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If ρx Fr → GLn�K� is a representation of a finitely generated free group Fr , and
ρ�a�m = I for each basic element (i.e., element which occurs in some basis) a, then
we show that if ρ�Fr� is triangularisable, it is finite. This can be thought of as a
generalisation of the Burnside problem for these linear groups. © 1999 Academic Press

1. INTRODUCTION

A classical lemma of Burnside shows that finitely generated, torsion
groups that are linear over a field of characteristic 0 are actually finite. One
might ask whether finiteness of a matrix group can be enforced by assum-
ing only that a certain subset consists of elements of finite order. Clearly, it
is not enough to assume that a set of generators have finite orders as there
do exist infinite, linear groups like SL(2; �) which are generated by finitely
many torsion elements. It is easily seen that there exist even triangularis-
able groups with the above property. If ρx Fr → GLn�K� is a representation
of a finitely generated free group Fr , and ρ�a�m = I for each basic element
(i.e., element which occurs in some basis) a, then a natural question is
whether ρ�Fr� is necessarily finite. Now, by Tits’s well-known dichotomy,
ρ�Fr� must either contain a nonabelian free group or be virtually solvable,
and therefore, virtually triangularisable. But, a conjecture of Formanek as-
serts [F] that under a representation of Aut(Fr) with r ≥ 3, the image of
Inn�Fr� ∼= Fr is virtually solvable and hence virtually triangularisable. Un-
der our additional hypothesis that basic elements have finite order, it is
therefore even more likely (although we have not been able to prove it yet)
that ρ�Fr� is virtually triangularisable. We prove the following finiteness
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result:

Theorem. Let Fr be a free group of rank r ≥ 2, and let ρx Fr → GLn�K�
be a representation over an arbitrary field K. Assume that for some m which
is not a multiple of the characteristic of K, and for each basic element a of
Fr , ρ�a� has order m.

Then ρ�Fr� is triangularisable if, and only if, it is abelian and finite of order
dividing mr .

Since the automorphism group Aut�Fr� acts transitively on the basic el-
ements of Fr , we have:

Corollary 1. Let ρx Aut�Fr� → GLn�K� be a representation. Assume
that for some basic element a of Fr , the matrix ρ�Inn�a�� has finite order m
coprime to char(K). Then ρ�Inn�Fr�� is triangularisable if, and only if, it is
abelian and finite.

Corollary 2. With notation as in the theorem, if m > n then ρ�Fr� is
finite if, and only if, it is triangularisable.

Remarks. (i) A theorem of Formanek and Procesi [FP] shows that the
automorphism group of a free group of rank at least 3 does not have a
faithful linear representation. Their proof actually shows that under any
representation of the automorphism group of a free group Fr of rank r ≥ 3,
the image of any free factor of Fr of rank ≤ r − 1 is virtually solvable and,
therefore, virtually triangularisable. Formanek conjectures [F] that under
a representation of Aut(Fr) with r ≥ 3, the image of Fr itself is virtually
solvable.

Thus, our theorem has some implication about certain representations of
Aut�Fr�.

(ii) Bass and Lubotzky [BL] recently investigated some questions on
the groups Aut(F) and Out(F). In particular, they made comments on the
question as to whether any virtually solvable subgroup of Out(F) is virtually
abelian.

Proof of Corollary 2: From P.121 of [W], a finite subgroup of GLn�K�
with exponent m > n is triangularisable.

The basic ingredient of the proof of the theorem is a description of basic
elements given by a result of Osborne and Zieschang:

Theorem [OZ]. In the free group F2 = F�x1; x2� of rank 2, all basic
elements, upto conjugacy, are parametrized by pairs m;n of coprime integers
and are given by words w�m;n� defined as follows.

Let m;n > 0 and �m;n� = 1.
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Define fm;n�k� = 1 if 1 ≤ k ≤ m, fm;n�k� = 2 if m < k ≤ m + n, and
fm;n�k� ≡ fm;n�k′� if k ≡ k′ mod�m+ n�. Then

w�m;n� =
m+n−1∏
i=0

xfm;n�1+im�

For m < 0, form the word w′�−m;n� in x−1
1 and x2 and define w�m;n� =

w′�−m;n�. Similarly, for n < 0, w�m;n� is defined to be the word w′�m;−n�
in x1 and x−1

2 . If mq− np = 1, then �w�m;n�; w�p; q�� = �x1; x2�.
If the image is abelian, it is obviously triangularisable and we will prove

the converse. Assuming that G x= ρ�Fr� is triangularisable, we will show
that the images in G of two arbitrary basic elements of Fr have to commute.
Let �a; b� be any two basic elements of Fr . We write A = ρ�a� and B =
ρ�b�. Then

A =


a1 ∗ · · · ∗
0

: : : · · · ∗
::: 0

: : : ∗
0 · · · 0 an



B =


b1 ∗ · · · ∗
0

: : : · · · ∗
::: 0

: : : ∗
0 · · · 0 bn

 :
Lemma 1. For i < j, the basic word w = w�r; s� in a; b given by the

theorem of Osborne and Zieschang is such that its image W = ρ�w� satisfies
wii = wjj .

