
GROUPS ACTING ON TREES

A. Raghuram & B. Sury

1 Introduction

This is an expanded version of the notes of talks given by us in the in-

structional workshop on geometric group theory held in the Indian Institute

of Technology in Guwahati, India during December 2002. The aim here is

to give a self-contained presentation of what generally goes by the name of

Bass-Serre theory. This theory studies the structure of groups acting sim-

plicially on simplicial trees. The aim is to recover information about the

group from its action. A principal result of this theory is that there is a

combinatorially defined notion of a ‘graph of groups’ associated to this ac-

tion and of a fundamental group of such an object and that the given group

can be identified naturally with this fundamental group. This is in analogy

with the topological result where a group acting properly discontinuously on

a simply-connected space can be recovered as the fundamental group of a

suitable quotient space. This theory has now been profitably generalised by

several people like Alperin, Bass, Culler, Morgan and Shalen to groups acting

on nonarchimedean trees and to general ?-trees for ordered abelian groups.

The presentation here is based on Serre’s classical book titled Trees, Springer

Verlag, (1990) but is meant to be more elementary; it is aimed at advanced

undergraduate and beginning graduate students. In the last section, we dis-

cuss some results on more general ?-trees. In another article, the second

author uses these to discuss some generalisations as well as some interest-

ing applications due to Culler, Formanek, Narain Gupta, Morgan, Procesi,
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Shalen, Sidki, Tits and Voigtmann. For further reading, one may consult the

book by I.Chiswell [C] and the articles [CS1],[CS2] by M.Culler P.Shalen.

For the basic results on combinatorial group theory, two excellent references

are [MKS] and [LS] but some of these are recalled in the first two sections

in a form convenient for us. The first author wrote sections 1.2, 1.5 and 1.7

while the second author wrote sections 1.1,1.3,1.4,1.6,1.8,1.9. [vskip]¡LaTeX¿

¡/LaTeX¿3mm Chiswell points out that the terminology in the subject

is an invitation to punsters. However, we shall refrain from using phrases

such as X-rays and ?-rays while discussing rays in trees X and graphs ?. We

shall also not mention the dictum that the theory of general ‘trees’ could be

thought of as a ‘branch’ of representation theory. Nor will we point out as

to why the relation with ‘root’ systems is not surprising. We shall simply

‘leave’ it to the imagination of the reader.

2 Free products

The notions of free groups, free products, and of free products with amalga-

mation come naturally from topology. For instance, the fundamental group

of the union of two path-connected topological spaces joined at a single point

is isomorphic to the free product of the individual fundamental groups.

The Seifert- van Kampen theorem asserts that if X = V ∪W is a union of

path-connected spaces with V ∩ W non-empty and path-connected, and if

the homomorphisms π1(V ∩W ) → π1(V ) and π1(V ∩W ) → π1(W ) induced

by inclusions, are injective, then π1(X) is isomorphic to the free product of

π1(V ) and π1(W ) amalgamated along π1(V ∩W ).

All these notions have found many group-theoretical applications. Recall

that:
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If Gi, i ∈ I are groups, then a group G along with injective homomorphisms

φi : Gi → G is said to be their free product if, for every group H and ho-

momorphisms θi : Gi → H, there is a unique homomorphism φ : G → H so

that φ ◦ φi = θi for all i ∈ I.

In other words, G has the universal repelling property with respect to homo-

morphisms from Gi’s to groups.

To construct G, one starts with a presentation < Xi|Ri > of each Gi and

takes < X|R > as a presentation of G where X is the disjoint union of the

Xi’s and R is the union of the Ri’s. The homomorphisms φ : Gi → G are,

therefore, simply inclusions. The uniqueness of such a free product G upto

isomorphism follows from the uniqueness property of φ above.

One writes G = ∗i∈IGi. If I is a finite set, say, I = {1, 2, · · · , n}, then it is

customary to write G = G1 ∗G2 ∗ · · · ∗Gn.

For example, the free group of rank r is the free product ZZ ∗ · · · ∗ ZZ of r

copies of ZZ.

More generally, a free group F (X) on a set X is the free product ∗x∈X < x >.

The group PSL(2,Z) is the free product of a cyclic group of order 2 and a

cyclic group of order 3.

Recall that if A is a group, Gi, i ∈ I is a family of groups and αi : A → Gi

(i ∈ I) are injective homomorphisms, then a group G is said to be the

free product of Gi’s amalgamated along A, if there are homomorphisms

φi : Gi → G satisfying φi ◦ αi = φj ◦ αj for all i, j ∈ I such that the

following universal property holds: for every group H and homomorphisms

θi : Gi → H with θi ◦αi = θj ◦αj for all i, j ∈ I, there is a unique homomor-

phism θ : G → H with φ ◦ φi = θi.

One denotes G by ∗AGi if there is no confusion as to what the maps αi are.

Sometimes, the maps αi are taken to be not necessarily injective and still
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the above definition can be carried out. Note that, if αi are trivial, then

∗AGi = ∗Gi, the free product.

The construction is as follows. If Gi =< Xi|Ri >, i ∈ I, then

G :=< ti∈IXi| ∪Ri ∪ ∪i,jRij >

where Rij = {αi(a)αj(a)−1; a ∈ A} > .

The uniqueness of G upto isomorphism is clear once again by the uniqueness

of θ. An example is SL(2,Z) = Z/4 ∗Z/2 Z/6.

The fundamental group of the Mobius strip is isomorphic to Z ∗2Z Z.

A free product with amalgamation could be the trivial group even if the

groups αi(A) are not.

For example, let α1 : ZZ → PSL(2, |Q) be an injective homomorphism and let

α2 : ZZ → ZZ/2 be the natural homomorphism. Then, G1 ∗ZZ G2 = {1}.
Finally, we recall the notion of HNN extensions named after G.Higman,

B.H.Neumann & H.Neumann. The construction is akin to adjoining ele-

ments to fields to get field extensions.

Let G =< X|R > be a group and let A be a subgroup. For an injective ho-

momorphism φ : A → G, the HNN extension of G with respect to φ is the

group G∗ =< X ∪ {t}|R ∪ {tat−1φ(a)−1} >.

It is a fact that G∗ is independent of the presentation of G chosen and that

G embeds naturally into G∗. Also, given two elements a, b of equal order in

a group G, this construction enables one to embed the group G into a bigger

group in which a, b are conjugate. The HNN construction also finds a natural

topological interpretation.

For, suppose V and W are open, path-connected subspaces of a path-connected

space X and suppose that there is a homeomorphism between V and W in-

ducing isomorphic embeddings of π1(V ) and π1(W ) in π1(X). One constructs
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a space Y by attaching the handle V × [0, 1] to X, identifying V ×{0} with V

and V × {1} with W . Then, the fundamental group π1(Y ) of Y is the HNN

extension of π1(V ) relative to the isomorphism between its subgroups π1(V )

and π1(W ).

We now define these notions in a more general sense so as to be useful in

the long run.

3 Amalgams

3.1 Preliminary definitions

The notion of an amalgamated product of two groups is a particular case of

a more general notion of direct limit of groups which we now define.

Definition 1. Let {Gi}i∈I be a collection of groups. Here I is some indexing

set. For each i, j ∈ I, let Fij be a set of homomorphisms of Gi to Gj, i.e.,

Fij ⊂ Hom(Gi, Gj). The direct limit of this system G = lim Gi is a group G

equipped with homomorphisms φi ∈ Hom(Gi, G) such that given any group

H and any homomorphisms ψi ∈ Hom(Gi, H) such that ψj ◦ fij = ψi for all

i, j ∈ I and for all fij ∈ Fij, there is a unique homomorphism θ ∈ Hom(G, H)

such that θ ◦ φi = ψi for all i ∈ I.

The above definition is depicted in the following diagram as the existence

of a unique dotted arrow making the diagram commute.
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The following proposition assures us of the existence and uniqueness of

direct limits.

Proposition 3. Given a collection of groups {Gi}i∈I and a collection Fij of

homomorphisms as above, the direct limit G exists and is unique up to unique

isomorphism.

Proof. The uniqueness part of the assertion is a standard argument using

universal definitions as in the definition of the direct limit and is left as an

exercise for the reader. We now show existence.

Let S = ∪iGi be the disjoint union of all the Gi’s. Let F (S) be the

free group on S. Let N be the normal subgroup of F (S) generated by the

relations

R1 = {xyz−1 : x, y, z ∈ Gi for some i such that xy = z}
R2 = {xy−1 : x ∈ Gi, y ∈ Gj and fij(x) = y for some i, j and fij}

Now take G = F (S)/N . The homomorphism φi : Gi → G is the canonical

one; thanks to the relation R1. The universal definition of free groups ensures

that G is indeed a candidate for ‘the’ direct limit of the Gi’s.

Remark 4. If the system we consider consists of three groups G1,G2 and A

and homomorphisms f1 : A → G1 and f2 : A → G2 then the direct limit of
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this system is denoted

G1 ∗
A

G2

This is called the group obtained by amalgamating A in G1 and G2 via f1

and f2.

Remark 5. Similarly we can consider a collection of groups {Gi}i∈I and

another group A such that A is a subgroup of all the groups Gi. In this case

the direct limit which is called the group obtained by amalgamating A in the

groups Gi’s and will be denoted as ∗
A

Gi. In section 3.3 we will analyze such

amalgamated products and prove a structure theorem on how elements of

this group will look like.

Remark 6. The free product G1 ∗G2 of two groups G1 and G2 is simply the

group obtained by amagamating the trivial group in G1 and G2.

3.2 Examples

Example 7. The free product of Z/2Z and and Z/2Z is isomorphic to the

infinite dihedral group D∞.

Z/2Z ∗ Z/2Z ' D∞ := {x, y : x2 = 1, xy = y−1x}.

Example 8. With respect to the canonical maps from Z to Z/2Z and Z/3Z

we get

Z/2Z ∗
Z
Z/3Z = (0).

Example 9. Consider any injective map from Z to PSL2(Q) and the canon-

ical map from Z to Z/2Z then we have

PSL2(Q) ∗
Z
Z/2Z = (0).
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Example 10. This example realizes PSL2(Z) and SL2(Z) as amalgams. It

will be proved later in Section 6.4 after we study how amalgamated groups

are characterized as groups acting on trees with certain special properties.

(i) Z/2Z ∗ Z/3Z ' PSL2(Z)

(ii) Z/4Z ∗
Z/2Z

Z/6Z ' SL2(Z)

Example 11 (Nagao). Let K be a field and let K[X] be the polynomial

ring in one variable X with coefficients in K. Let G = GL2 and let B be the

standard Borel subgroup consisting of upper triangular matrices in G. Then

G(K[X]) = G(K) ∗
B(K)

B(K[X]).

Example 12 (Ihara). Let F be a non-Archimedean local field. Let P be

the maximal ideal of the ring of integers O of F. Let G = SL2(F ). Let

K = SL2(O) and let I be the subgroup of elements of K which are upper

triangular modulo P. Then

G = K ∗
I
K.

Section 8 is devoted entirely to this example.

Example 13 (Rational version of Ihara’s example). For a prime num-

ber p let Γ0(p) be the subgroup of elements of SL2(Z) which are upper tri-

angular modulo p. Let Z[1/p] be the subring of Q containing all rational

numbers whose denominators is some power of p. Then

SL2(Z[1/p]) = SL2(Z) ∗
Γ0(p)

SL2(Z).

Example 14 (Margulis-Tits). The group SL3(Z) is not an amalgam of the

form G1 ∗A G2 for any three groups G1, G2 and A such that G1 6= A 6= G2.
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This will be proved in section 8, but, in fact, it is actually true in a very

general setting. Let F be a number field and let S be a finite set of primes

of F. Let O(S) denote the ring of S-integers of F. If G is a simple Chevalley

group of F -rank at least 2 then the group G(O(S)) is not an amalgam. This

is a deep theorem due to Margulis and Tits.

3.3 The main structure theorem

In this section we consider the following situation whose direct limits will be

the object of study. (See Remark 5.) Let {Gi} be a collection of groups and

let A be a subgroup of all the Gi’s. Let fi : A → Gi be simply the inclusion

map. The direct limit of this system is denoted G = ∗
A

Gi. Recall that G

comes equipped with homomorphisms φi : Gi → G and φ : A → G. We will

now describe what elements of G look like. Towards this end we need some

notations.

Let Si be a set of coset representatives for A in Gi. Assume that 1 ∈ Si.

Hence

G− A = ∪s∈Si−{1}As

We call a sequence (i1, . . . , in) of indices an admissible sequence if ik 6= ik+1

for 1 ≤ k ≤ n − 1. Let α = (i1, . . . , in) henceforth denote an admissible

sequence. A reduced word of type α is a symbol

m = (a; s1, . . . , sn)

where a ∈ A and sk ∈ Sik − {1} for 1 ≤ k ≤ n.

Theorem 15. Let G = ∗
A

Gi and the rest of the notations be as above. Given

any g ∈ G there exists a unique reduced word m = (a; s1, . . . , sn) such that

g = φ(a)φ1(s1) . . . φn(sn).
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Corollary 16. With notations as above, all the homomrphisms φi and φ are

injective. Hence suppresing the maps we write that given any g ∈ G there

exists a unique a ∈ A and a unique sequence of elements sk ∈ Sik −{1} with

ik 6= ik+1 such that

g = as1 . . . sn.

Theorem 15 has another formulation which is also very useful. We need

more notations to state this reformulation. Let G′
i = Gi − A. For an admis-

sible sequence α = (i1, · · · , in) as before let

G̃α = G′
i1
× · · · ×G′

in .

Note that An−1 acts on the set G̃α as

(a1, . . . , an−1) · (x1, . . . , xn) = (x1a1, a
−1
1 x2a2, . . . , a

−1
n−1xn).

Let Gα denote the quotient

Gα = G̃α/An−1 = G′
i1

A× · · · A×G′
in .

The homomorphisms φ and φi’s determine canonically a map φα : Gα → G.

If α is the empty sequence then G̃α = Gα = A and φα = φ.

Theorem 17. With the notations as above we get that all maps φα induce

a bijection from the disjoint union ∪αGα onto G.

Remark 18. Theorem 17 can be verbally formulated as that for every g ∈ G

one of the following is true:

(i) g is in A

(ii) g is in some Gi but not in A, i.e., g ∈ G′
i.
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(iii) There is some uniquely determined sequence α = (i1, . . . , in) and

elements gk ∈ G′
ik

such that g = g1 . . . gn. The gi’s are not uniquely

determined, and in fact for any a1, . . . , an−1 we have g = g1 . . . gn =

(g1a1)(a
−1
1 g2a2) . . . (an−1gn).

However, in all cases, we may talk of the length of an element g ∈ G. For

example, in case (1), g has length 0, in case (2) it has length 1 and in case

(3) it has length n.

Proof. (Of Theorem 15.) Let X stand for the set of all reduced words m =

(a; s1, . . . , sn). Let ϕ : X → G denote the map

ϕ(m) = ϕ((a; s1, . . . , sn)) = φ(a)φi1(s1) . . . φin(sn).

We want to show that ϕ is a bijection.

To this end, we define an action of G on X, i.e., we need to give a

homomorphism G → Aut(X). By the definition of direct limits it suffices to

define an action of each Gi on X such that they are all compatible which in

this case boils down to saying that the induced action on A is independent

of i.

Fix an ∈ I. Let

Yi = {(1; s1, . . . , sn) ∈ X : i1 6= i}.

Consider the two maps

A× Yi −→ X

(a, (1; s1, . . . , sn)) 7−→ (a; s1, . . . , sn)

A× Si − {1} × Yi −→ X

(a, s, (1; s1, . . . , sn)) 7−→ (a; s, s1, . . . , sn)

11



Clearly the images of these maps are disjoint and their union is all of X.

Using these maps we get

X = A× Yi q A× Si − {1} × Yi

= (Aq A× Si − {1})× Yi

= Gi × Yi

We use this identification and define an action of Gi on X. In particular, it

is easy to check that the induced action on A is given by :

a′ · (a; s1, . . . , sn) = (a′a; s1, . . . , sn)

for all a′ ∈ A and for reduced words (a; s1, . . . , sn). Hence we get an action

of G on X.

We use this action and consider the map ψ : G → X given by

ψ(g) = g · (1)

where (1) is the empty word. This map ψ is a candidate for the inverse of ϕ.

To begin with we show that ψ◦ϕ = 1X . This will prove that ϕ is injective

and hence we will get uniqueness. Once we have injectivity, we can identify

X with its image ϕ(X) as a subset of G. Further, injectivity implies that

each fi is injective, and so Gi ⊂ X for all i and hence G ⊂ X. This proves

that ϕ is surjective. It suffices now to prove ψ ◦ ϕ = 1X which can be seen

as :

ψ ◦ ϕ(a; s1, . . . , sn) = ψ(φ(a)φi1(s1) . . . φin(sn))

= φ(a)φi1(s1) . . . φin(sn)(1)

= φ(a)φi1(s1) . . . φin−1(sn−1)(1; sn)

= · · · = φ(a)(1; s1, . . . , sn) = (a; s1, . . . , sn).
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Proof. (Of the equivalence of Theorem 15 and Theorem 17.)

Assume Theorem 15 and so any g ∈ G is uniquely written in the form

g = φ(a)φi1(s1) . . . φin(sn) for a reduced word (a; s1, . . . , sn) of type α =

(i1, . . . , in). Then g lies in the set Gα and we think of g being represented

by g = g1g2 . . . gn where g1 = as1 and gi = si for all i 6= i1. This gives

Theorem 17.

Now assume Theorem 17 and let g ∈ Gα which is written as g = g1g2 . . . gn.

