime andsome .
If is noneof these,then . In other words,by the well-known
characterisationof numbers which admit primitive roots, we have

 according as to whether  is cyclic or not.

s(n) z∗
n

s(n) = −1 n = 2,  4,  pk 2pk p k ≥ 1
n s(n) = 1

s(n) = ∓1 z∗
n

Proof: If  is cyclic, then for any generator , we havez∗
n a

s(n) = ∏
φ(n)

i = 1

ai = a∑i i = a(φ(n) + 1)φ(n)/2 = aφ(n)/2.

In a cyclic groupof evenorder,thereis a uniquesubgroupof order2 andso
is the only elementof order2 in . But, since aboveclearly has

order 2, it follows that when is cyclic. Note that this also
includes the trivial group  as  in that case.

−1 z∗
n s(n)

s(n) = −1 z∗
n

z∗
2 1 = −1

As we are in an abeliangroup,in the product all elementscancel
with their inversesexceptfor thoseelementswhich aretheir own inverses.
In other words,  is the product of all  which satisfy .

s(n)

s(n) a ∈ z∗
n a2 = 1

For a prime  this is Wilson's theorem.n
We suppose is arbitraryand . Now eachsuch in hasa

unique for which . Clearly as well. Moreover, as
, . Henceif denotesthenumberof elements suchthat
, thenwe have . Now clearly is theorderof

as it is the order of the kernel of the squaringmap on . But,
from theChineseremaindertheorem,notethatundertheisomorphismof
with the productof , where , the squaresin maponto the

n n > 2 a z∗
n

b ab = −1 b2 = 1
n ≠ 2 b ≠ a N (n) a
a2 = 1 s(n) = (−1)N(n)/2 N (n)
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n / (z∗
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ki
i z∗

n
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squaresin eachcomponent.Hence is a multiplicative function. Note
that is evenfor all sincein a groupof evenorderthenumberof
elementsof exponent2 is even. Now we consideran arbitrary and
the corresponding . As noted above, if , then

. Thus, if , then unless
for someodd prime and some . This gives clearly that

if unless or for someoddprime .
In the cases  with  we have already seen that .

N (n)
N (n) n > 2

n > 1
N (n) n = ∏r

i = 1 pki
i

N (n) = ∏r
i = 1 N (pki

i ) r > 1 N (n) ≡ 0 mod4
n = 2pk p k ≥ 0
s(n) = (−1)N(n) = 1 r > 1 n = 2 2pk p

n = 2pk k ≥ 0 s(n) = −1
Finally suppose , that is, for someprime . If is odd,

we havealreadycheckedthat . If , then
and . But in with it can be seen after a little
calculationthattheonly elements satisfying are , ; so

for all . In this case we therefore have
.

r = 1 n = pk p p
s(n) = −1 p = 2 s(2) = 1 = −1

s(4) = −1 z∗
2k k ≥ 3

a a2 = 1 ±1 2k − 1 ± 1
N (2k) = 4 k ≥ 3
s(2k) = (−1)N(2k) = 1

Thus we have proved the claim that  if  is not cyclic.s(n) = 1 z∗
n

Remarks
In what follows perhapsa good third year undergraduatecourse in

group theory is desirableto fully appreciatethe results. From the above
signaturelemma it becomesclear that (respectively ) when
thereareat leasttwo (respectively,exactlyone)elementsof order2. This,
in turn, is equivalentto thepresenceof morethanone(respectively,exactly
one) subgroup of order 2 in .  Looking at the product expression

s(n) = 1 −1

z∗
n

z∗
2αpα1

1 …pαk
k

≅ z∗
2α × z∗

pα1
1

×  …  × z∗
pαk

k
,

it is clearthat hasa uniquesubgroupof order2 if, andonly if, the
2-Sylowsubgroupis cyclic. Thus or 1 accordingasto whether
the 2-Sylow subgroupis cyclic or not. This points to the possibility of
generalisingit* to non-abeliangroups where the 2-Sylow subgroupsare
cyclic.  In fact, one can prove the following generalisation.

z∗
2αpα1

1 …pαk
k

s(n) = −1

A non-abelian generalisation
Let be a finite (not necessarilyabelian) group whose 2-Sylow

subgroupsarecyclic. Let beany involution (that is, anelementof
order 2). Then, if denotesthe commutatorsubgroupof (this
consistsof all finite productsof elementsof the form ), the coset

is a nontrivial elementof the quotientgroup and the
productof all theelementsof takenin anyorderbelongsto this coset(and
is, hence,nontrivial). In particular, if is abelianwith cyclic 2-Sylow
subgroups, the product of all elements of  is the unique involution in .

G
w ∈ G

[G, G] G
xyx−1y−1

w [G, G] G / [G, G]
G

G
G G

Note that thespecialcasewhen is cyclic givesus asin the
signaturelemma. We do not give theproof of this non-abelianversionasit

G = z∗
n −1

* Please clarify what the ‘it’ refers to.
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involves a few slightly advancedtools like the Schur-Zassenhaustheorem
andalsobecausewe havebeeninformedthat it canbe deducedfrom a still
more general result [1].
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