Proof of Lemma 1. If either ai = aj or bi = bj , there is nothing to
prove. We may assume that ai 6= aj and bi 6= bj . Let r; s be coprime in-
tegers. We notice that the diagonal entries of ρ�w� are �aribsi x 1 ≤ i ≤ n�,
since r; s are respectively the total powers of a and b occurring in w. So
we need to show that ∃�r; s� = 1 such that arib

s
i = arjbsj . Now, ai; bi are mth

roots of unity in K. Let us write ai = ζti and bi = ζsi , where ζ is a gen-
erator of the cyclic group �x ∈ K x xm = 1�. So arib

s
i = arjbsj in coprime

integers r; s if, and only if,(
ti si
tj sj

)(
r
s

)
=
(
D
D

)
for some integer D:

Let us look at the matrix

� =
(
ti si
tj sj

)
:
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If det��� = D, we have

�

(
sj − si
ti − tj

)
=
(
D
D

)
:

Note that ti 6= tj , and si 6= sj . Note further that if d = �sj − si; ti − tj�, then
d divides D and therefore, we can divide by d to get coprime r; s such that
�
( r
s

) = (D/d
D/d

)
: Hence the lemma is proved.

Lemma 2. Let g ∈ GLn�K� be an upper triangular matrix of finite order.
If gii = gjj for some i < j, then gij is a linear combination of the products of
gkl with l − k < j − i with coefficients depending only on gii.

Proof. If gk = I, then a simple computation shows

0 = �gk�ij = kgk−1
ii gij + S

where S is a linear combination of the products of gkl with l − k < j − i
with coefficients depending only on gii.

Corollary 3. For i ≥ 1, let w be basic word (as in Lemma 1) with
wii = wi+1; i+1. Then wi; i+1 = 0.

Lemma 3. Let s ≥ 0 and assume that �AB�ij = �BA�ij for all j − i ≤ s.
Then, for a word w in A;B and an element w̃ ∈ w�G;G�, we have wij = w̃ij
for all j − i ≤ s.

Proof. We prove this by induction on j − i. The start of induction at
j − i = 0 is trivial. Assume that i < j and that the assertion is true for
k; l with l − k < j − i. First, it is proved easily by induction on u+ v that
�AuBv�ij = �BvAu�ij for all u; v ≥ 0. As A;B have order m, this assertion
is true for all integers u; v. Now, let w be any word in A;B say, w =
Ar1Bs1 · · ·ArnBsn . Once again, a routine proof by induction on

∑ �ri� + �si�
shows that wij = �AuBv�ij = �BvAu�ij , where u; v are, respectively, the
powers of A;B occurring in w. This proves the lemma.

Proposition 1. Let w be a basic element of �a; b�. Then there exist
g1; g2 ∈ �A;B� such that:

(i) W x= ρ�w� = g1BAg2, and

(ii) W is conjugate to g1ABg2 by an element of �A;B�:
We first complete the proof of the theorem using the above proposition

and the lemmata.
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PROOF OF THE THEOREM

We shall prove by induction on j− i that �AB�ij = �BA�ij . This is true for
j − i = 0. Let i ≥ 1. By Lemma 1, we find a basic element w in �a; b� such
that W = ρ�w� satisfies wii = wi+1; i+1. By Corollary 3, wi; i+1 = 0. Now,
the proposition gives elements g1; g2 ∈ �A;B� such that W = g1ABg2 and
W is conjugate to W̃ x= g1BAg2: Hence W̃ m = I. By applying Lemma 2,
we get w̃i; i+1 = 0. Thus,