If α is empty then g = a ∈ A and g corresponds to the reduced word (a). If

α = (i) then g ∈ G′
i and can be uniquely written as g = as with a ∈ A and

s ∈ S − {1} and so g corresponds to the reduced word (a; s). Now assume

that n ≥ 2.

Recall, by definition of Gα we may replace this expression by any expres-

sion of the form g = (g1a1)(a
−1
1 g2a2) . . . (a−1

n−1gn) which implies that we can

take gi = si ∈ Si − {1} if i = ik and k ≥ 2 and further g1 ∈ G′
i1

can be

uniquely written as g1 = as1 with s1 ∈ S1 − {1}. Hence g corresponds to

(a; s1, . . . , sn).

3.4 Some applications to abstract group theory

Proposition 19. Let G = ∗
A

Gi. Any element of G of finite order can be

conjugated inside one of the Gi. In other words, if all the Gi’s are torsion-

free then so is G.

Proof. Let g ∈ G = ∗
A

Gi. Using Theorem 17 write g = g1 . . . gn. Let l(g) = n

be the length of g. If l(g) ≤ 1 then g ∈ Gi for some i. If l(g) ≥ 2 we say g is

cyclyically reduced if i1 6= in.

We now show inductively that that any g is conjugate to either an element

of some Gi or to a cyclically reduced element. Assume that l(g) = n ≥ 2 and
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that we have shown this for all elements of length at most n− 1. Suppose g

is not cyclically reduced then i1 = in and so conjugating by g by g−1
1 we get

g = g1 . . . gn ∼ g2 . . . gn−1(gng1) and the length of g2 . . . gn−1(gng1) is at most

n− 1.

Now take any g ∈ G which is of finite order. Since all the Gi are torsion

free, we get that no conjugate of g is in any Gi. We may replace g by a

conjugate and assume that it is cyclically reduced. We leave it to the reader

to the check that in this case, for any r ≥ 1 we have that the length of gr is

rn and so g cannot have been an element of finite order unless n = 0, i.e.,

g = 1.

Proposition 20. If G1 and G2 are two finite groups then their free product

G1 ∗G2 contains a free subgroup of index o(G1)o(G2). In particular, the free

product of two finite groups admits a faithful finite-dimensional representa-

tion.

Proof. Consider the direct product G1 × G2 of G1 and G2. The inclusion

maps from the Gi into G1 × G2 gives a canonical homomorphism from the

free product G1 ∗ G2 to G1 × G2. Clearly this map is surjective. Let K be

the kernel of this homomorphism.

Let S be the set of commutators in G1 ∗G2 given by

S = {xyx−1y−1 : x ∈ G1, y ∈ G2}.

Let N be the subgroup of G1 ∗G2 generated by S. Clearly N is contained in

the kernel of the homomorphism. In fact, using the universal definitions of

direct product and free product it is easy to see that N = K. It suffices now

to prove that S is a free subset of G1 ∗G2.

To this end, it suffices to show that for any sequence s1, . . . , sn ∈ S with

si = aibia
−1
i b−1

i and any sequence ε1, . . . , εn ∈ {±1} with the condition that
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if εk = −εk+1 then sk 6= sk+1, the element g = sε1
1 · · · sεn

n is not the identity

element. In fact we will show that

(i) l(sε1
1 · · · sεn

n ) ≥ n + 3.

(ii) If εn = 1 (resp. εn = −1) then g ends with a−1
n b−1

n (resp. anbn).

This can be seen using induction. Without loss of generality assume that

εn = 1. (The argument for the case εn = −1 is similar.) If n = 1 then there

is nothing to prove. Let n ≥ 2.

If εn−1 = 1 then we may write g as

g = t1 . . . tpa
−1
n−1b

−1
n−1anbna

−1
n b−1

n

with p ≥ n by induction hypothesis. Hence l(g) = (p+2)+4 ≥ n+6 > n+3

and g ends with a−1
n b−1

n .

If εn−1 = −1 then we may write g as

g = t1 . . . tpb
−1
n−1a

−1
n−1anbna

−1
n b−1

n

with p ≥ n by induction hypothesis. Now if an−1 6= an then l(g) = p + 5 ≥
n + 5 > n + 3. If an−1 = an then l(g) = p + 3 ≥ n + 3 and in either of these

two cases g ends with a−1
n b−1

n .

Proposition 21 (HNN-construction). Let G be a group. Let A be a

subgroup of G. Let θ : A → G be any injective homomorphism of A into G.

Then there exists a group G containing G and an element s ∈ G such that the

inner automorphism of G detrmined by s when restricted to A gives θ, i.e.,

Int(s)|A = θ.

Actually there is a universal group and an element (G, s) with this property

and this is called the HNN-extension of the data (G, A, θ).
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Proof. There are two ways to construct the group G.

1st Proof. Consider the following system of groups and group homomophisms.

Let Gn = G and An = A for all integers n.

· · · Gn−1 Gn Gn+1 Gn+2

An

1
bbEEEEEEEE

θ
>>||||||||

An+1

1
bbEEEEEEEE

θ
;;wwwwwwwww

An+2

1
ccGGGGGGGGG

θ
;;wwwwwwwww

· · ·

(22)

Let G̃ be the direct limit of this system. Let un : Gn → Gn+1 be the canonical

shift homomorphism. Let u : G̃ → G̃ be the induced homomorphism. Then

it is easily seen that u extends the map θ.

Let G = G̃ o 〈u〉 be the semi-direct product of G̃ with the cyclic group

〈u〉 generated by u. Now take s as the element u in the semi-direct product.

2nd Proof. Let S be the infinite cyclic group on the symbol α. Let G̃ be

the free product G ∗ S. Let N be the normal subgroup of G̃ generated by all

elements of the form

{αaα−1θ(a)−1 : a ∈ A}.
Let G = G̃/N and let s be the image of α in G. It is easy to see that (G, s)

is the HNN-extension associated to the data (G,A, θ).

3.5 Exercises

Exercise 23. Show that

Z/2Z ∗ Z/2Z ' D∞ := {x, y : x2 = 1, xy = y−1x}.

Exercise 24. Let m,n be two relatively prime integers. Then with respect

to the canonical homomorphisms from Z to Z/nZ and Z/mZ show that

Z/nZ ∗
Z
Z/mZ = (0).
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Exercise 25. Let G be a simple group which admits Z as a subgroup. Then

with respect to the canonical homomorphism from Z to Z/nZ show that

G ∗
Z
Z/nZ = (0).

Exercise 26. Determine all finite order elements of PSL(2,Z). Give an

example of a subgroup of PSL(2,Z) of index 6. Is it free?

Exercise 27. Let H be a subgroup of G = G1 ∗
A

G2. Assume that A ·H = G.

Let B = A ∩H and let Hi = Gi ∩H for i = 1, 2. Show that H is generated

by H1 and H2 and can be identified with H1 ∗
B

H2. Use this to deduce the

rational version of Ihara’s Example 13 from Example 12.

Exercise 28. Show that every group G can be embedded in a group K which

has the property that all the elements of the same order are conjugate.

Exercise 29. Let f1 : A → G1 and f2 : A → G2 be two homomorphisms

and let G = G1 ∗
A

G2 be the corresponding amalgam. Define subgroups An,

Gn
1 and Gn

2 of A,G1 and G2 recursively by the following conditions:

(i) A1 = {1}, G1
1 = {1} and G1

2 = {1}.

(ii) An is the subgroup generated by f−1
1 (Gn−1

1 ) and f−1
2 (Gn−1

2 ).

(iii) Gn
i is the subgroup of Gi generated by fi(A

n).

Let A∞, G∞
i be the unions of the An and Gn

i respectively. Show that fi

induces an injection from A/A∞ into Gi/G
∞
i . Further G may be identified

as the amalgam

G = G1/G
∞
1 ∗

A/A∞
G2/G

∞
2 .

17



Exercise 30. Let g, h be elements of ∗
A
Gi of lengths n,m respectively and

of types (i1, . . . , in) and (j1, . . . , jm) respectively. Show that l(gh) ≤ n + m

and that equality holds if and only if in 6= jm, in which case gh is of type

(i1, . . . , in, j1, . . . , jm).

Exercise 31. Show that the two constructions of the HNN-extension (G, s)

for the data (G, A, θ) given in the proof of Proposition 21 are equivalent to

each other.

4 Trees

Starting with this section, we shall see how groups can be studied geometrically

by means of graphs associated to them. Let us start with the definition of what

we mean by graphs.

Definition 1. A graph consists of:

(i) a non-empty set X (called vertices),

(ii) a set Y (called oriented edges),

(iii) a map Y → X ×X which sends any e ∈ Y to the pair (o(e), t(e))

of its origin vertex o(e) and the terminal vertex t(e) and

(iv) a map from Y to itself which sends each edge e to its inverse edge ē

which is different from e and has its origin and terminus switched and

so that ¯̄e = e.

A graph is usually conveniently represented by a diagram. Each vertex is

marked by a point or a bullet and each edge is represented by an arrow from

its origin vertex to its terminal vertex.
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It is usual to draw only one of e and ē and one understands that each line

joining two vertices of a graph corresponds to a pair of vertices.

A graph is finite if both X,Y are finite and is said to be locally finite if only

finitely many edges start or end at each vertex.

A path in a graph is a concatenation e1 · · · en of edges where ei starts at the

vertex where ei−1 ends for i = 2, · · · , n. One says that the path is from o(e1)

to t(en).

A circuit is a path as above where en ends at the origin vertex of e1. A circuit

of length 1 is called a loop.

A graph is said to be connected if each pair of vertices is contained in some

path.

From the definition of a graph, it is clear that the set Y can be written as a

disjoint union Y+ t Ȳ+. A choice of Y+ is called an orientation of the graph.

Note that once Y+ has been chosen, the set Y = Y+ t Ȳ+.

For example, if G is any group and S is any subset, one has an oriented graph

known as the Cayley graph defined as follows. The set X of vertices is the

set of elements of G. The set Y+ = G× S with o(g, s) = g and t(g, s) = gs.

For instance, if G = ZZ/3ZZ and S = {1}, then the graph is a triangle.

A morphism from a graph (X,Y ) to a graph (X ′, Y ′) is a mapping α : X →
X ′ which takes edges to edges and the origin and terminus of α(e) are, re-

spectively, the images of the origin and the terminus of e. One defines two

graphs (X, Y ) and (X ′, Y ′) to be isomorphic if there are graph-morphisms

α : (X, Y ) → (X ′, Y ′) and β : (X ′, Y ′) → (X,Y ) such that α ◦ β and β ◦ α

are identity maps.

If Z is a CW complex of dimension 1, then one can naturally associate a

graph to it by taking 0-cells to be the vertices and the 1-cells to be the set

of pairs of edges. Clearly, this graph has no loops and no circuits of length
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2. The complex Z is known as a geometric realization of the corresponding

graph. The endpoints of an edge e determine the set {e, ē}. Therefore, for

any edge e, one also refers to the pair {e, ē} of edges as a geometric edge.

Lemma 2. A graph is isomorphic to one which arises from a CW complex

of dimension 1 if, and only if, it has no circuit of length 1 or 2.

Proof. If a graph is isomorphic to another which has no circuits of length

≤ 2, then the original graph itself evidently has the same property. For such

a graph, one can define the corresponding geometric realization as the set X

of vertices of the graph and the 0-cells and the 1-cells as the set of subsets

{P,Q} where P,Q are either adjacent vertices or P = Q. The converse is

obvious.

Our interest is particularly in the Cayley graph Γ(G,S) associated to a group

G and a subset S. We have :

Proposition 3. (a) The subgroup < S > gives the connected compo-

nent of Γ(G,S) at the vertex corresponding to the identity element and

the left cosets of < S > are in bijection with the various connected

components.

In particular, Γ(G,S) is connected if, and only if, G =< S >.

(b) Γ(G,S) is isomorphic to the graph associated to a CW complex of

dimension 1 if, and only if, S ∩ S−1 = ∅.

(c) Γ(G,S) contains a loop if, and only if, 1 ∈ S.

Proof. To prove (a), observe that edges of Γ(G,S) join an element g of G

to an element of the form gs or gs−1 for some s ∈ S. Thus, the connected

component of any vertex g consists of all elements of g < S >.
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For (b) and (c), note that there are elements s, t ∈ S with st = 1 if, and only

if, there is a circuit of length 1 (if s = 1) or 2 (if s 6= 1). By the lemma, the

assertion follows.

Now, we shall study a special class of graphs called trees which will be crucial

in our geometric study of groups. The notion of distance between two vertices

as the length of the shortest path will make sense for trees and one can study

trees as metric spaces. Let us start with the definition of a tree.

Definition 4. A connected graph without any circuits is called a tree.

Note that the Cayley graph of G = ZZ and S = {1} is simply an infinite

path and in particular a tree. Evidently, any tree has a geometric realization

which is a CW complex of dimension 1.

Exercise. Prove that a graph Γ is finite (respectively, locally finite) if and

only if its realization Real Γ is compact (respectively, locally compact).

Here is a rather interesting exercise :

Exercise. Show that an infinite, locally finite, connected graph contains an

infinite, injective path.

A path e1 · · · en in a tree is called a geodesic if ei+1 6= ēi for any i. We

have the following very important property of a tree.

Proposition 5. For any two vertices P, Q in a tree Γ, there is a unique

geodesic e1 · · · en from P to Q. Moreover, all the vertices o(ei) are distinct.

Proof. Obviously, since a tree is connected and since there are no circuits,

there does exist a geodesic joining any two vertices. If e1 · · · en is any geodesic

and if o(ei) = o(ej) for some i < j, then the path ei · · · ej−1 would be a

circuit, a contradiction to the fact that we have a tree. Finally, if e1 · · · en

and f1 · · · fm are two geodesics from P to Q, then the path e1 · · · enf̄m · · · f̄1
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would be a nontrivial circuit at P unless en = fm. By induction, it would

follow that m = n and that ei = fi for all i.

Definition 6. The distance l(P,Q) between two vertices P, Q of a tree is the

length n of the geodesic e1 · · · en from P to Q. We shall use the notation PQ

to denote this geodesic.

The set of vertices of a tree forms a metric space under the above distance

function. An easy exercise is :

Exercise. Let Γ be a tree and let P, Q, R be vertices. If P ′ ∈ QR, prove that

PP ′ ≤ Sup(PQ, PR).

One can define the diameter of a tree Γ to be the supremum of l(P, Q) as

P, Q vary. If the diameter of a tree is finite, the tree is said to be bounded.

Clearly, any finite tree is bounded.

Given a tree (X,Y ), the ball of radius n centred at a vertex P is the set

Xn(P ) of vertices Q such that l(P,Q) = n. Note that X0(P ) = {P}. Also,

given P , each point Pn ∈ Xn(P ) has a unique predecessor Pn−1 ∈ Xn−1(P ).

Therefore, there are maps fn,P : Xn(P ) → Xn−1(P ) and the subsets Xn(P )

form an inverse system and their union over all n is the set of all vertices

of the tree. All the pairs e, ē of edges of the tree can be recovered from this

inverse system as the pairs {Q, fn,P (Q)} for n ≥ 0.

Let X be the vertices of a tree Γ and let X ′ be a subset of X. Then, every

subtree which contains X ′ also contains all the geodesics which have their

extremities in X ′. Therefore, the set of all vertices and all edges contained

in the geodesics of Γ which have their extremities in X ′ form a subtree called

the subtree generated by X ′. In particular, every tree is an increasing union

of its finite subtrees. An easy exercise is:
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Exercise. Let Γ = (X, Y ) be a tree and let Γ′ be the subtree generated by a

subset X ′ of X, then diameter of Γ′ = diameter of X ′.

If P, Q are vertices of a tree Γ, then the subtree Γ(P, Q) generated by the

set {P, Q} has a geometric realization which is homeomorphic to the closed

interval [0, n] where l(P,Q) = n. Since such an interval is contractible,

and since the realization of Γ is the union of realizations of subtrees of the

form Γ(P,Q) for vertices P,Q, it follows that the realization of any tree is a

contractible space.

It is very convenient to “build” any tree from subtrees ultimately starting with

a single vertex. We try to understand this now.

For any graph Γ = (X, Y ), and any vertex P ∈ X, we define the subgraph

Γ − P to be the graph obtained by dropping P from the vertex set X, and

dropping all edges in Y which either start or end at P . Let us denote by

YP , the subset of Y containing edges which end at P . Thus, Γ − P = (X \
{P}, Y \ (YP ∪ ȲP ). One calls a vertex P of a graph Γ to be a terminal vertex

if there is at most one edge ending at P ; it is said to be isolated if no edge

ends at P . The special nature of such vertices is brought out by :

Proposition 7. Let P be a vertex of a graph Γ at which a unique edge ends.

Then,

(a) Γ is connected if, and only if, Γ− P is connected.

(b) Every circuit of Γ is contained in Γ− P .

(c) Γ is a tree if, and only if, Γ− P is a tree.

Proof. As a unique edge e ends at P , the edges of Γ−P form the set Y \{e, ē}
and so, (a) is clear.
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To prove (b), we observe that the vertices which are part of a circuit have

atleast 2 edges ending in them and are, therefore, different from P and so,

the whole circuit is contained in Γ− P .

Finally, (c) follows directly from (a) and (b).

Corollary 8. Any maximal tree Λ in a connected graph Γ contains all the

vertices of Γ.

Proof. Suppose not. Then, we can find a vertex P of Γ which is not in Λ

and an edge e joining P to a vertex Q of Λ. But, the graph ∆ obtained by

including the vertex P along with those of Λ and the edges e, ē along with

the edges of Λ is such that ∆ − P = Λ. So, ∆ is also a tree by (c) above.