wi; i+1 = �g1ABg2�i; i+1

= �g1�ii�g2�i; i+1�AB�ii + �g1�i; i+1�g2�i+1; i+1�AB�i+1; i+1

+ �g1�ii�g2�i+1; i+1�AB�i; i+1

= w̃i; i+1 = �g1BAg2�i; i+1

= �g1�ii�g2�i; i+1�BA�ii + �g1�i; i+1�g2�i+1; i+1�BA�i+1; i+1

+ �g1�ii�g2�i+1; i+1�BA�i; i+1

evidently gives �AB�i; i+1 = �BA�i; i+1. Assume that i < j and that �AB�kl =
�BA�kl for all l − k < j − i. Once again, we can choose a basic element
w in �a; b� with wii = wjj and elements g1; g2 ∈ �A;B� so that W =
ρ�w� = g1ABg2 is conjugate to W̃ x= g1BAg2. Hence W̃ m = I. By ap-
plying Lemma 2, we get w̃ij is a linear combination of the products of w̃kl
with coefficients depending only on w̃ii = wii. Hence, wij = w̃ij . Now, by
the induction hypothesis, we have �AB�kl = �BA�kl for all l − k < j − i.
This implies, by Lemma 3, that for all h ∈ �A;B� and h̃ ∈ h�G;G�, one
has hkl = h̃kl for all l − k < j − i. Expanding wij and w̃ij , all terms match
except possibly the term corresponding to �AB�ij and �BA�ij . Thus, these
terms have to match too. Therefore, �g1�ii�AB�ij�g2�jj = �g1�ii�BA�ij�g2�jj .
This proves �AB�ij = �BA�ij and the theorem is proved.

PROOF OF THE PROPOSITION

We look more closely at the description of basic elements given by the
theorem of Osborne and Zieschang.

It is easily seen that for coprime r; s > 0, the corresponding basic word
is w = abq1abq2 · · · abqr with

q1 = ��s − 1�/r�; qi = ��is − 1�/r� − ���i− 1�s − 1�/r� for i > 1:

Without loss of generality, we may assume that r < s (for the case r = s = 1,
the proposition is trivial). Let us write s = lr + k with 1 ≤ k < r. Then a
simple analysis shows that

w = abl+1�abl�f1abl+1�abl�f2 · · · abl+1�abl�fk
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where

fi =
gi − 1 if ri; r�i− 1� 6≡ −1�k�
gi if r�i− 1� ≡ −1�k�
gi − 2 if ri ≡ −1�k�

and where gi = ��ir + 1�/k� − ���i− 1�r + 1�/k�. Thus, f1 = �r/k� − 1; fk =
�r/k�, and each fi is either �r/k� or �r/k� − 1.

If k = 1, then w = abl+1�abl�r−1. Writing g1 = I and g2 = Bl�ABl�r−1,
we have W =ρ�w�= g1ABg2. Then g1BAg2=B�ABl�r =�ABl�−1W �ABl�,
which proves the proposition in the case s ≡ 1 mod r.

So we may assume that k > 1. We write r = uk+ v with 1 ≤ v ≤ k− 1.
Then the above expression for the fi’s can be further rewritten as

fi =



u− 1 if vi ≡ −1�k�
u if v�i− 1� ≡ −1�k�
u− 1 if vi; v�i− 1� 6≡ −1�k�;

��iv + 1�/k� = ���i− 1�v + 1�/k�
u if vi; v�i− 1� 6≡ −1�k�;

��iv + 1�/k� = ���i− 1�v + 1�/k� + 1:

�∗�

When v = 1,

W = �ABl+1�ABl�u−1�k−1ABl+1�ABl�u = g1BAg2

where g1 = �ABl+1�ABl�u−1�k−1ABl and g2 = Bl�ABl�u−1. Therefore, we
have

W̃ x= g1ABg2 = �ABl+1�ABl�u−1�k−2ABl+1�ABl�uABl+1�ABl�u−1:

Noticing that W̃ = gWg−1 with g = �ABl+1�ABl�u−1�−1, the proposition
follows in the case v = 1.

When v = k− 1, one has

W = ABl+1�ABl�u−1�ABl+1�ABl�u�k−1 = g1BAg2

where g1 = ABl+1�ABl�u and g2 = Bl�ABl�u−1�ABl+1�ABl�u�k−2. As
g1ABg2 = gWg−1 with g = ABl+1�ABl�u, the case v = k− 1 also follows.

So we may assume that 1 < v < k − 1. As usual, to prove the general
case, we require more information on the vi’s which is contained in the
following lemma. We let 1 < v−1 < k− 1 denote the inverse of v modulo
k. Then:

Lemma 4. fk−v−1 = u− 1, fk+1−v−1 = u, and

fi =
{
fi−v−1 if k > i > v−1

fk+i−v−1 if 1 < i ≤ v−1:
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In other words, defining for each integer n, fn to be fi where n ≡ i mod
k and 1 ≤ i ≤ k, the lemma asserts fi = fi−v−1 for all i 6= 1; k. Write

ĩ =
{
i− v−1 if i > v−1

k+ i− v−1 if i ≤ v−1:

The hypothesis of the lemma means that ĩ 6= k− v−1; k+ 1− v−1. Now,
ĩv ≡ iv− 1 6≡ −1 and �ĩ− 1�v ≡ �i− 1�v− 1 6≡ −1 modulo k since i 6= 1; k.
Therefore, fĩ = u− 1 or u accordingly as ��ĩv + 1�/k� = ���ĩ− 1�v + 1�/k�
or ��ĩv + 1�/k� = ���ĩ− 1�v + 1�/k� + 1:

Proof of Lemma 4. The assertions fk−v−1 = u− 1 and fk+1−v−1 = u are
clear from the description in the expression �∗�. Let i ≤ k.

There are four cases:

Case I. iv ≡ −1 mod k i.e., fi = u− 1. Now, �ĩv ≡ iv− 1 ≡ −2 modulo
k. So ��ĩv + 1�/k� = ��ĩv + 2�/k− 1/k� = �ĩv + 2�/k− 1, and ���ĩ − 1�v +
1�/k� = ��ĩv + 2�/k − �v + 1�/k� = �ĩv + 2�/k − 1 since v < k − 1. Thus,
we have, by �∗�, that fĩ = u− 1 = fi.

Case II. �i − 1�v ≡ −1 mod k, i.e., fi = u. Then ĩv ≡ iv − 1 ≡ v − 2
modulo k. Since ���ĩ− 1�v+ 1�/k� = ���ĩ− 1�v+ 2�/k− 1/k� = �ĩ− 1�v+
2/k− 1, and ��ĩv+ 1�/k� = ���ĩ− 1�v+ 2�/k+ �v− 1�/k� = �ĩ− 1�v+ 2/k,
we get fĩ = u.

Case III. iv; �i − 1�v 6≡ −1 mod k but fi = u − 1. Now, by �∗�, ��iv +
1�/k� = ���i − 1�v + 1�/k� = d, say. Then �iv + 1�/k = d + θ for some
0 < θ < 1. From d = ���i − 1�v + 1�/k� = �d + θ − v/k�, one concludes
that θ > v/k. Then

��ĩv + 1�/k� =
{
d + θ− 1/k if i > v−1

d + θ− 1/k+ v if i ≤ v−1

=
{
d if i > v−1

d + v if i ≤ v−1

since θ > v/k > 1/k.
Similarly,

���ĩ− 1�v + 1�/k� =
{
d + θ− �v + 1�/k if i > v−1

d + θ− �v + 1�/k+ v if i ≤ v−1:

As kθ > v and is an integer, we have kθ > v + 1, which immediately gives
��ĩv + 1�/k� = ���ĩ− 1�v + 1�/k�, i.e., fĩ = u− 1 = fi.
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Case IV. iv; �i − 1�v 6≡ −1 mod k but fi = u. By �∗�, ��iv + 1�/k� =
���i− 1�v+ 1�/k� + 1 = d, say. Writing �iv+ 1�/k = d + θ with 0 < θ < 1,
the fact that d − 1 = ���i − 1�v + 1�/k� = �d + θ − v/k� gives θ < v/k.
Now,

���ĩ− 1�v + 1�/k� =
{
d + θ− �v + 1�/k if i > v−1

d + θ− �v + 1�/k+ v if i ≤ v−1

=
{
d − 1 if i > v−1

d − 1+ v if i ≤ v−1

since θ < v/k < �v + 1�/k:
On the other hand,

��ĩv + 1�/k� =
{
d + θ− 1/k if i > v−1

d + θ− 1/k+ v if i ≤ v−1

=
{
d if i > v−1

d + v if i ≤ v−1

since kθ, being a non-zero positive integer, is at least 1. Hence, again we
have ��ĩv + 1�/k� = ���ĩ− 1�v + 1�/k� + 1, i.e., fĩ = u = fi.

This completes the proof of the lemma in all cases.

The proof of the proposition is now completed in the following way.