This contradicts the maximality of Λ and proves that the assumption cannot

hold.

The following is the key fact which shows how to obtain any finite tree

from a single vertex. Note that a tree of diameter 0 is just a point and a tree

of diameter 1 is just two vertices joined to each other by the two edges e and

ē.

Proposition 9. Let Γ = (X,Y ) be a tree of finite diameter n. Then,

(a) if n ≥ 2, then dropping all terminal vertices from X gives rise to a

subtree of diameter n− 2.

(b) there exist terminal vertices.

Proof. Clearly, (a) implies (b) as from what have already observed to be the

structures of trees of diameters 0 and 1.

To prove (a), let us notice that if P,Q are non-terminal vertices, then the

geodesic joining them does not contain any terminal vertices. Therefore, it
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can be exntended both ways to produce a geodesic of length l(P, Q) + 2.

Therefore, l(P, Q) ≤ n − 2. This means that the subtree Γ′ obtained by

dropping the terminal vertices has diameter at most n − 2. However, one

can remove from a geodesic of length n in Γ, the first and the last edges to

obtain a geodesic of length n− 2 in Γ′. This proves (b).

Corollary 10. The tree Γ′ obtained from a tree Γ by removing every terminal

vertex and the two edges containing it, is preserved by any automorphism of

Γ. In particular, if Γ has finite diameter, then every automorphism of Γ fixes

a vertex or a geometric edge {e, ē} according as whether the diameter is even

or odd.

Proof. Since every automorphism of Γ must carry a terminal vertex to a

terminal vertex, it has to carry the edge ending at the first terminal vertex

to either the edge ending in the second or to its inverse. Thus, Γ′ is preserved.

Finally, by (a) above, this means that every automorphism of Γ of diameter

n preserves a subtree of diameter n− 2[n/2]. This completes the proof.

Here is a nice exercise which also proves the above result in a different way.

Exercise. Let Γ be a tree of finite diameter n. Show that all geodesics of

length n have the same middle vertex (respectively, geometric edge) if n is

even (respectively odd).

The following result is an Euler-Poincare formula for a graph. To see that

it is so, note that our edge set in a graph has twice the number of edges in

familiar terminology. Thus, the assertion below is that the number of vertices

minus the number of geometric edges is either 0 or 1 and it is 1 precisely when

the graph is a tree.

Proposition 11. Let Γ = (X,Y ) be a connected graph with X finite. Then,

|Y | ≥ 2(|X| − 1) with equality holding if, and only if, Γ is a tree.
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Proof. Let us start with a tree Γ first. If |X| = 1, then clearly |Y | = 0 and

the equality |Y | = 2(|X| − 1) holds. We can prove this for any finite tree Γ

by induction on |X| by passing from Γ to Γ−P where P is a terminal vertex

and noting that the latter has one less vertex and two less edges.

Now, let Γ = (X, Y ) be a general connected graph as in the statement.

Choosing any maximal tree Λ, we have by 2.8 that X(Λ) = X. Evidently,

all the edges in Λ are edges in Γ and so, |Y (Λ)| ≤ |Y | with equality precisely

when Γ = Λ. Using the equality Y (Λ) = 2(|X| − 1) for Λ, the proposition

follows.

We saw that the realization of a tree is a contractible space. We finish this

section with the topological structure of the realization of any connected graph.

We introduce one notation for this purpose.

Let Γ be any connected graph and let Λ be a subgraph which is a disjoint

union of a family Λi, i ∈ I of trees. We shall define a new graph denoted

by Γ/Λ as follows. Each vertex set X(Λi) gives one vertex of Γ/Λ and each

vertex of Γ outside Λ also gives one vertex. The edge set of Γ/Λ is defined as

the set of edges of Γ which are not in Λ. Clearly, the map e 7→ ē in Γ defines

also the inverse of any edge of Γ/Λ. Similarly, the origin and terminus of

any edge of Γ/Λ is defined from the corresponding map on Γ by passing to

quotients.

Proposition 12. The realization of a connected graph Γ has the homotopy

type of a bouquet of circles. Moreover, Γ is a tree if, and only if, the realiza-

tion is contractible.

Proof. Let Λ be a maximal subtree of Γ. Then, the graph Γ/Λ has a single

vertex and, therefore, its realization, which is a CW complex of dimension 1

with a single 0-cell, it must be a bouquet of circles. Look at the pair (R1, R2)
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where R1 is the realization of Γ and, R2 is the realization of Λ. Since R2 is

a subcomplex of the CW complex R1, the pair has the homotopy extension

property since it is a cofibration. Also, since R2 is contractible, there is a

homotopy ht : R2 → R2 (0 ≤ t ≤ 1) so that h0 is the identity and h1 retracts

to a point of Λ. So, there is a homotopy Ht : R1 → R1 (0 ≤ t ≤ 1) so that H0

is the identity map, and each Ht agrees with ht on R2. Also, if R0 denotes

the realization of Γ/Λ, then one has the quotient map p : R1 → R0 of R1

by identification of Λ to a point. When t = 1, this gives a map H1 which

factors through the quotient map p. Thus, we have a map f : R0 → R1 with

H1 = f ◦ p. Thus, f ◦ p is homotopic to the identity map H0.

Now, we show that p ◦ f is homotopic to the identity also. Since Ht leaves

R2 invariant for each t, it induces a homotopy H ′
t : R0 → R0. As we have

p ◦H1 = H ′
1 ◦ p and f ◦ p = H1, we also have p ◦ f = H ′

1 as p is surjective.

Thus, p ◦ f = H ′
1 is homotopic to H ′

0, the identity map of R0. Therefore, we

have shown that we have a homotopy equivalence between R0 and R1. As

the former is a bouquet of circles, so is the latter upto homotopy equivalence.

Finally, R1 is contractible if, and only if, R0 is contractible and, this happens

if, and only if, there are no circles i.e., R0 is a point i.e., Γ = Λ. This proves

the proposition.

Corollary 13. Let Γ be a connected graph and let Ω be a disjoint union of

subtrees of Γ. Then Γ is a tree if and only if Γ/Ω is a tree.

5 Trees, Free groups and Schreier’s Theorem

In this section, we look at graphs on which groups act and the idea is to deduce

group-theoretic properties from the geometric properties of this action.
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Definition 1. A group G is said to act on a graph Γ = (X, Y ) if G acts

on the set X in such a way that G takes edges to edges. In particular, G

preserves an orientation of Γ if, and only if, it acts without inversion i.e.,

ge 6= ē for any edge e and any g ∈ G.

A group G acts freely on Γ if it acts without inversion and a vertex can be

fixed only by the identity element.

If G acts without inversion on Γ, one can define the quotient graph of Γ by

G in a natural manner. It is defined to be the graph whose vertex set is

the set G\X of orbits of vertices of Γ under the G-action and the edges are

G-orbits of edges of Γ. It is extremely important to note that our discussion

will always involve only group actions without inversions. This hypothesis

is exactly what is needed to make the quotient graph to be actually a graph

in our sense (namely, to have distinct edges e, ē). It is clear that when G

is generated by a subset S, then G acts freely on the corresponding Cayley

graph. We remark that the assumption that a group acts without inversions

on a tree is not very serious; indeed, it always does so on the first barycentric

subdivision.

Now we can prove a very important characterisation of free groups in

terms of its Cayley graph.

Proposition 2. Let Γ be the Cayley graph corresponding to a group G and

a subset S. Then, Γ is a tree if, and only if, G is a free group with S as a

basis.

Proof. First, suppose that G is free with a basis S. This means that each

g ∈ G is expressible uniquely in the form g = st1
1 · · · stn

n where si ∈ S, ti = ±1

for each i and ti = ti+1 if si = si+1. Call n to be the length l(g) of G, and

write Gn for the elements of length n in G. Now, if g ∈ Gn, then clearly in
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the Cayley graph Γ, the vertex g is adjacent to a unique element of Gn−1.

This defines an inverse system · · ·Gn → Gn−1 · · ·G1 → G0 = {1}. Evidently,

their union Γ is a tree.

Conversely, suppose Γ is a tree. Then, G =< S > and S ∩ S−1 = ∅. Sup-

pose the set S is not a basis for the group G. Look at the natural map

θ from the free group F (S) onto G. There is an element ĝ 6= 1 of mini-

mal length in F (S) with the property that it is in the kernel of θ. Write

l(ĝ) = n and ĝ = st1
1 · · · stn

n for some si ∈ S. Note that since S ∩ S−1 = ∅,
the length n ≥ 3. Call the vertices corresponding to the elements st1

1 · · · sti
i

of G as Pi, for i = 1, · · · , n. Call P0, the vertex corresponding to the

identity. If Pi were not distinct, then we would get a word in F (S) of

smaller length in Ker θ. Since P0 = Pn and since n ≥ 3, the geometric

edges {P0, P1}, {P1, P2}, · · · , {Pn−1, Pn} and {Pn, P0} are all distinct. Thus,

P0, · · · , Pn−1 form a circuit of length n, contradicting the assumption that Γ

is a tree. Therefore, the proposition follows.

Theorem 3 (Schreier). A group is free if, and only if, it acts freely on a

tree. More precisely, suppose G acts freely on a tree Γ = (X,Y ). Then,

(i) there is a tree T in Γ which maps injectively onto a maximal tree in

G\Γ.

(ii) For a choice of T as in (I) and a choice of an orientation Y+ pre-

served by G, we have:

(a) G is free with a basis S comprising of elements g 6= 1 for which

there is an edge e ∈ Y+ starting in T and ending in gT and

(b) if Γ∗ = G\Γ has only a finite number m of vertices, and a number

a of edges, then |S| − 1 = a
2
−m.
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The statement (a) says for G = F (x, y) acting on Γ(G, {x, y}) that {x, y}
is a basis of G. The quotient graph G\Γ is a bouquet of two circles. Note

that the ‘only if ’ part of the first assertion follows already from the previous

proposition as one can take the tree to be the Cayley graph with respect to

a basis. The ’if ’ part is proved by the other assertions which are stronger.

Thus, we shall prove these other assertions. Before starting with that, let us

draw important corollaries.

Corollary 4. Every subgroup H of a free group G is free. Moreover, if

[G : H] < ∞ and if the rank of G (denoted rk(G)) is also finite then so is

the rank of H which is given by: (rk(H)− 1) = [G : H](rk(G)− 1).

The last formula is called Schreier’s index formula. It is an analogue of the

classical Riemann-Hurwitz formula for coverings of Riemann surfaces.

Proof. Since G is free, it acts freely on its Cayley graph Γ with respect to a

basis, which is a tree, as noted earlier. So, any subgroup H also acts freely

on Γ and is, therefore, free.

For the Schreier formula, let us consider the graphs ΓG = G\Γ and ΓH :=

H\Γ where Γ is as above. Then, evidently ΓG has only one vertex. Also, ΓH

has [G : H] vertices and [G : H]a edges where a is the number of edges of

ΓG. Therefore, by (II)b of 3.3, applied to both the graphs ΓG and ΓH , we

get

rk(G)− 1 =
a

2
− 1

rk(H)− 1 =
[G : H]a

2
− [G : H] = [G : H](rk(G)− 1)

This proves the corollary.

The next result is of independent interest and will also be used in the proof

of the main Theorem 3.
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Lemma 5. Let G act without inversion on a connected graph X. Then,

every subtree T of the quotient graph G\X lifts to a subtree of X. One calls

a lift of a maximal subtree of G\X a tree of representatives.

Proof. The proof is existential and will use Zorn’s lemma. We need to show

that there is a subtree of X which maps injectively onto T . Let us look at

the set Ω of all subtrees of X which map injectively into T . Clearly Ω is non-

empty as it does have single points. Further, if Ti, i ∈ I is a totally ordered

(under inclusion) subset of Ω, then the union T0 is again a tree and must map

injectively to T because any two points of T0 are in some Ti, i ∈ I which does

map injectively into T . Thus, T0 ∈ Ω and therefore, every totally ordered

family has an upper bound in Ω. Therefore, Ω has a maximal element T̃ .

Call T ′, the image of T̃ in G\X. Now, T ′ ⊂ T . Suppose, if possible, that

T ′ 6= T . Then, by the connectedness of T , there is an edge e of T which start

at a vertex of T ′ and ends at a vertex of T which is not on T ′. Let us take

any lift ẽ of the edge e to an edge of X. Since gẽ for any g ∈ G also gives a

lift, we may replace ẽ by a suitable gẽ and assume that ẽ has its origin in T̃ .

Note that the terminus of ẽ is not a vertex of T̃ since its image in G\X is not

a vertex of T ′. But then the graph T̂ formed by adjoining to the tree T̃ , the

vertex t(ẽ) and the edges ẽ and ¯̃e is a tree by statement (c) of Proposition 7.

Moreover, it clearly injects into T under the quotient map. This contradicts

the maximality of the choice of T̃ . Thus, our assumption that T ′ 6= T is

false.

Proof. (Of Theorem 3.) It suffices to prove the statement (II) since (I) is

given by Lemma 5. As G acts freely on Γ, and since T injects into the

quotient graph G\Γ, the translates gT are disjoint for different elements g of

G. Therefore, the quotient graph Γ′ := Γ/(G.T ) formed by contracting each

31



tree gT to a single vertex, is a tree as seen in the proof of Proposition 12. Let

us denote by (gT ) the single vertex in Γ′ that the tree gT in Γ corresponds

to.

Then, the map α : (gT ) 7→ g is a bijection from the vertices of Γ′ onto

the vertices of Γ(G,S). If this map can be extended to an isomorphism

Γ′ → Γ(G,S), then (a) of the theorem will follow by Proposition 2. Let us

construct such an extension now.

Since the edges of Γ′ are those in Γ which are not in G.T , the edge set

of Γ′ acquires an orientation Y ′
+ = Y+ ∩ EdgeΓ′. Thus, it suffices to define

α : Y ′
+ → G× S = EdgeΓ(G,S)+.

Let e be an edge in Y ′
+ which starts at gT and ends at some g′T . As this

edge e is an edge of Γ itself, this means that g−1g′ ∈ S. Thus, we define

α(e) = (g, g−1g′).

From the definition of S, it is clear that the above is a surjection onto G×S.

Injectivity is clear as remarked above. Thus, we do have an isomorphism α

as asserted and (a) of the theorem follows.

To prove (b), we note that from (a), the elements of S are in bijection

with the set W of those edges in Y which start in T and end outside T .

Thus, |W | = |S|.
Now, the image T ∗ of T in Γ∗ is a maximal tree. The orientation Y ∗

+ of

Γ∗, which is the image of the orientation Y+ of Γ, is the disjoint union of

Y ∗
+ ∩ edgeT ∗ and W ∗ = image of W in Γ∗.

Also, clearly W → W ∗ is bijective Thus, if Γ∗ has finitely many vertices, say

m, then

|Y ∗
+| −m = |W ∗|+ |EdgeT ∗| − |V ertexT ∗| = |W ∗| − 1 = |S| − 1

by Proposition 11 noting that m = |V ertexT ∗|. This proves (b).
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6 Trees and Amalgams

6.1 Groups which are amalgams–I

In this section we characterize groups which are amalgamated products of the

form G1 ∗
A

G2 as those groups which act on trees with fundamental domain a

segment. By a segment we mean a graph of the form:

P Q

y

Definition 1. Let G be a group acting on a graph Γ. A fundamental domain

for Γ mod G is a subgraph ∆ ⊂ Γ such that ∆ ' G\Γ, the isomorphism

being induced from the quotienting map from Γ to G\Γ.

The first point to observe is that fundamental domains may or may not

exist. Let Cn denote the n-cycle or the n-circuit. The group Z/3Z acts on

the graph C6 by rotating by 120o and the quotient is C2. Since C6 does not

have a subgraph isomorphic to C2 this action can not admit a fundamental

domain. The following proposition, however, assures us of the existence of

fundamental domains for a large class of actions of our interest.

Proposition 2. Let a group G act on a tree T. A fundamental domain for

T mod G exists if and only if G\T is a tree.

Proof. Recall that the map T → G\T has the tree lifting property of Lemma 5.

Hence, if G\T is a tree, it admits a lift, and the image of any such lifting is

a fundametal domain.

Conversely, if ∆ is a fundamental domain, then since T has no circuits so

also ∆ has no circuits and so G\T can have no circuits. Since T is connected

we get that G\T is also connected and hence it is a tree.
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The reader is asked to construct an example of a tree T with an action

of a group G for which there is no fundamental domain, or equivalently,

when G\T is not a tree. Observes also that fundamental domains need not

be unique. Indeed, if ∆ is one then so is g ·∆ for any g ∈ G.

We are now in a position to state and prove the main theorems of this

section which together characterize groups which are amalgams.

Theorem 3. Let G be a group acting on a graph Γ. Let T a segment in Γ

be a fundamental domain for Γ mod G. Let P, Q be the vertices of T and

e = {y, ȳ} be the geometirc edge of T. Let GP , GQ and Gy = Gȳ be the

stabilizers of P,Q and y respectively. Then the following are equivalent:

(i) Γ is a tree.

(ii) The canonical homomorphism GP ∗
Gy

GQ → G is an isomorphism.

Theorem 4. Let G = G1 ∗
A

G2 be an amalgam. Then there exists a tree T on

which G acts with a fundamental domain a segment such that if the vertices

of this segment are {P,Q} and the edges are {y, ȳ} then G1 ' GP , G2 ' GQ

and A ' Gy.

Proof. (Of Theorem 3 implies Theorem 4.)

Let G = G1 ∗
A

G2. We define a graph Γ on which G acts as follows:

V (Γ) = G/G1 qG/G2

E(Γ) = G/AqG/A

The map defining the extremities of an edge is given by

E(Γ) → V (Γ)× V (Γ)

gA 7→ (gG1, gG2)
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With the obvious action of G on Γ it is clear that the stabilizer of the

vertex 1 · G1 is the group G1 and similarly that of 1 · G2 and the edge 1 · A
are G2 and respectively A. Now by Theorem 3 - the part (ii) implies (i) - we

get that Γ is a tree.

Proof. (Of Theorem 3.) Let G act on a graph Γ with a fundamental domain

a segment T with vertices {P, Q} and edges {y, ȳ}. The proof will follow from

the following two lemmas.

Lemma 5. Γ is connected if and only if GP ∪GQ generate G.

Proof. (Of Lemma 5.) Let Γ′ be the connected component of Γ containing

the segment T. Let the stabilizer of Γ′ be G′, i.e.,

G′ = {g ∈ G : gΓ′ = Γ′}.

Let G′′ be the subgroup of G generated by GP ∪GQ.

Note that G′′ ⊂ G′. If g ∈ GP ∪GQ then gT ∩ T is non-empty hence the

connected component containing gT which is gΓ′ is same as that containing

T from which we get that gΓ′ = Γ′,i.e., g ∈ G′. Since GP ∪ GQ ⊂ G′ we get

that G′′ ⊂ G′.

Now if GP ∪ GQ generates G then G = G′ = G′′ and hence GΓ′ = Γ′ ⊃
GT = Γ, i.e., Γ is connected.

For the converse, suppose Γ is connected. Note that we can always write

Γ = G′′T q (G−G′′)T. (If the union is not disjoint then there exists x ∈ G′′,

y ∈ G − G′′ such that either y−1x fixes P or Q or that y−1x takes P to Q

or Q to P. The former contradicts y /∈ G′′ and the latter is ruled out since

T is a fundamental domain.) We hence get that Γ = G′′T. But Γ connected

implies that Γ′ = Γ and so G′ = G. Hence we have

G′T = GT = Γ = G′′T.
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This implies that G′′ ⊂ G′ because if x′′ ∈ G′′ then x′′Γ′ = x′′Γ = x′′G′′T =

G′′T = Γ = Γ′. Therefore G′′ = G′ = G ,i.e., GP ∪GQ generates G.

Lemma 6. Γ has a circuit if and only if the canonical homomorphism

GP ∗
Gy

GQ → G

is not injective.

Proof. (Of Lemma 6.) Let c = (w0, . . . , wn) be a circuit in Γ with wi ∈ E(Γ).

Assume c has no backtracking, because if there is any backtracking then there

is ‘smaller’ circuit without backtracking. This also implies that n ≥ 2.

Let wi = hiyi where hi ∈ G and yi ∈ {y, ȳ}. By projecting c down to

Γ mod G = T we get

o(yi) = t(yi−1) = Pi ∈ {P, Q}.

The same consideration gives that ȳi = yi−1.

Note that

hiPi = hio(yi) = o(hiyi) = o(wi) = t(wi−1) = t(hi−1yi−1) = hi−1t(yi−1) = hi−1Pi.

This gives for each i an element gi ∈ GPi
such that hi = hi−1gi. Further

gi /∈ Gy because if indeed gi ∈ Gy then

w̄i = hiyi = hi−1giyi = hi−1yi = hi−1yi = hi−1yi−1 = wi−1

contradicting that c has no backtracking. To summarize, for each i, hi =

hi−1gi with gi ∈ GPi
−Gy.

Since c is a circuit, o(w0) = o(c) = t(c) = t(wn). Which implies by going

modulo G that P0 = o(y0) = t(yn). In particular,

h0P0 = o(w0) = t(wn) = t(hnyn) = hnt(yn) = hnP0.
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Successively using the definitions of the elements gi we get

h0P0 = hnP0 = hn−1gnP0 = · · · = h0g1 . . . gnP0.

Cancelling h0 we get that there is an element g0 ∈ GP0 such that g0g1 . . . gn =

1.

Now we may start with such a sequence g0, g1, . . . gn and construct a

circuit c in Γ. To summarize the proof we have shown that the following are

equivalent:

(i) There is a circuit c = (w0, . . . , wn) in Γ without backtracking.

(ii) There is a sequence g0, . . . , gn ∈ GP ∪GQ with gi /∈ Gy for all i ≥ 1

such that g0g1 . . . gn = 1.

The second statement is of course another way to state that the canonical

homomorphism from GP ∗
Gy

GQ → G is not injective.

As mentioned before this finishes the proof of Theorem 3.

6.2 Applications to subgroups of amalgamated groups

In this section we use the characterization of amalgamated groups G1 ∗
A

G2

proved in the previous section and derive some consequences for subgroups of

such amalgams.

Proposition 7. Let H be a subgroup of G = G1 ∗
A

G2 such that H−{1} does

not intersect any conjugate of either G1 or G2. Then Γ is a free group.

Proof. Let T be the tree on which G acts such that a fundamental domain

is a segment as in Theorem 4. The hypothesis on the subgroup H can be

restated as

StabH(P ) = H ∩ StabG(P ) = {1}, ∀P ∈ V (T ),
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i.e., that H acts freely on the tree T . Hence by Theorem 3 we get that H is

free.

Recall Proposition 19 which states that any torsion element of G = G1∗
A
G2

can be conjugated inside either G1 or G2. This statement can be generalized

to bounded subgroups.

Definition 8. A subset Ω of an amalgamated product G = ∗
A
Gi is said to

be bounded if there exists M > 0 such that l(g) ≤ M for all elements of

g ∈ Ω. Here l(g) is the length of the element g coming from its unique reduced

expression. A subgroup is said to be a bounded subgroup if it is bounded as a

subset of G.

Proposition 9. Let H be a bounded subgroup of an amalgam G = G1 ∗
A

G2.

Then H can be conjugated inside either G1 or G2.

Proof. Let T be the tree on which G acts such that a fundamental domain

∆ is a segment as in Theorem 4.

Let V (∆) = {P, Q} be the vertices of ∆. Note that if g ∈ G1 ∪ G2 then

gT ∩ T is non-empty. Hence if Ω is a bounded subset of G then Ω · P is a

bounded subset of the metric space V (T ). In particular, H · P is a bounded

subset of V (T ).

Let T ′ be the subtree of T generated by H · P. The tree T ′ is simply the

union of all geodesics in T joining all pairs of points in H · P. In particular,

T ′ is bounded and also H-stable.

In other words, the group H acts on a tree T ′ of finite diameter. By

Corollary 10 there is either a vertex v or a geomteric edge {e, ē} fixed by H.

Since we have assumed that all our actions are without inversions, if H fixes

{e, ē} then H actually fixes both e and ē, hence it fixes the extremities of e.
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So in all cases H fixes a vertex, i.e., H can be conjugated inside either G1 or

G2.

Corollary 10 (To the proof of Proposition 9). Let G be a group acting

on a tree T. Suppose there is a vertex v ∈ V (T ) such that its G-orbit G · v is

a bounded subset of V (T ) then there is a vertex in T which is fixed by G.

This corollary resembles the famous Bruhat-Tits fixed point theorem of a

bounded group of automorphisms of a building admitting a fixed point.

6.3 Groups which are amalgams–II

In this section we present a generalization of the results in Section 6.1 and

characterize groups which are amalgamated products with any number of fac-

tors as groups G which act on trees T such that quotient G\T is also a tree.

For this we need the following definition.

Definition 11. A graph of groups (G, Γ) consists of

(i) A graph Γ.

(ii) A collection of groups G consisting of

• A group Gv for every vertex v ∈ V (Γ)

• A group Ge for every edge e ∈ E(Γ) such that Ge = Gē.

(iii) For each edge e ∈ E(Γ) a monomorphism Ge → Gt(e) denoted

x 7→ xe.

If Γ is a tree then we call (G, Γ) a tree of groups.
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The direct limit of the system of groups given by a graph of groups (G, Γ)

will be denoted

GΓ = GΓ = lim
−→

(G, Γ).

Example 12. The amalgamated product ∗
A
Gi is the direct limit of the follow-

ing graph of groups:

A

G1

G2

Gi

A

A

A

Example 13. Let (G, T ) be a tree of groups. Let v be a terminal vertex of T

and let T ′ = T − v. Suppose E(T ) = E(T ′) ∪ {e, ē}. Let G ′ be the restriction

of G to T ′. Then

GT = G ′T ′ ∗
Ge

Gv.

We follow the convention that if (G, T ) is a tree of groups then every

vertex group Gv and every edge group Ge is identified as a subgroup of GT =

GT = lim
−→

(G, T ). We can now state the first main theorem of this section.

Theorem 14. Let (G, T ) be a tree of groups. Then there exists a graph Γ

containing T and an action of GT on Γ characterized by:

(i) T is a fundamental domain for Γ mod GT .

(ii) StabGT
(v) = Gv for all v ∈ V (T ) ⊂ V (Γ).

(iii) StabGT
(e) = Ge for all e ∈ E(T ) ⊂ E(Γ).

Moreover the graph Γ is a tree.
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Proof. The characterizing properties, in fact, force the vertex set and edge

set of Γ to be given by:

V (Γ) := qv∈V (T ) GT /Gv = qv∈V (T ) GT · v (15)

E(Γ) := qe∈E(T ) GT /Ge = qe∈E(T ) GT · e (16)

The extremities of an edge in Γ, namely, the map E(Γ) → V (Γ) × V (Γ) is

given by xGe 7→ (xGo(e), xGt(e)) for any x ∈ GT . This is well defined since

Ge is a subgroup of Go(e) and Gt(e). Clearly, Γ is a graph containing T and

comes with a canonical action of GT such that T is a fundamental domain.

It suffices now to show that Γ is a tree.

Since T is the direct limit of its finite subtrees and everything in sight

commutes with direct limits, we may assume that T is itself finite. Let w

be a terminal vertex of T. Let T ′ = T − w. Let {y, ȳ} be the edges of T

connecting w with T ′. Let Γ′ be the graph associated to T ′ by the theorem

and by induction Γ′ is a tree. By Example 13 we get that GT = G′
T ′ ∗

Gy

Gw.

Also Γ′ is a subgraph of Γ by construction and in fact ∪g∈GT
g ·Γ′ is a disjoint

union of trees inside Γ. Let

Γ̃ =
Γ

∪g∈GT
g · Γ′ .

It is clear that GT acts on Γ̃ with fundamental domain T/T ′ which is a

segment with one vertex as T ′ and the other vertex being w. Since GT =

G′
T ′ ∗

Gy

Gw we get by Theorem 3 that Γ̃ is a tree. By Corollary 13 we get that

Γ is a tree since we obtained Γ̃ by quotienting out a disjoint union of trees

and so did no change the homotopy type.

We now prove the converse. For the converse, we begin with a group G

acting on a graph Γ such that a fundamental domain is a tree T. Let (G, T )

41



be the tree of groups determined by the stabilizers for the action of G on T,

i.e.,

∀v ∈ V (T ), Gv := StabG(v)

∀e ∈ E(T ), Ge := StabG(e)

Let GT be the direct limit of the system (G, T ). Since by definition Gv and

Ge are subgroups of G we get a canonical map GT → G. Note that if Γ is

connected then this map is surjective.

Let Γ̃ be the tree associated to (G, T ) by Theorem 14. By the hypothesis

that T is a fundamental domain for G-action on Γ we get

V (Γ) := qv∈V (T ) G · v (17)

E(Γ) := qe∈E(T ) G · e (18)

Comparing with Equations (15) and (16) we get that there is a canonical map

Γ̃ → Γ which is GT → G equivariant. We are now in a position to state the

converse.

Theorem 19. With the notations as above, the following are equivalent:

(i) Γ is a tree.

(ii) Γ̃ → Γ is an isomorphism.

(iii) GT → G is an isomorphism.

Proof. That (2) is equivalent to (3) follows from Equations (15), (16), (17)

and (18). That (2) implies (1) is a tautology since Γ̃ is a tree. The only

implication which needs a proof is (1) implies (2).

Note that the map Γ̃ → Γ is locally injective, i.e., it is injective on the set

of edges with a given origin. (See Exercise 24.) Now the proof follows from

the following lemma.
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Lemma 20. Let f : X̃ → X be a morphism of graphs where X̃ is a connected

graph and X is a tree. If f is locally injective then it is actually injective.

Proof. (Of Lemma 20.) It is enough to show that f is injective on paths

without backtracking. Let c̃ be a path in X̃ without backtracking such that

f restricted to c̃ is not injective. The image c of c̃ under f will have to either

a circuit or a backtracking. Since X is a tree it has to have a backtracking.

But the image c having a backtracking contradicts local injectivity.

This also concludes the proof of Theorem 19

6.4 PSL2(Z)

In this section we show that the group PSL2(Z) is a certain free product as

in Example 10.

For this we need a little bit of preliminaries. Let h denote the upper half

plane of all complex numbers z with Im(z) > 0. Let SL2(R) denote the group

of all two-by-two matrices with real entries and of determinant one.

The group SL2(R) acts on h via linear fractional transformations given

by: 
 a b

c d


 · z =

az + b

cz + d
.

This action is transitive as can be seen by:


 1 x

0 1





 y1/2 0

0 y−1/2


 · i = x + iy

for any x and y > 0. We leave it to the reader to check that the stabilizer in

SL2(R) of the point i is the subgroup SO(2).
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For the action of SL2(Z) on h it is a classical fact that a fundamental

domain is given by the region

{z ∈ h : |Re(z)| ≤ 1/2, |z| ≥ 1}.

This region is depicted in the following diagram.

In this diagram, the point i and the point ρ = 1/2 + i
√

3/2 are rather

special. We ask the reader to verify that

StabSL2(Z)(i) = Z/4Z

StabSL2(Z)(ρ) = Z/6Z

Consider the segment of the circle |z| = 1 which connects the points i and

ρ then if we take all the SL2(Z) translates of this segment it turns out that this

geometric object is in fact the geometric realization of a tree. By construction

a fundamental domain for the action of SL2(Z) on this tree is the ‘segment’

joining the points i and ρ. If e is the edge denoting this segment then the

stabilizer of this edge is the kernel of the action, namely Z/2Z (because any

linear fractional transformation which fixes three distinct points necessarily

fixes every point in h). We hence get that

SL2(Z) = Z/4Z ∗
Z/2Z

Z/6Z.

The action of SL2(R) on h factors through PSL2(R) and computing the PSL2

stabilizers of i, ρ and e we get

PSL2(Z) = Z/2Z ∗ Z/3Z.

6.5 Exercises

Exercise 21. Show that any torsion-free subgroup of PSL(2,Z) is free.

Explicitly describe an index 6 free subgroup of PSL(2,Z).
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Exercise 22. Let (G, T ) be a a tree of groups. Let v be a terminal vertex

of T and let T ′ = T − v. Suppose E(T ) = E(T ′) ∪ {e, ē}. Let G ′ be the

restriction of G to T ′. Then prove that

GT = G ′T ′ ∗
Ge

Gv.

Exercise 23. Justify the convention that if (G, T ) is a tree of groups then

every vertex group Gv and every edge group Ge can indeed be identified as

a subgroup of GT = GT = lim
−→

(G, T ).

Exercise 24. With the notations of Theorem 19 prove that the map Γ̃ → Γ

is locally injective.

Exercise 25. Show using the amalgamated product structure that

(i) The abelianization of PSL2(Z) is Z/6Z.

(ii) The abelianization of SL2(Z) is Z/12Z.

Exercise 26. Let Dn = Z/nZ o Z/2Z be the dihedral group of order 2n.

Show that

GL2(Z) = D4 ∗
D2

D6.

7 Structure of groups acting on trees

We saw earlier that when a group G acts freely without inversion on a tree

X, then G is a free group. When G acts (not necessarily freely but) without

inversion on a tree X such that the quotient graph G\X is a tree, then G is

an amalgam of the vertex stabilisers for vertices of a tree of representatives

of G\X. A notion due to H.Bass, which generalises the notion of amalgams

is that of the fundamental group of a graph of groups. We shall see examples
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shortly.

The motivation comes from basic algebraic topology. If a group G acts prop-

erly discontinuously on a simply-connected, path-connected and locally path-

connected topological space X̃, then one can recover G back as the fundamen-

tal group of the quotient space G\X̃. Analogously, if a group G acts without

inversions on a tree X, then we shall define a suitable structure of a graph of

groups on the quotient G\X such that G can be identified with the fundamen-

tal group (to be defined) of such an object. Recall from section 4, that a graph

of groups (G, Y ) entails providing a connected graph Y , vertex stabilisers Gv

and edge stabilisers Ge = Gē such that, there are monomorphism g 7→ ge

from Ge into Gt(e) where t(e) is the terminal vertex of e. In the notation

(G, Y ), there is no group G but one ought to think of G as a kind of functor

which associates groups to vertices and to edges.

Definition 1. For a graph of groups (G, Y ), let F (G, Y ) be the group gen-

erated by the vertex stabilisers Gv and edges e subject to the relations:

ē = e−1 , egee−1 = gē ∀ g ∈ Ge.

Let T be a maximal tree in Y . Then, the fundamental group π1(G, Y, T ) of

the graph of groups (G, Y ) at T is defined as the quotient of F (G, Y ) by the

normal subgroup generated by the edges of T .

This definition is quite similar to the usual definition of the fundamental

group as an edge path group.

Equivalently, if, for each edge e of Y , the image in π1(G, Y, T ) is denoted

by ge, then one can see that π1(G, Y, T ) is generated by the groups GP as P

runs over vertices of Y and the elements ge as e runs over edges, subject to

the relations

gea
eg−1

e = aē , gē = g−1
e ∀ a ∈ Ge ,
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ge = 1 ∀ y ∈ edge(T ).