W = ABl+1�ABl�f1ABl+1�ABl�f2 · · ·ABl+1�ABl�fk = g1BAg2

where

g1 = ABl+1�ABl�f1 · · ·ABl+1�ABl�fk−v−1ABl

and

g2 = Bl�ABl�fk−v−1+1−1ABl+1�ABl�fk−v−1+2 · · ·ABl+1�ABl�fk :

Hence

W̃ x= g1ABg2 = ABl+1�ABl�h1ABl+1�ABl�h2 · · ·ABl+1�ABl�hk

where hi= fi for i 6=k− v−1; k− v−1 + 1, hk−v−1 = fk−v−1 + 1=u, and
hk−v−1+1= fk−v−1+1− 1=u− 1. Hence, W̃ = gWg−1 with g=ABl+1�ABl�h1

· · ·ABl+1�ABl�hk−v−1 . This completes the proof of the proposition.
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2. CONCLUDING REMARKS

When one of the basic elements, say a, maps to a diagonal matrix, then
the proof of the fact that A = ρ�a� commutes with B = ρ�b�, for every
basic element b is somewhat easier and we present it below.

Suppose, if possible, that AB 6= BA. Let �AB�i; j 6= �BA�i; j with j − i
least possible. Now, �AB�i; j 6= �BA�i; j means that aibi; j 6= ajbi; j . So, bi; j 6=
0. Let i < k1 < · · · < j be any chain of positive integers. By the minimality
of j − i with the property that �AB�i; j 6= �BA�i; j , it follows that if none
of bi; k1

; bk1; k2
; : : : ; bkr; j is zero, then ai = ak1

= · · · = aj , a contradiction.
Hence, the product bi; k1

· · · bkr; j = 0 for any chain i < k1 · · · < j. Hence,
we have, by Lemma 2, that bi 6= bj . From the proof of Lemma 1, there are
r; s coprime integers such that the corresponding basic element w = w�r; s�
has the property that Wi; i = Wj; j: Here, as before, W stands for ρ�w�.
In fact, recall from the proof of Lemma 1 that the r; s respectively divide
si − sj and ti − tj . Since we have ai 6= aj and bi 6= bj , we have that ζr 6= 1
and ζs 6= 1 (we may assume that 0 ≤ tk < m). We have the following
proposition.

Proposition 2.

Wi; i = Wj; j

Wi; j = ζrtj ζ�s−1�tσ�i�ζr�s−1�+1 ζ
s − 1
ζ − 1

bi; j:

In particular, Wij 6= 0:

Proof. Now, w = w�r; s� = abβ1abβ2 · · · abβr for some non-negative in-
tegers βi such that

∑r
i=1 βi = s. An elementary calculation shows that for

positive integers s; l, we have

��ABl�s�i; j =
�bli − blj��asibsli − asjbslj �
�bi − bj��aibli − ajblj�

aibi; j:

Using this, and simplifying, we get

Wi; j =
ζrtj ζ�s−1�tσ�i�

ζr − 1
bi; jθ �♠�

where

θ = ζrs+s − ζr�β2+···+βr�+s + ζr�β2+···+βr�+2s − ζr�β3+···+βr�+2s

+ · · · + ζrβr+rs − ζrs

= ζrs�ζs − 1��1+ ζs−rβ1 + · · · + ζ�s−rβ1�+···+�s−rβr−1��:
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Now, from the theorem of Osborne and Zieschang, it is not difficult to
show

β1 = q1 + 1; where s − 1 = q1r + l1 with 0 ≤ l1 < r;

βi+1 = qi+1; where s + li = qi+1r + li+1 for 1 < i < r:

Feeding this into the expression for θ, we get

θ = ζrs�ζs − 1��1+ ζ1+l1−r + · · · + ζ1+lr−1−r�
= ζr�s−1�+1�ζs − 1��ζr−1 + ζl1 + · · · + ζlr−1�:

Now, the expressions for li show that li ≡ is − 1 mod r. Hence, l1; : : : ; lr−1
are distinct and are different from r − 1 since r; s are coprime. Thus, they
are just the integers from 0 to r − 2. Therefore,

θ = ζr�s−1�+1�ζs − 1��1+ ζ + · · · + ζr−1� = ζr�s−1�+1 �ζs − 1��ζr − 1�
ζ − 1

:

Putting this in (♠), we get the expression in the proposition.
The proof is completed by the following observation. For any k < l it

is evident that Wk; l is a sum of terms of the form cIbk; k1
· · · bku; l; where

I is a chain k ≤ k1 ≤ · · · ≤ ku ≤ l. Therefore, the hypothesis implies that
Wk; l = 0 for all k < l with l − k < j − i. So, by Lemma 2, Wi; j = 0. This
contradicts the above proposition.
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