Remark 2. Let R be the normal subgroup of π1(G, Y, T ) generated by the

images of GP . Then, the quotient group π1(G, Y, T )/R is a free group with

a basis {ge : e ∈ E+ \ (T ∩ E+)} where E+ is an orientation of Y .

As a matter of fact, the above quotient is the (usual) fundamental group of

the graph Y relative to the maximal tree T .

Example 3. Suppose that edge stabilisers are all trivial. Then,

π1(G, Y, T ) = (∗P GP ) ∗ F

where F is a free group with a basis as in the remark above.

In particular, if all vertex stabilisers are trivial, then the fundamental group

is a free group of rank |Edge(Y ) \ Edge(T )|.

Example 4. If Y is a segment with vertices P, Q and edge e from P to Q,

then π1(G, Y, Y ) = GP ∗Ge GQ.

More generally, if Y is a tree, then

π1(G, Y, Y ) = lim→(G, Y ).

It is the amalgam of the vertex groups amalgamated along the edge groups.

Example 5. Let Y be a loop at a point P . Let us call the edges as e and ē.

We have then two injective homomorphisms a 7→ ae and θ : a 7→ aē from Ge to

GP . Then, the maximal tree is the single point P and π1(G, Y, P ) = F (G, Y ).

So, it is generated by GP and an element g = ge, modulo the relations

gaeg−1 = aē for all a ∈ Ge.

If we identify Ge with a subgroup of GP by means of a 7→ ae, then π1(G, Y, P )

is just the group obtained from (Ge, GP , θ) as an HNN extension. Thus,

π1(G, Y, P ) is the semi-direct product of the cyclic group < g > with the

normal subgroup R generated by all the conjugates gnGP g−n for n ∈ ZZ.
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Example 6. The fundamental group of any graph of groups (G, Y ) with re-

spect to a maximal subtree T can be constructed successively as a free product

with amalgamation for each edge in T followed by an HNN construction for

each edge not in T .

Our main goal is a general structure theorem for groups acting on trees. The

theorem will tell us that such a group is the fundamental group of a suitable

graph of groups. A crucial ingredient in constructing this suitable graph of

groups is the notion and the existence of the universal covering of a graph

of groups on which the fundamental group acts. We proceed to introduce it

now.

Definition 7. Let (G, Y ) be a graph of groups with Y connected. Let T be

a maximal subtree and let E+ be an orientation of Y . For any edge e, let us

write |e| for the edge e or ē which is in E+ and write π for the fundamental

group π1(G, Y, T ). Recall that the image of Ge in Gt(e) is denoted by Ge
e and

that π is generated by the various vertex stabilisers GP along with elements

ge corresponding to edges e modulo certain relations.

Then, the graph X̃ is defined as follows.

Define Vert X̃ = tP∈V ertY π/GP where π/GP denotes the set of left cosets of

GP in π.

Define Edge X̃ = te∈EdgeY π/Gw
w where w = |e|.

If we call the coset corresponding to 1 in π/GP as P̃ and the coset corre-

sponding to 1 in π/Gw
w with w = |e| as ẽ, we have sections Vert Y → Vert

X̃; P 7→ P̃ and Edge Y → Edge X̃; e 7→ ẽ.

Now, the vertices of X̃ are gP̃ and the edges are gẽ for g ∈ π, P ∈ Vert Y

and e ∈ Edge Y .

We must define the inverse of each edge and the origin and the terminus of
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each edge of X̃ now. We use the notation χ for the characteristic function

of E+ i.e., for each edge e of Y , we have χ(e) = 1 or 0 according as e ∈ E+

or not. Then, we define

gẽ = g˜̄e

o(gẽ) = ggχ(e)−1
e

˜o(e)

t(gẽ) = ggχ(e)
e

˜t(e)

In the three definitions, we note that the left hand sides depend only on the

coset of g in π/Gz
z where z = |e| and, we need to check that the right hand

sides also remain the same. This is the contention of the following result.

Lemma 8. The above three expressions are well-defined.

Proof. For the first expression, note that the right hand side is a coset of

π/Gw
w where w = |ē|. Since the left hand side depends only on the coset

of g in π/Gz
z where z = |e|, we need to check that the right hand side also

remains the same coset in π/Gw
w when g is replaced by any other element gx

where x ∈ Gz
z. Since z = w, this is clear.

Let us prove that the second definition is also meaningful. We need to prove

that

xgχ(e)−1
e

˜o(e) = gχ(e)−1
e

˜o(e).

First, let us look at the case when e ∈ E+ i.e., when χ(e) = 1. Then, z = ē

and x ∈ Gz
z ≤ Gt(ē) = Go(e). Thus, x ˜o(e) = ˜o(e) as asserted.

Now, let us look at the other case when e 6∈ E+ i.e., χ(e) = 0. Then, z = e

and x ∈ Ge
e.

But, in π, we have the relation gea
eg−1

e = aē for all ainGe.

In other words, gexg−1
e ∈ Gē

ē ≤ Gt(ē) = Go(e) which proves that

xg−1
e

˜o(e) = g−1
e

˜o(e).
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Thus, we have shown that the second expression is also well-defined. The

third expression for e is just the same as the second expression for ē. The

lemma is proved.

The most important property of the universal covering constructed is that it

is actually a tree. The proof that we discuss is due to H.Bass. However, we

need an alternative definition of the fundamental group of a graph of groups.

This definition will depend on paths (analogous to the usual edge path group

in topology) and will show that the fundamental group does not really depend

on the choice of a maximal subtree.

Let (G, Y ) be a graph of groups and F (G, Y ) be the group in Definition 1.

Recall what this means. This is the group generated by the vertex stabilisers

Gv and edges e subject to the relations:

ē = e−1 , egee−1 = gē ∀ g ∈ Ge.

For any path c = e1 · · · en in Y where ei starts at a vertex Pi−1 and ends

at Pi, and for any sequence of elements ri ∈ GPi
, (i = 0, · · · , n), write

µ = (r0, · · · , rn). Then, the pair (c, µ) is called a word of type c in F (G, Y ).

To such a word, one associates the element r0e1r1e2 · · · enrn of F (G, Y ) and

denotes it by |c, µ|. For n = 0, one defines |c, µ| = r0. Note that we have

identified elements of the vertex stabilisers with their canonical images in

F (G, Y ).

For a vertex P0, the fundamental group π1(G, Y, P0) of (G, Y ) at P0 is defined

to be the elements of F (G, Y ) of the form |c, µ|, where c is a path starting

and ending at P0. Then, we have:

Proposition 9. Let (G, Y ) be a graph of groups, let P0 be a vertex and

let T be a maximal subtree. Then, under the natural map p : F (G, Y ) →
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π1(G, Y, T ), the subgroup π1(G, Y, P0) maps isomorphically onto π1(G, Y, T ).

In particular, the fundamental group is independent of the choice of P0 as

well as independent of the choice of T .

Proof. The argument is similar to the usual one for the edge path group. For

any vertex P of Y , call the geodesic joining P0 to P as cP for simplicity. If

cP is the concatenation of edges e1, · · · , en in that order, then look at the

corresponding element γP = e1 · · · en of F (G, Y ).

Then, each element x of GP gives another new element of F (G, Y ) viz.,

x̃ = γP xγ−1
P .

Similarly, any edge e of Y gives an element ẽ = γo(e)eγ
−1
t(e) of F (G, Y ).

Of course, these elements are in the subgroup π1(G, Y, P0) of F (G, Y ) and

we shall show that the maps x 7→ x̃ and e 7→ ẽ factor through to a homo-

morphism from π1(G, Y, T ) to π1(G, Y, P0).

For an edge e in T , either the geodesic co(e) from P0 to o(e) comes via t(e) or

the geodesic ct(e) from P0 to t(e) comes via o(e) since there are no circuits in

T . In the first case, γt(e)ē = γo(e) and in the second case, γo(e)e = γt(e).

In either case, we have the element ẽ = 1 in F (G, Y ) since ē = e−1 in this

group.

Also, clearly for any edge e, we have ẽ˜̄e = 1.

Finally, if a ∈ Ge, then

ẽãeẽ−1 = γo(e)eγ
−1
t(e)γt(e)a

eγ−1
t(e)γt(e)e

−1γ−1
o(e)

= γo(e)ea
ee−1γ−1

o(e) = γo(e)a
ēγ−1

o(e) =
˜

(a
¯
)e.

Thus, we have shown that for any element x of a vertex stabiliser and any

edge e, the corresponding elements x̃ and ẽ satisfy the relations which we

quotient out by to go from F (G, Y ) to π1(G, Y, T ). Therefore, there is a

homomorphism f : π1(G, Y, T ) → π1(G, Y, P0) which maps x to x̃ and ge to
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ẽ.

Under the projection p, the elements γP map to the trivial element. In other

words, p ◦ f = Id.

We shall show that f ◦p = Id. For this, look at a closed path c starting at P0,

and having edges e1, · · · , en say. Then, denoting by Pi the terminating ver-

tices for the edges e1, and for any word (c, µ) of type c where µ = (r0, · · · , rn),

the element r0e1r1e2 · · · enrn of F (G, Y ) is actually in π1(G, Y, P0).

Note that γP0 = 1 , r̃i = γPi
riγ

−1
Pi

and ẽi = γPi
eiγ

−1
Pi+1

.

So

r̃0ẽ1 · · · ẽnr̃n = γP0r0e1r1e2 · · · enrnγ−1
P0

= r0e1r1e2 · · · enrn.

Thus, f ◦ p = Id as well and the proposition is proved.

If we know when an element of F (G, Y ) associated to a path in Y can be

trivial, we can use it to show later the crucial property of the ”universal

covering” X̃ of a graph of groups that it has no circuits. This is the following

technical theorem akin to Britton’s lemma and its proof is also due to Bass.

To state it, we need one notion.

Definition 10. Let (c, µ) be a word of type c in F (G, Y ). One says that

(c, µ) is reduced if, whenever ei+1 = ēi, we have ri 6∈ Gei
ei
. For n = 0, the

definition says r0 6= 1. Therefore, we note that every word whose type is a

path of non-zero length which does not backtrack, is reduced.

Theorem 11. If (c, µ) is a reduced word, then corresponding element |c, µ|
of F (G, Y ) is nontrivial.

Before discussing the rather technical proof, we draw corollaries and use

them.

Corollary 12. (a) The homomorphisms GP → F (G, Y ) are injective.

52



(b) If (c, µ) is reduced and, if l(c) ≥ 1, then |c, µ| 6∈ GP0.

(c) If T is a maximal subtree and if (c, µ) is a reduced word whose type

c is a closed path, then the image of |c, µ| in π1(G, Y, T ) is nontrivial.

Proof. The assertion (a) is just the statement of the theorem when l(c) = 0.

For (b), we just observe that if |c, µ| were in GP0 , then we would have a

reduced word (c, µ′) where µ′ = (|c, µ|−1r0, r1, · · · , rn) with |c, µ′| = 1 con-

tradicting the theorem.

To prove (c), notice that |c, µ| ∈ π1(G, Y, P0). We proved above that the

natural map from F (G, Y ) to π1(G, Y, T ) maps the subgroup π1(G, Y, P0)

isomorphically onto π1(G, Y, T ).

Thus, the corollary follows.

Now, we can prove that the universal covering is actually a tree and will use

it in the proof of the main structure Theorem 14.

Theorem 13. Let (G, Y ) be a graph of groups with the graph Y being con-

nected. Let X̃ = X̃(G, Y, T ) be the ”universal covering” graph constructed

in 5.7 corresponding to a maximal subtree T of Y and an orientation E+.

Then, X̃ is a tree.

Proof. Let us first show that X̃ is connected.

Note that π = π1(G, Y, T ) acts on X̃ and that Y can be identified with the

quotient graph π X̃. Recall that T contains all vertices of Y and ge = 1 for

all edges e of T . Thus, o(ẽ) = ˜o(e) and t(ẽ) = ˜t(e) for all e of T . In other

words, P 7→ P̃ , e 7→ ẽ is a lift T ↪→ T̃ of T to a tree.

Now, for each edge e of Y , the corresponding edge ẽ has o(ẽ) = ˜o(e) or

t(ẽ) = ˜t(e) according as whether χ(e) = 1 or 0. In other words, either the

origin or the terminus of any edge of X̃ is on T̃ . Therefore, the subgraph W
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of X̃ generated by the edges ẽ, e an edge of Y , is connected.

As the edges of X̃ are given by the π-orbits of ẽ, where e runs over edges of

Y , we have that π.W = X̃. Thus, it suffices to produce a finite subset S of

π which generates it and check that W ∪ sW is connected for each s ∈ S.

It will then follow by induction on n that each W ∪ s1W ∪ s1s2W ∪ · · · ∪
s1 · · · snW is connected for all si ∈ S ∪ S−1.

Take S =
⋃

P GP ∪
⋃

e ge. Clearly, S generates π. Let s ∈ S.

If s ∈ GP , then evidently, W and sW have P̃ as a common vertex because

elements of GP fix P̃ . Thus, W ∪ sW is connected.

If s = ge, then again W and sW have a common vertex viz., o(ẽ) or t(ẽ)

according as whether χ(e) = 0 or 1.

Hence, we have shown that X̃ is connected. We need to check now that there

are no circuits.

Suppose, if possible, that there is a path c̃ in X̃ starting and ending at the

same vertex P0 and has no backtracking (i.e., if s1ẽ1, · · · , snẽn is the sequence

of edges of c̃, then si+1ẽi+1 6= siẽi).

Let P1, · · · , Pn = P0 be vertices of Y such that the edges siẽi ends at P̃i. We

shall produce a reduced word in F (G, Y ) whose corresponding element in π

is actually trivial.

Let us write χi in place of χ(ei) and gi in place of gei
for simplicity. Then,

we note :

t(snẽn) = sng
χn
n P̃n = o(s1ẽ1) = s1g

χ1−1
1 P̃0

t(s1ẽ1) = s1g
χ1

1 P̃1 = o(s1ẽ1) = s2g
χ2−1
2 P̃1

· · · · · ·

t(sn−1ẽn−1) = sn−1g
χn−1

n−1 P̃n−1 = o(snẽn) = sng
χn−1
n P̃n−1.
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Therefore, writing qi = sig
χi−1
i , we have

qngnP̃0 = q1P̃0

q1g1P̃1 = q2P̃1

· · · · · ·

qn−1gn−1P̃n−1 = qnP̃n−1

Since the stabiliser of P̃i is precisely the subgroup GPi
, we have elements

ri ∈ GPi
such that

qngnrn = q1

q1g1r1 = q2

· · · · · ·

qn−1gn−1rn−1 = qn

This obviously gives the relation

g1r1g2r2 · · · gnrn = 1.

In other words, the word (c, µ) of type c in F (G, Y ), where c is the image of

c̃ in Y and µ = (1, r1, · · · , rn), gives rise to the trivial element of F (G, Y ).

This means by theorem 5.11 that (c, µ) cannot be a reduced word.

However, let ei+1 = ēi. Then, gi+1 = g−1
i and evidently χi+1 = 1− χi.

We saw above that

sig
χi−1
i giri = si+1g

χi+1−1
i+1 .

So, ri ∈ Gei
ei

if, and only if, s−1
i si+1 ∈ gχi

i Gei
ei
g−χi

i .

Since there is no backtracking,

siẽi 6= si+1ẽi+1 = si+1ẽi.
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Therefore, s−1
i si+1 6∈ gχi

i Gei
ei
g−χi

i .

This means that the word (c, µ) is reduced, producing a contradiction and

proving the theorem.

Proof. (Of Theorem 13.) The idea is to reduce the proof to two cases which

can be checked individually. These are the case when Y is a segment and

the case when Y is a loop. Before making the reduction, let us verify the

theorem for these two cases. The first case will be verified directly but the

second case will use the truth of the theorem for trees.

When Y is a segment :

Here Y has two vertices P−1 and P1 joined by an edge e from P−1 to P1 and

its inverse edge.

The element |c, µ| looks like r0e
t1r1e

t2 · · · rn with r0 ∈ GP−t1
, ri ∈ GPti

\Geti

e

where ti = −ti+1 = ±1.

Now, Y itself is a tree and π1(G, Y, Y ) = GP−1 ∗Ge GP1 .

The homomorphism φ : F (G, Y ) → π1(G, Y, Y ) takes |c, µ| to r0r1 · · · rn.

The latter is not trivial as seen in the very first section.

When Y is a loop at a vertex 0 :

As we determined above, the group F (G, T ) is the semi-direct product of

the infinite cyclic group generated by the loop e and the normal subgroup

generated by G0.

Further, it was seen there that R is the free product of the groups Gn =

enG0e
−n amalgamated along the group A = Ge according to the homomor-

phisms

A → Gn−1 ; a 7→ en−1aēe1−n

A → Gn ; a 7→ enaee−n.

Then, the element |c, µ| looks like
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r0e
t1r1e

t2 · · · rn with ri ∈ G0, ti = ±1 and whenever ti+1 = −ti, we have

ri 6∈ Aeti .

Now, if t1 + · · ·+ tn 6= 0, then clearly |c, µ| 6∈ R which, a fortiori, shows that

|c, µ| 6= 1.

Suppose that t1 + · · ·+ tn 6= 0. Call di = t1 + · · ·+ ti. Then, the element can

be rewritten as

s0s1 · · · sn where si = edirie
−di .

Note that si ∈ Gdi
and d0 = dn = 0. Also, if ei+1 + ei = 0 i.e., if di+1 = di−1,

then the fact that (c, µ) is reduced means that si 6∈ ediAeti e−di .

We shall view this element s0 · · · sn as an element associated to a reduced

word whose type is a closed path in an appropriate tree of groups (K, T ) i.e.,

a graph of groups where T is a tree.

Consider T to be the tree whose vertices are integers and edges join consec-

utive integers. Then, the groups Gn and the homomorphisms A → Gn−1,

A → Gn define a graph of groups (K, T ). Then, R = π1(K,T, T ) and the

element s0 · · · sn is indeed associated to a reduced word of (K, T ) whose type

is a closed path since d0 = dn = 0.

Applying corollary (c) of the theorem to the case (K, T ) (we are assuming the

theorem for trees which will be reduced to the first case later), we conclude

that the element s0 · · · sn in π1(K,T, T ) is not trivial. Therefore, |c, µ| itself

is nontrivial.

Finally, we come to the general case (G, Y ) and show that it can be reduced

to the two cases above. This reduction is the most nontrivial part of the

proof. To make it as transparent as possible, we break it up into easier steps.

Step I : What is required ?

First, notice that given a graph (G, Y ) of groups, and a connected subgraph,
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there is an obvious ‘restriction’ of (G, Y ) to a graph of groups (G,Z). The

idea is to:

• Choose Z such that (G,Z) satisfies the theorem,

• Define a suitable graph of groups (H, W ) on the contracted graph (also

called the quotient graph) W = Y/Z and,

• Associate to each word (c, µ) of (G, Y ), a word (c′, µ′) of (H, W ) such that a

reduced word is associated to a reduced word and the corresponding element

|c′, µ′| is trivial if, and only if, |c, µ| is.

If we are able to make these choices, an induction argument on the number

of edges would prove the theorem since it reduces ultimately to a segment.

Step II : Construction of (H,W )

Note that, in W = Y/Z, the subgraph Z of Y corresponds to a vertex (Z)

and that the set of its vertices is Vertex W = (Vertex Y− Vertex Z)∪{(Z)}.
Also, the edges of W are, by definition, Edge W = Edge Y− Edge Z. More-

over, the origin and the terminus of each edge of W are defined as follows.

If e is an edge of W starting at a vertex outside Z, then its origin oW (e) = o(e)

and its terminus tW (e) = t(e) or (Z) according as whether e ends outside Z

or inside Z.

If e is an edge of W starting at a vertex of Z, then it must end outside Z

and then oW (e) = (Z), tW (e) = t(e).

Now, we have assumed that Z has been so chosen that (G,Z) satisfies the

theorem and, a fortiori, the corollary 1. This means that for each vertes P

of Z, there is an injective homomorphism from GP to F (G,Z). With this in

mind, let us define the graph of groups (H, W ) as follows.

For each P ∈ vertex W , let HP = GP or F (G,Z) according as whether

P 6= (Z) or P = (Z).

For each e ∈ Edge W , define He = Ge.
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Notice that we have injections He → HtW (e).

Here, we have used the truth of corollary for (G,Z). Now, there is a homo-

morphism from F (G,Z) to F (G, Y ) defined by mapping each GP (for each

vertex P of Z) to itself and each edge e of Z to itself, regarded as an edge of

Y . The reason is that, evidently, the relations ē = e−1 and eaee−1 = aē defin-

ing F (G,Z) are relations in F (G, Y ). Now, the projection (G, Y ) → (H,W )

induces a homomorphism θ from F (G, Y ) into F (H, W ).

We claim that θ is an isomorphism.

Define θ′ : F (H, W ) → F (G, Y ) as follows. On the vertex stabilisers HP

with P 6= (Z), define θ′ as the identity map. Define θ′ on H(Z) = F (G,Z)

by the above homomorphism to F (G, Y ). On edges of W also, define θ′ as

the identity mapping. Then, the relations defining F (H,W ) also clearly hold

for their corresponding images under θ′. Thus, θ′ is well- defined. Further,

θ ◦ θ′ = Id and θ′ ◦ θ = Id. This proves the claimed isomorphism.

Step III : Associating (c′, µ′)

The association is a natural one. We give an example to illustrate it. If c

is a concatenation e1 · · · e4 of paths starting at P0 and going to P4 and, if

P0, P1, P2 are the only vertices among these in Z, and e2 is the only edge

among these in Z, then c′ = (e1, e3, e4) and µ′ = (r0, r1e2r2, r3, r4). This

makes sense because the element r1e2r2 is in F (G,Z) = H(Z).

In general, we describe it now. Let c be a concatenation e1 · · · en of paths

starting at P0 and going to Pn, and i < j, consider the subpath cij which

is the conatenation of the edges ei · · · ej−1. If, for some i < j, the subpath

cij is contained in Z, then we shall denote by rij, the element |cij, µij| of

F (G,Z) = H(Z). Here, we have written µij for (ri, · · · , rj). In other words,

rij = ri−1ei · · · ej−1rj−1.

Therefore, let us break the path into subpaths corresponding to paths in Z.
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Let 0 ≤ i0 ≤ j0 < i1 ≤ j1 < · · · < im ≤ jm ≤ n with the properties that:

each cit,jt is contained in Z and each vertex/each edge of c which is in Z is

inside cit,jt for some t.

So, the paths cjt,it+1 are paths of non-zero length whose vertices other than

the extremities, are all outside Z; these, therefore, give paths in W . Hence,

we define

c′ = (· · · , cjt−1,it , · · · )

µ′ = (· · · , µjt−1+1,it−1,rit,jt
, µjt+1,it+1−1, · · · )

Step IV : (c′, µ′) is reduced if (c, µ) is

If c′ is the vertex P = (Z) of W , then it is contained in Z and, by the truth

of the theorem for (G,Z), we have that |c, µ| 6= 1 and, so |c′, µ′| 6= 1.

If c′ is a vertex P of W different from (Z), then c = P and µ = r0 6= 1. Since

HP = GP in this case, it follows that (c′, µ′) is reduced.

Let us assume that l(c′) ≥ 1. Suppose it is the concatenation w1w2 · · ·wm of

edges of W .

We need to show that if wi+1 = w̄i, then we must have r′i 6∈ Hwi
wi

where

µ′ = (r′0, · · · , r′m).

If tW (wi) 6= (Z), then since (c, µ) is reduced, our contention is true. We

are left with the case when tW (wi) = (Z). There are two possibilities. If

(wi, r
′
i, wi+1) is of the form (ej, rj, ej+1) where ej+1 = ēj. Then rj 6∈ G

ej
ej .

Since r′i is the image of rj in H(Z), since Gt(ej) → H(Z), and since under this

homomorphism, G
ej
ej transforms into Hwi

wi
, it follows that r′i 6∈ Hwi

wi
.

The other possibility is that (wi, r
′
i, wi+1) is of the form (ejt , rjt,kt , ekt+1) where

jt < kt and rjt,kt = |cjt,kt , µjt,kt | as defined earlier. Look at the subpath cjt,kt

which has non-zero length. Applying the corollary 2 to the theorem for the

graph of groups (G,Z), we have that rjt,kt 6∈ GQ where Q = o(cjt,kt) = t(ejt).
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This means, a fortiori, that rjt,kt is not contained in the subgroup Hwi
wi

of GQ.

This proves the last step and, thus, the theorem as well.

Finally, we come to the Bass-Serre structure theorem for a group G acting

without inversion on a tree X. The idea is to make the quotient graph Y =

G\X a graph of groups in such a way that its fundamental group is naturally

isomorphic to G.

In fact, we shall look at any connected graph X on which G acts without

inversion and produce a suitable structure of graph of groups on the quotient

graph Y = G\X.

Let T be a maximal tree in Y and let j : T → X be a lift of T to a tree in X.

As before, we fix an orientation E+ of Y and write χ for the characteristic

function of E+.

We would like to define a map (extending j and denoted by j again) from

Edge Y to Edge X such that j(ē) = j(e). It suffices to define j(e) for edges

e ∈ E+ which are not on T . For such edges e, we define its origin o(j(e)) to

be a vertex in j(T ) i.e., o(j(e)) = j(o(e)).

Since t(j(e)) and j(t(e)) project to the same edge t(e) in Y , we must have

some γe ∈ G so that t(j(e)) = γej(t(e)). We have defined j(e), γe etc. for

edges e ∈ E+ which are not on T . To extend γ to all edges of Y , we put

γe = 1 for edges e of T and we put γē = γ−1
e for all edges e of Y . Then, we

have for each edge e,

o(j(e)) = γδe−1
e j(o(e))

t(j(e)) = γδe
e j(t(e))

The vertex stabilisers and the edge stabilisers for the G-action on the graph

X are denoted by GP , Ge etc. Let us now define the graph of groups (G, Y ).
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For each vertex P and each edge e of Y , define

GP = Gj(P ) , Ge = Gj(e)

The homomorphism a 7→ ae from Ge to Gt(e) is defined by ae = γ−δe
e aγδe

e .

Associated to this graph of groups and the maximal tree T is its fundamental

group π1(G, Y, T ).

Since this fundamental group is generated by the vertex stabilisers GP and the

symbols ge for edges e in Y , we have a group homomorphism φ : π1(G, Y, T ) →
G given by the inclusions GP ≤ G and ge 7→ γe.

Recall the universal covering X̃ = X̃(G, Y, T ) of (G, Y ) defined in 5.7. We

have a map ψ : X̃(G, Y, T ) → X defined by gP̃ 7→ φ(g)j(P ) and gẽ 7→
φ(g)j(e).

It is easy to see that ψ is a φ-equivariant graph morphism. With these nota-

tions, the main theorem asserts:

Theorem 14 (Bass-Serre). The following three properties are equivalent:

(i) X is a tree.

(ii) ψ : X̃ → X is a graph isomorphism.

(iii) φ : π1(G, Y, T ) → G is a group isomorphism.

Note that the interesting part is the implication (I) ⇒ (III) which means that:

If a group G acts on a tree X without inversion, then G is generated by the

vertex stabilisers GP (P vertex of G\X) along with symbols γe indexed by

edges e of G\X with the defining relations

γea
eγ−1

e = aē , γē = γ−1
e , γe = 1 ∀ edge T.
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Proof. Evidently, (II) implies (I) directly from theorem 5.11.

Also, (III) clearly implies (II).

To show (II) and (III) are equivalent, we assume (II) holds. Let N denote

the kernel of φ. Then, for every vertex P of Y , since φ gives an isomorphism

from GP̃ to Gj(P ), we have N ∩GP = {1}. But, if N is nontrivial, then, for

1 6= n ∈ N , the vertices P̃ and nP̃ are distinct but have the same image j(P )

in X. This contradicts (II) and shows that N = {1}. Thus (III) follows.

Finally, to show (I) implies (II) as well, look at the smallest subgraph W of

X containing all j(e), as e varies over all edges of Y . Then, each edge of W

has atleast one extremity in j(T ) and we have G.W = X.

Now W ⊂ ψ(X̃) and φ gives isomorphisms between corresponding vertex

stabilisers of X̃ and X as well as between corresponding edge stabilisers of

X̃ and X. Now, we appeal to the result 20 from the previous section to

show that the maps φ and ψ are surjective and ψ is locally injective (i.e.,

injective on the set of edges with a given origin). The result appealed to is

the following one. If a group acts on a tree with a segment as fundamental

domain, then it is an amalgam of the two vertex stabilisers amalgamated

along the edge stabiliser. This (or, rather, the subfact that G is generated

by the vertex stabilisers) can be generalized without difficulty as follows :

Let G be a group acting on a connected graph X and let T be a tree of

representatives of G\X. Let Y be a subgraph of X containing T and suppose

that each edge of Y either starts or ends in T . Suppose that G.Y = X and

that for every edge e of Y which starts at T has a corresponding element ge

of G such that get(e) ∈ Vertex T . Then, G is generated by the elements ge

and the vertex stabilisers GP for vertices P of T .

Now, 20 proves the assertion that (I) implies (II).

The proof of the structure theorm is complete.
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We shall now derive some applications of the structure theorem. In partic-

ular, we shall prove Kurosh’s theorem which determines the structure of a

subgroup of a free product or, more generally, of a free product with amalga-

mation. Roughly, Kurosh’s theorem asserts that the subgroup of a free product

of groups Gi, i ∈ I is also a free product of conjugates of the Gi’s and a free

group. But, let us first note some immediate applications of the structure

theorem.

Corollary 15. Let G act without inversion on a tree X. Then

(a) If N denotes the subgroup of G generated by the vertex stabilisers,

then N is normal in G and, G/N is a free group.

(b) If H is a subgroup whose intersection with any vertex stabiliser is

trivial, then H is free.

(c) If G is finite, then it fixes a vertex.

Proof. To prove (a), note that normality of N is evident from its defini-

tion and the structure theorem gives us that G/N ∼= π1(G\X, T ) for some

maximal tree T of G\X. Since vertex stabilisers in G coincide with those

in N , we have that N is generated by its vertex stabilisers and, we have

π1(N\X,T0) = {1} for a maximal subtree T0 in N\X. This means that

N\X must be a tree. Moreover, G/N acts freely on this tree since the sta-

biliser in G/N of any vertex Nx is the subgroup NGx/N which is trivial.

Thus, G/N is a free group.

(b) follows by observing that, under the hypothesis, H acts freely on X.

For (c), start with any vertex x of X. Let N be the maximum of the lengths

of the geodesics from x to gx as g varies over G. Look at the subtree T of

X generated by the orbit Gx. Clearly, T is G-invariant and every reduced
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path is of length ≤ 2N . If T has at most edge, then each of its vertices

(≤ 2 in number) is G-fixed, since G acts without inversion. Therefore, let us

suppose that there is a vertex of T with atleast 2 edges emanating from it.

If we remove from T each vertex which has a unique edge starting from it,

and the corresponding edge, we get a G-invariant subtree T ′ in which every

reduced path has length ≤ 2N − 2. An induction argument, gives us (c)

now.

Theorem 16. Let G = ∗AGi be a free product of a family Gi, i ∈ I of

groups amalgamated along a subgroup A. Suppose H is a subgroup which

intersects every conjugate subgroup of every Gi only trivially. Then, there

exists a free subgroup F of G and a set Xi ⊂ G/Gi which is a system of coset

representatives for H\G/Gi such that

H = (∗i∈I,x∈Xi
H ∩ xGix

−1) ∗ F.

The particular case where A is trivial, is known as the Kurosh subgroup

theorem.

Proof. The main idea is to consider the graph of groups defined by the Gi’s

and by A in section 4. Recall that one constructed a tree T whose vertices

are the elements of I along with an extra vertex 0 (not in I) and whose edges

are (0, i), (i, 0) for i ∈ I. Then, a graph of groups (G,X) was constructed by

putting G0 = A, and putting Ge for each edge e to be also A. This is a tree of

groups i.e., T is a tree. Then, the amalgam GT = lim→(G, T ) acts on a tree

X which contains T and has the property that T is a fundamental domain

and the vertex and edge stabilisers for the action are GP , Ge respectively, for

vertices P and edges e of T . Thus, we have G = GT above.

Thus, the stabliser of any edge ge in X is the conjugate gAg−1 of A where e
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is an edge of T . Similarly, the stabilisers of vertices of X are conjugates of

A and of the Gi’s.

Applying the structure theorem for the action of the subgroup H on X, we

have that H = π1(H, Y, T0) where Y = H\X and T0 is a maximal subtree of

Y .

The hypothesis that H intersects conjugates of A only trivially, shows that

He = {1} for each edge e of Y . We know the structure of the fundamental

group in this case; we have

H = π1(H,Y, T0) ∼= (∗P HP ) ∗ F

where F is a free group and P runs through the vertices of T0.

Notice that the vertices of X are parametrized by the set G/Ati∈I G/Gi and

the vertices of T0 are, therefore, parametrized by the set H\G/Ati∈IH\G/Gi.

Choosing a lift of the tree T0 to a tree in X, one has the systems of repre-

sentatives XA ⊂ G/A and Xi ⊂ G/Gi of H\G/A and H\G/Gi respectively.

The proof is finished by observing that a vertex stabiliser HP with P = xA

is H ∩ xAx−1 = {1} and one with P = xGi is H ∩ xGix
−1.

Theorem 17. Let G be a free group with finite basis S and let σ be an

automorphism of G. Then, the subgroup H := Fix(σ) of G is free of finite

rank.

Proof. One knows that the Cayley graph T of G with respect to S is a tree

on which G acts freely. Note that σ acts on the vertex set. Let us consider

the set of edges [g, gs] for which the geodesic joining σ(g) and σ(gs) contains

the edge. We claim that H = Fix(σ) acts on the set F of these edges.

Indeed, for any such edge and for any h ∈ H, look at the edge [hg, hgs]. Now

g = σ(g)s1 · · · sk and σ(gs) = gst1 · · · tl for some si, tj ∈ S. Then,

hg = hσ(g)s1 · · · sk = σ(hg)s1 · · · sk
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and

σ(hgs) = hσ(gs) = hgst1 · · · tl.

Therefore, clearly the geodesic from σ(hg) to σ(hgs) contains the edge [hg, hgs].

The main observation will be that the quotient set H\F is finite; that is, we

claim that there are only finitely many edges in F upto the left H-action.

To see this, notice that if an edge [g, gs] is in F , then the geodesic from 1 to

σ(s) contains the edge [σ(g)−1g, σ(g)−1gs]. Note that an element of the form

σ(g)−1g determines the right coset Hg. In other words, the map

[g, gs] 7→ {(Hg, s) : [1, σ(s)] ⊃ [σ(g)−1g, σ(g)−1gs]}

is a bijection from H\F onto the set on the right. Here [1, σ(s)] denotes

the geodesic from 1 to σ(s). Note that the set on the right is finite as S

is finite. Thus, we have proved that H\F has only finitely many edges and

is, hence, a finite graph. Recall the procedure of collapsing the edges of a

disjoint union of trees to form a graph of the same topological type as the

original one. Here, if we collapse all the edges on F to points and look at the

graph T/F , then H\(T/F ) = H\T \H\F . This has finitely many connected

components as H\F is a finite graph (with at most |S| edges). Since, by the

main structure theorem, H can be identified with the fundamental group of

H\T , it suffices to show that each component of H\(T/F ) corresponds to

a free group of rank at most 1. To see this, look at any edge [g, gs] which

is not in F . Evidently, the graph T \ [g, gs] has two connected components

and exactly one of g and gs is in the component which contains the geodesic

from σ(g) to σ(gs). We can re-orient T so that for edges [g, gs] not in F , the

vertex gs is in the component containing the geodesic from σ(g) to σ(gs).

Clearly, H preserves this orientation. Therefore, for any edge [g, gs] not in

F , the geodesic from g to σ(g) starts with the edge [g, gs]; in other words this
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geodesic determines the edge [g, gs]. Thus, for every g ∈ G, there is exactly

one edge in T/F starting at g (all other edges have collapsed to one vertex

in T/F ). Thus, each component of H\(T/F )

8 Ihara’s Theorem

8.1 A primer on non-Archimedean local fields

Let F be a field. To begin with we define the notion of a valuation on the

field F.

Definition 1. A valuation on a field F is a function | · | : F → R≥0 such

that

(i) |x| = 0 if and only if x = 0.

(ii) |xy| = |x||y|.

(iii) There is a constant C such that if |x| ≤ 1 then |1 + x| ≤ C.

Remark 2. We define two valuations | · |1 and | · |2 equivalent if there is

an α > 0 such that |x|1 = |x|α2 for all x ∈ F. Clearly every valuation is

equivalent to one with the contant C being equal to 2. In fact, if C = 2 then

one can show (see Exercise 28) that the valuation satisfies the usual triangle

inequality, namely,

|x + y| ≤ |x|+ |y|.

Definition 3. A valuation |·| on a field F is said to be a non-Archimedean valuation

if it satisfies one (and hence any) of the following equivalent conditions:

(i) C = 1.
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(ii) The valuation satisfies the ultra-metric inequality, namely,

|x + y| ≤ max{|x|, |y|}.

(iii) |n| ≤ 1 for all n in the ring generated by 1 ∈ F.

We heneceforth deal with a field F equipped with a non-Archimedean val-

uation. The definition |x| = 1 for all x ∈ F ∗ evidently gives an example

of a valuation. We call such a valuation trivial and shall study only non-

trivial valuations. Further, it is convenient to sometimes think in terms of

an additive valuation. An additive non-Archimedean valuation on F is a map

v : F → R ∪ {∞} such that

(i) v(x) = ∞ if and only if x = 0.

(ii) v(xy) = v(x) + v(y).

(iii) v(x + y) ≥ min{v(x), v(y)}.

The relation between v and | · | is given by the existence of a number c with

0 < c < 1 and such that |x| = cv(x). Note that our assumption that |F ∗|
is nontrivial is equivalent to the assumption that the corresponding additive

valuation v is non-trivial; that is, v(F ∗) 6= {0}. We shall be concerned only

with discrete valuations, i.e., v(F ∗) (resp. |F ∗|) is a discrete subgroup of R

(resp. R>0). We may and shall normalize v such that v(F ∗) = Z.

Associated to a field F and a non-Archimedean valuation v or | · | is its

ring of integers O defined by

O := {x ∈ F : |x| ≤ 1} = {x ∈ F : v(x) ≥ 0}

and an ideal P of O defined by

P := {x ∈ F : |x| < 1} = {x ∈ F : v(x) ≥ 1}.
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We leave it to the reader to check that the group of units O× is given by:

O× = O −P = {x ∈ F : |x| = 1} = {x ∈ F : v(x) = 0}

and so O is a local ring with a unique maximal ideal P. The quotient kF =

O/P is a field and will be called the residue field of F.

Let $ be a uniformizer for F , i.e., an element such that v($) = 1. So a

uniformizer is well defined up to a unit element in the ring of integers. We

ask the reader to check that every (fractional) ideal of F is a power of the

maximal ideal P and so looks like Pm for some integer m and every ideal

is principal, indeed, we have Pm = $mO. Hence O is a local principal ideal

domain and such rings are also sometimes called discrete valuation rings.

The valuation |·| on F makes F into a metric space. The distance function

is defined by d(x, y) = |x − y|. Hence we may apply topological adjectives to

F , for example, the assertion that F is locally compact makes sense.

Proposition 4. Let F be a field endowed with a non-Archimedean discrete

valuation v or | · |. Then the following are equivalent:

(i) F is a locally compact topological field.

(ii) F is complete and the residue field kF is finite.

Proof. Let Ω be a set of representatives for O/P, i.e., O = qx∈Ω x + P. We

begin with the proof of (2) implies (1). To begin with, since F is complete

we have

O =

{ ∞∑
i=0

ai$
i : ai ∈ Ω

}
.

To see this, consider a series x =
∑∞

i=0 ai$
i as in the right hand side. Let

xn =
∑n

i=0 ai$
i. For n ≥ m we have |xn − xm| ≤ |$|m+1 and since |$| < 1

we get that the sequence {xn} is a Cauchy sequence of elements in O. Since
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F is complete and O is closed we get that sequence indeed converges to x

and that x ∈ O.

For the reverse inclusion, let x ∈ O. There is a unique a0 ∈ Ω such that

x ∈ a0 + P. Again there is unique a2 ∈ Ω such that x ∈ a0 + a1$ + P2.

Continuing this way we get a unique sequence {ai} such that x ∈ a0 +a1$ +

· · ·+ ai$
i + Pi+1 and hence x is in the right hand side.

Once we have this description of O we can show that it is actually com-

pact. Let {Uα} be an open cover of O. Suppose it has no finite subcover.

Since kF and hence Ω is finite we get that there is some a0 ∈ Ω such that

a0 + P admits no finite subcover. By the same token, we get that there is

an element a1 ∈ Ω such that a0 + a1$ + P2 admits no finite subcover. Con-

tinuing this way, we get a sequence {an} of elements in Ω such that for all i,

a0 + a1$ + · · ·+ ai$
i + Pi+1 admits no finite subcover. Let x =

∑
i≥0 ai$

i.

We have seen that x ∈ O and hence there is some β such that x ∈ Uβ and

since Uβ is open there is some r À 0 such that x+Pr ⊂ Uβ. This contradicts

the fact that a0 +a1$+ · · ·+ar−1$
r−1 +Pr admits no finte subcover. Hence

O is compact. Now any x ∈ F has a compact neighbourhood, namely, x+O
and so F is locally compact.

Now we prove (1) implies (2). Since F is locally compact, let C be a

compact neighbourhood of 0 ∈ F. Choose r À 0 such that Pr ⊂ C. Since Pr

is a closed subset of a compact set it is itself compact. Hence O = $−rPr is

compact.

Since O = qx∈Ωx+P is a disjoint union of open sets, we get that Ω must

be finite, i.e., kF is a finite field.

Let {xn} be a Cauchy sequence in F. Since | · | satisfies the ultra-metric

inequality, it also satisfies the triangle inequality and hence we get for all
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x, y ∈ F that

||x| − |y|| ≤ |x− y|.

(This shows that the valuation map is a continuous map.) In particular we

get that the sequence {|xn|} is a Cauchy sequence of real numbers. The

valuation being discrete implies that the value |xn| is eventually constant,

i.e., there is some m and some n0 such that |xn| = |$|m for all n ≥ n0. Put

yn = $−mxn for n ≥ n0. Then {yn}n≥n0 is a Cauchy sequence of elements

in O× ⊂ O both of which are compact and so yn admits a limit point and

hence so does xn which proves that F is complete.

Definition 5. By a non-Archimedean local field we mean a field F equipped

with a non-trivial discrete non-Archimedean valuation v (or | · |) such that F

is locally compact or equivalently that F is compelete and the residue field is

finite. We will let qF denote the cardinality of the residue field.

Remark 6. In the above definition there is some redundancy as there is a

theorem of Gelfand and Tornheim which states that any Archimedean local

field necessarily is a subfield of Complex numbers with the valuation induced

from the usual absolute value. In particular such a field contains the rational

field Q and so the valuation can not be discrete.

The reader is urged to go through the exercises at the end of this chapter

dealing with the specific example of the non-Archimedean local field Qp, also

called the field of p-adic rational numbers.

8.2 GL(2) and SL(2)

In this section we consider the two groups GL2(F ) and SL2(F ) for a non-

Archimedean local field F. They are defined as follows:
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GL2(F ) =






 a b

c d


 : a, b, c, d ∈ F ; det(g) = ad− bc 6= 0



 (7)

SL2(F ) =






 a b

c d


 : a, b, c, d ∈ F ; det(g) = ad− bc = 1



 (8)

We give GL2(F ) the p-adic topology, namely, the topology it inherits from

the topology on F. One may think of GL2(F ) as either an open subset of F 4

via the non-vanishing of the determinant homomorphism or a closed subset

of F 5 via the zero locus of the polynomial (AD−BC)Y − 1 in five variables.

The topology induced from either embedding is the same and from now on

we will use only this topology on GL2(F ). We equip SL2(F ) with the topology

induced from GL2(F ). This way both of them are locally compact totally dis-

connected topological groups. Both these groups have the following important

open compact subgroups:

GL2(O) =






 a b

c d


 : a, b, c, d ∈ O; det(g) ∈ O×



 (9)

SL2(O) = GL2(O) ∩ SL2(F ) (10)

We begin with the following proposition.

Proposition 11. The group GL2(O) is a compact open subgroup of GL2(F )

and any compact subgroup can be conjugated inside it.

Proof. That GL2(O) is compact open follows from the above mentioned em-

beddings in F 4 and F 5 and the fact that O is a compact open subring of F.

To prove the assertion that any compact subgroup may be conjugated inside

it, we introduce the very important notion of lattices in p-adic vector spaces.

73



We let V = F 2 = F 2×1 be the two dimensional F -vector space consisting

of column vectors. If

e1 =


 1

0


 and e2 =


 0

1




then V = Fe1⊕Fe2. By a lattice in V we mean a rank two free O submodule

of V. For example, L0 = Oe1⊕Oe2 is a lattice in V that we sometimes refer

to as the standard lattice.

Note that GL2(F ) acts on V via the so-called standard representation

and this action is given by:


 a b

c d





 x

y


 =


 ax + by

cx + dy


 .

With respect to this action we ask the reader to check that

StabGL2(F )(L0) = GL2(O).

The above equation brings out the connection between compact subgroups of

GL2(F ) and lattices in V. Let L be any lattice and let {v1, v2} be an O-basis

of L. Let g ∈ GL2(F ) such that g(e1) = v1 and g(e2) = v2. Then since the

action is linear we get g(L0) = L and hence

StabGL2(F )(L) = gStabGL2(F )(L0)g
−1.

Let C be any compact subgroup of GL2(F ). We can average L0 over C

and get a C stable lattice. Put

L =
∑
c∈C

c · L0.

74



Actually the above summation is finite since c runs over cosets C/C ∩
StabGL2(F )(L0) which is a finite set by compactness of C. By the above re-

marks we have

C ⊂ StabGL2(F )(L) = gStabGL2(F )(L0)g
−1 = gGL2(O)g−1.

In fact, GL2(O) is a maximal compact subgroup and alongwith the above

proposition we get that there is only one conjugacy class maximal compact

subgroups for GL2(F ). To prove maximality we prove the Cartan decomposi-

tion.

Proposition 12 (Cartan). Let G = GL2(F ) and K = GL2(O). Let

A =






 $n 0

0 $m


 : n,m ∈ Z and n ≥ m



 .

Then we have G = K · A ·K = qa∈AKaK.

Proof. Let g ∈ G. Let L0 be the standard lattice in V. Let L = gL0. Choose

r À 0 such that $rL ⊂ L0. Applying the structure theory of modules over

PIDs to the O-module L0/$
rL we get that there is an O-basis {v1, v2} of

L0 and positive (since r À 0) integers a1, a2 such that {$a1v1, $
a2v2} is an

O-basis for $rL.

Let k ∈ G be the element such that k(vi) = ei for i = 1, 2. Since k

stabilizes L0 we get that k ∈ K. Note that we have


 $a1 0

0 $a2


 · k · L0 = k ·$r · g · L0 = O$a1e1 ⊕O$a2e2.
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This implies that there are integers b1 and b2 (in fact bi = ai − r) such that

g = k1 ·

 $b1 0

0 $b2


 · k2.

If b1 < b2 then we may rewrite the above equation as

g = (k1w
−1) ·


 $b2 0

0 $b1


 · (w−1k2)

where w = ( 0 1
−1 0 ) ∈ K. This proves that G = KAK.

We now prove that the union ∪a∈AKaK is a disjoint union. Suppose for

integers a1, a2, b1, b2 with a1 ≥ a2 and b1 ≥ b2 we have

K


 $a1 0

0 $a2


 K = K


 $b1 0

0 $b2


 K

Considering the absolute value of determinants of elements on both sides

gives that a1 + a2 = b1 + b2. Now for any g ∈ G let I(g) be the ideal of F

generated by the entris of g. It is easy to see that I(g) depends only on the

double coset KgK. Applying this to above equality fo double cosets while

using a1 ≥ a2 and b1 ≥ b2 gives that a2 = b2 and hence a1 = b1.

Corollary 13. GL2(O) is a maximal compact subgroup of GL2(F ).

Proof. Exercise!

Corollary 14 (Cartan). Let G = SL2(F ) and K = SL2(O). Let

A =






 $n 0

0 $−n


 : n ∈ Z≥0



 .

Then we have G = K · A ·K = qa∈AKaK.
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Proof. Let g ∈ SL2(F ). By Cartan decomposition for GL2(F ) we get

g = k1


 $n 0

0 $m


 k2

with k1, k2 ∈ GL2(O) and integers n ≥ m. Since det(g) = 1 we get m = −n

and det(k1)det(k2) = 1. Hence we may rewrite g as

g =


k1


 det(k1)

−1 0

0 1








 $n 0

0 $−n








 det(k2)

−1 0

0 1


 k2




giving us the Cartan decomposition. The disjointness of the union follows

from the disjointness assertion of Proposition 12.

Corollary 15. SL2(O) is a maximal compact subgroup of SL2(F ).

Proof. Imitate the proof of Corollary 13!

Corollary 16. There are two conjugacy classes of maximal compact sub-

groups of SL2(F ) and they are represented by SL2(O) and
(

$−1 0
0 1

)
SL2(O) ( $ 0

0 1 ) .

Proof. Let C be a compact subgroup of SL2(F ). Then since it is also a

compact subgroup of GL2(F ) there exists g ∈ GL2(F ) such that C ⊂
gGL2(O)g−1. Use Cartan decomposition for GL2(F ) and write

g = k1


 $n 0

0 $m


 k2 = k1ak2

with ki ∈ GL2(O) as in Proposition 12. Let k′i = ki

(
det(ki)

−1 0
0 1

) ∈ SL2(O).

Now since diagonal matrices commute with each other we have

C ⊂ gGL2(O)g−1 = k1ak2GL2(O)k−1
2 a−1k−1

1

= k′1aGL2(O)a−1(k′1)
−1
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Replacing C by the conjugate C1 = (k′1)
−1Ck′1, we get C1 ⊂ aGL2(O)a−1

and since C1 is a subgroup of SL2(F ) we actually get C1 ⊂ aSL2(O)a−1.

The case when n ≡ m (mod 2): Note that inner conjugation by a may

be replaced by inner conjugation by an element of SL2(F ) as:

aSL2(O)a−1 =


 $(n−m)/2 0

0 $(m−n)/2


 SL2(O)


 $(n−m)/2 0

0 $(m−n)/2



−1

.

Hence C can be conugated inside SL2(O).

The case when n ≡ m + 1 (mod 2): We may now write

aSL2(O)a−1 =
(

$(n−m)/2 0
0 $(m−n)/2

)
( $ 0

0 1 ) SL2(O) ( $ 0
0 1 )−1

(
$(n−m)/2 0

0 $(m−n)/2

)−1

and hence, in this case, C can be conjugated inside ( $ 0
0 1 ) SL2(O) ( $ 0

0 1 )−1 .

Remark.

There are analogues for GLn and SLn for a general n, of all the results

6.11 through 6.16. While the analogues of 6.11 until 6.15 are easy to guess

and similar to proof, the analogue of 6.16 is that SLn(F ) has exactly n

maximal compact subgroups upto conjugacy. Of course, these are all con-

jugate in GLn(F ). The proof of the above analogue of 6.16 is most natu-

rally/conceptually given by using the so-called Bruhat-Tits building associ-

ated to SLn over F ; the next section discusses this for the case n = 2 where

this is a tree.

8.3 The tree associated to SL2 over a non-Archimedean

local field

We continue with our notation of a non-Archimedean local field F and ite

related paraphernalia like O, P = $O, the valuation v or | · | on F etc.
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In this section we construct a tree on which SL2(F ) acts such that a

fundamental domain is a segment. Towards this end, we recall the definition

of a lattice in the two dimensional F -vector space V = F 2 = F 2×1.

Definition 17. A lattice L in V is an O-submodule of maximal rank or

equivalently a rank two free O-submodule of V. Two lattices L1, L2 are said

to be equivalent if there is some x ∈ F ∗ such that L1 = xL2. This is an

equivalence relation and the equivalence classes will be called lattice classes.

Given two lattice classes Λ1 and Λ2 we define a notion of distance between

them as follows. Let L1 and L2 be lattices in Λ1 and Λ2 respectively. By the

structure theory of modules over PIDs we get that there are vectors v, w and

integers a, b such that

L1 = Ov ⊕Ow, and L2 = O$av ⊕O$bw.

We define

d(Λ1, Λ2) = |a− b| (18)

where the absolute value on the right hand side is the usual absolute value of

real numbers. Let us check that this definition is indeed valid, i.e., the right

hand side depends only on the lattice classes and not the individual lattices.

To see this, consider the lattices a1L1 and a2L2 for some a1, a2 ∈ F ∗. Then,

a1L1 has a basis {a1v, a1w} and a2L2 has a basis {a2$
av, a2$

bw}. Note that

a2a
−1
1 = u$n where v(a2a

−1
1 ) = n and u is a unit. Putting a2 = a1u$n, we

see that a2L2 has a basis {a1$
a+nv, a1$

b+nw}. Since |(a + n) − (b + n)| =

|a− b|, the above definition is valid.

We are now in a position to define a graph. It will be proved that this graph

is indeed a tree.
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Definition 19. Let X be a graph whose vertex set V (X) and edge set E(X)

are defined by:

(i) V (X): This is the set of all lattice classes Λ of V.

(ii) E(X): This is the set of all edges Λ1.Λ2 where there is an edge

joining the vertices Λ1 and Λ2 if d(Λ1, Λ2) = 1.

For each such edge Λ1.Λ2, wed define its origin o(Λ1.Λ2) and its terminus

t(Λ1.Λ2) to be, respectively, Λ1 and Λ2. Finally, we define the opposite edge

Λ1.Λ2 = Λ2.Λ1.

Theorem 20. The graph X in Definition 19 is a tree.

Proof. We begin the proof with a simple observation on lattices and lattice

classes. Give a lattice L and a lattice class Λ′ there is a unique lattice L′ ∈ Λ′

such that one (and hence any) of the following equivalent conditions hold:

(i) L′ ⊂ L and L′ is maximal with respect to this property.

(ii) L′ ⊂ L and L′ * $L.

(iii) L′ ⊂ L and L/L′ is monogenic, i.e., cyclic as an O-module.

In this case we have L/L′ ' O/Pn where n = d(Λ, Λ′).

We begin by showing that X is connected. Let Λ, Λ′ ∈ V (X). Choose

lattices L,L′ in the respective lattice classes satisfying the above properties.

Now choose a Jordan-Hölder sequence

L′ = L0 ⊂ L1 ⊂ · · · ⊂ Ln = L

such that the succesive quotients satisfy Li/Li+1 ' k = O/P. If Λi is the

lattice class of Li then again by the above properties we get that there is

edge joining Λi with Λi+1 and so a path joining Λ and Λ′.
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We now show that X is a tree. Let Λ0, Λ1, . . . , Λn be a path without

backtracking in X. We will show that d(Λ0, Λn) = 1 which will show in

particular that this path cannot be a circuit. We will prove this by induction.

The assertion holds by definition for n = 1. Assume from now on that n ≥ 2.

Choose lattices Li ∈ Λi such that

(i) L0 ⊃ L1 ⊃ · · · ⊃ Ln.

(ii) Li/Li+1 ' k.

(iii) Ln * $Ln−1 and Ln−1 * $L0 (the latter by induction hypothesis).

These properties actually imply that Ln * $L0 which gives d(Λ0, Λn) = 1.

Note that both Ln and $Ln−2 are inverse images of lines in Ln−1/$Ln−1.

These lines are distinct, because, if not then

Ln = $Ln−2 + $Ln−1 = $Ln−2

which gives Λn = Λn−2 which is a backtracking. Since V is two dimensional

these two distinct lines span the k-vector space Ln−1/$Ln−1, i.e., Ln−1 =

Ln + $Ln−2 + $Ln−1 = Ln + $Ln−2. Now if Ln ⊂ $L0 then we would

get Ln−1 ⊂ $L0 + $Ln−2 = $L0 which contradicts the second part of (iii)

above.

Corollary 21. The quantity d(Λ1, Λ2) coincides with the distance function

on the vertex set of the tree X.

Proof. Follows trivially from the proof of Theorem 20.

8.4 The action of SL2(F ) on the tree X

We now study the action of the group SL2(F ) on the tree X. The action itself

is naturally defined since GL2(F ) acts (via the standard representation) on
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V and hence on the set of lattices. The action being linear, we get an action

on the set of lattice classes. It turns out that, unfortunately, the action

of GL2(F ) itself has inversions; however, the subgroup SL2(F ) acts without

inversions. The first task is to verify this.

Towards this, we introduce a number χ(L1, L2) which depends on two

lattices L1, L2 in V and is defined by :

χ(L1, L2) := l(L1/L3)− l(L2/L3) for any lattice L3 ⊂ L1 ∩ L2 (22)

where l(M) denotes the length of a finite O-module M.

Lemma 23. Let L,L1, L2 be lattices respectively in the lattice classes Λ, Λ1

and Λ2. Then for any g ∈ GL2(F ) we have

(i) χ(gL1, gL2) = χ(L1, L2).

(ii) d(gΛ1, gΛ2) = d(Λ1, Λ2).

(iii) χ(L, gL) = v(det(g)).

(iv) d(Λ, gΛ) ≡ v(det(g)) (mod 2).

Proof. We leave the proofs of (1),(2) and (4) as an exercise to the reader and

give details of the proof of (3).

Let L0 be the standard lattice and let h ∈ GL2(F ) be such that L = hL0.

We have

χ(L, gL) = χ(hL0, ghL0) = χ(L0, h
−1ghL0).

Applying the Cartan decomposition for GL2(F ) we may write

h−1gh = k1


 $n 0

0 $m


 k2
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where ki ∈ GL2(O) = Stab(L0). We have

χ(L0, h
−1ghL0) = χ


L0, k1


 $n 0

0 $m


 k2L0


 = χ


L0,


 $n 0

0 $m


 L0


 .

It is easily checked that that

χ


L0,


 $n 0

0 $m


 L0


 = n + m = v(det(g))

by noting that l(O/Pn) = n.

Proposition 24. SL2(F ) acts on the tree X without inversions.

Proof. Let g ∈ SL2(F ) and let Λ ∈ V (X) be a lattice class. From Lemma 23

we have

d(Λ, gΛ) ≡ v(det(g)) = v(1) = 0 (mod 2)

which implies that if g does not fix the vertex V (X) then it moves it by a

distance of at least 2. In particular, g can not take an edge e to its inverse,

because, if it did, it would move any of the extremities of e by a distance

1.

Proposition 25. If L is a lattice in a lattice class Λ ∈ V (X) and G is any

subgroup of SL2(F ) then we have

StabG(Λ) = StabG(L).

Proof. Clearly StabG(L) ⊂ StabG(Λ). For the reverse inclusion, let g ∈
StabG(Λ). By definition, this means that there is an element x ∈ F ∗ such

that gL = xL. Hence using Lemma 23

χ(L, xL) = χ(L, gL) = v(det(g)) = v(1) = 0

which implies that x ∈ O× and so xL = L. Hence we get gL = xL = L, i.e.,

g ∈ StabG(L).
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Proposition 26. For the action of SL2(F ) on the tree X a fundamental

domain is a segment.

Proof. Fix a vertex Λ0 ∈ V (X). Define

V (X)+ = {Λ ∈ V (X) : d(Λ0, Λ) ≡ 0 (mod 2)}
V (X)− = {Λ ∈ V (X) : d(Λ0, Λ) ≡ 1 (mod 2)}

Using the Cartan decomposition for SL2(F ) it can be checked that SL2(F )

acts transitively on V (X)+ and V (X)−. (We ask the reader to fill in the

details here.)

The proposition will follow if one shows that the set {e ∈ E(X) : o(e) =

Λ0} of edges is contained in one SL2(F )-orbit. Equaivalently, if we show that

set {Λ ∈ V (X) : d(Λ0, Λ) = 1} is in one SL2(F )-orbit. Fix a lattice L0 ∈ Λ0

and take lattices L in Λ such that L ⊂ L0 and L * $L0. Then L corresponds

to a line in the two dimensional k-vector space in L0/$L0 and vice-versa.

Hence the set {Λ ∈ V (X) : d(Λ0, Λ) = 1} is in bijection with P1(k). In other

words the three sets

{e ∈ E(X) : o(e) = Λ0}, {Λ ∈ V (X) : d(Λ0, Λ) = 1} and P1(k)

are in bijection. The fact that SL2(k) acts transitively on P1(k) now finishes

the proof.

Theorem 27. Let G = SL2(F ) for a non-Archimedean local field F. Let

K = SL2(O) and let I be the subgroup of matrices in K which are upper

triangular modulo P . With respect to the injective maps I → K given by

inclusion and 
 a b

c d


 7→


 a $b

$−1c d




we get that G = K ∗
I
K.
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8.5 Exercises

Exercise 28. Let | · | be a valuation on a field F. Show that the constant

C = 2 if and only if the valuation satisfies the triangle inequality.

Exercise 29. Let | · | be a valuation on a field F. Show that the three

statements in Definition 3 are indeed equivalent to each other, i.e., C = 1 if

and only if the ultra-mteric inequality holds if and only if the valuation is

bounded by 1 on any element in the ring generated by 1 ∈ F.

Exercise 30. Let p be a prime number.

(i) Consider the following map on Q∗:
∣∣∣∣
pma

b

∣∣∣∣
p

= p−m

whenever (p, ab) = (a, b) = 1. Show that this gives a non-Archimedean

valuation on Q. Let Qp denote the completion of Q with respect to

this valuation. Show that Qp is a non-Archimedean local field with the

respect to the valuation extending the given one.

(ii) Show that Qp is not isomorphic to R.

(iii) If p and q are two distinct primes then show that Qp and Qq are

not isomorphic to each other.

Exercise 31. Complete the proof of Lemma 23.

Exercise 32. Show that the action of GL2(F ) on the tree X of Section 8.3

is an action with inversions, by showing that for every edge e of X there is

a g ∈ GL2(F ) such that ge = ē.

Exercise 33. Let Fq be the finite field with q elements.
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(i) Show that the projective line P1(Fq) over Fq has q + 1 elements.

(ii) Show that SL2(Fq) acts transitively on P1(Fq).

(iii) Show that the tree X of Section 8.3 associated to SL2(F ) has the

property that every vertex has q+1 edges with that vertex as the origin.

Exercise 34. Draw the geometric realizations of the trees associated to

SL2(Q2) and SL2(Q3).

Exercise 35. A subset Ω of GL2(F ) is said to be bounded if there is a

number M such that

|gij| ≤ M, ∀g =


 g11 g12

g21 g22


 ∈ Ω.

Let H be a subgroup of SL2(F ). The show that the following are equivalent:

(i) H is a bounded subgroup. (Bounded in the above sense.)

(ii) There is a lattice L in V which H stabilizes.

(iii) There is a vertex in X which is fixed by H.

(iv) There is a vertex Λ in X such that its H-orbit is bounded as a

subset of the vertex set V (X).

Show that this gives another proof of Corollary 16.

Exercise 36 (Ihara). Let F be a non-Archimedean local field. Show that a

subgroup of SL2(F ) which does not contain any bounded subgroup is a free

group.
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9 Serre’s property (FA)

Earlier, we characterized free groups as those groups which act freely on

trees. On the other hand, an amalgam G = G1 ∗A G2 with G1 6= A 6= G2

acts on a segment PQ where GP = G1, GQ = G2 and A is the stabilizer of

the edge. However, this action also does not fix any vertex. In general, one

has the following definition :

Definition 9.1. (Property (FA)

A group G has property (FA) if it fixes a vertex of any tree on which it acts.

The acronym (FA) stands for the fixing property on arbres (trees). Thus,

free groups or groups which are amalgams do not have the property (FA).

Lemma 9.2. Let N be a normal subgroup of a group G.

(a) If G has property (FA), then so does G/N .

(b) If N and G/N have property (FA), then so does G.

(c) If H has property (FA) and H is of finite index in G, then G also has

property (FA).

Proof: (a) is obvious.

For (b), let X be a tree on which G acts. Then, G/N acts on the tree XN

and, therefore, has a fixed vertex. Evidently, this is, by definition, a vertex

of X fixed by G.

For (c), consider the normal subgroup M
d
=

⋂
g∈G

gHg−1 of G.

Now XM 6= φ since XH 6= φ.

Also, G/M acts on XM ; since G/M is finite, it must fix a vertex. Thus, once

again XG 6= φ.
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Remark: We shall see later that the converse of lemma (c) is false, in

general.

Lemma 9.3. If G has property (FA) and is contained in an amalgam G1 ∗A

G2, then G is contained in a conjugate of G1 or of G2.

Proof: The action of G on the tree associated with G1 ∗A G2 has a fixed

vertex. The stabiliser of any vertex of this tree is a conjugate of either G1 or

G2.

Now, we can prove the following characterization theorem.

Theorem 9.4. G has property (FA) if, and only if, it satisfies:

(a) G is not an amalgam,

(b) there is no nontrivial homomorphism from G to ZZ and,

(c) G is not the union of a strictly increasing sequence of subgroups.

Proof: Suppose G has property (FA).

Clearly (a) holds as observed above since amalgams act without fixed points

on appropriate segments. Since ZZ acts without fixed points on the doubly

infinite line by translations, we have that ZZ does not have property (FA)

and, therefore, G cannot have (FA) if ZZ were a quotient of G. Thus, (b)

holds good.

To see that (c) is true, let us suppose, if possible, that G1 ⊆ G2 ⊆ . . . be

a strictly increasing sequence of subgroups such that G =
⋃

n≥1

Gn. Then,

we have the tree X whose vertices are the cosets of Gn ∀ n ≥ 1 and, two

vertices are joined precisely when they are of the form aGn and bGn+1 with

aGn+1 = bGn+1.

Since G has a fixed vertex aGn of X1 we have G = Gn, a manifest

contradiction. Thus, (c) also holds.
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Conversely, suppose G has the properties (a), (b) and (c). Let X be a tree

on which G acts. Look at the quotient graph T = G/X. Note that π1(T ) is

a free group. By the main structure theorem, G is a quotient of π1(T ). But,

this contradicts (b) unless π1(T ) is trivial i.e., T is a tree. By lifting it to a

tree in X, we can write G as the direct limit lim
→

(G, T ) of the tree of groups

where the vertex stabilizers are GP for vertices P of T and edge stabilizers

are Ge for edges e of T . Moreover, if T1 runs through finite subtrees of T ,

the union of the groups lim
→

(G, T1) equals G. By (c), this cannot be a strictly

increasing union.

In other words, G = lim
→

(G, T1) for some finite subtree T1 of T . We may

assume that T1 is minimal with respect to this property. If T1 is a single

point P , then obviously G = GP i.e. G fixes P and this would prove that

G has property (FA). If T1 were not a single vertex, then there is a terminal

vertex Q of T1 such that T1 − {Q} is a tree as proved earlier. But then if e

is the (unique) edge from Q to T1 − {Q}, then G = GQ ∗Ge GT1−{Q}. This is

a nontrivial amalgam as the minimality of T1 implies GT1−{Q} 6= G and also

GQ 6= G.

The resultant contradiction of the assumption (a) shows that this case is

impossible; that is, T1 must be a point.

Corollary: A finitely generated torsion group G has property (FA).

Proof: Suffices to check that such a group is not an amalgam (property

(b) is obvious as G is a torsion group; property (c) holds because G is finitely

generated.) Suppose, if possible, that G = G1 ∗A G2.

Then, ∀ g1 ∈ G1\A, g2 ∈ G2\A, the element g1g2 is cyclically reduced; it

must thus have infinite order, an impossibility.

Remark:

The above theorem is used in the following manner. If it is possible to show
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somehow that a certain group G has the property (FA), then it follows that

G cannot be an amalgam. Indeed, we shall do this for SL3(ZZ) but it is also

valid for arithmetic groups in |Q-algebraic groups of rank atleast 2. Now, it

may not be easy to directly check whether a group acting on a tree has a

fixed point or not. However, it is often to check that specific elements have

fixed points. To use this, we need to know that if G is generated by elements

which have fixed points, then G itself has fixed points. This is what we try

to do is what follows.

Proposition 9.5. : Let σ be an automorphism of a tree X. Let P ∈ X. Let

n = Min.{`(P,Q) : Q ∈ Xσ}. Then, there is a unique point Q ∈ Xσ such

that `(P, Q) = n. Moreover `(P, σ(P )) = 2n and Q ∈ is the midpoint of the

geodesic joining P and σ(P ).

Proof: First, we note more generally that for any two disjoint subtrees

T1, T2 of a tree X, there are unique points P1 ∈ T1, P2 ∈ T2 satisfying

`(P1, P2) = Min{`(A,B) : A ∈ T1, B ∈ T2}. The reason is that once we

have located P1, P2 taking on this minimal value, for any A ∈ T1, B ∈ T2

the juxtaposition of the geodesics AP1, P1P2 and P2B is a path without back

tracking and, hence, its length is strictly bigger than `(P1, P2). Applying this

to the trees Xσ and P , we get a unique Q ∈ Xσ with `(P,Q) = n. By the

definition of n, all the points of the geodesic from P to Q, apart from Q, are

outside Xσ.

We claim that the geodesic from P to σ(P ) is obtained by juxtaposing

the geodesic joining P to Q and that joining Q to σ(P ). If not, then the path

PQσ(P ) will have some back tracking. Since PQ and Qσ(P ) are geodesics,

this means that the last edge P1Q of PQ is the first edge of Qσ(P ). As the

geodesic from Q to σ(P ) is simply the σ-translate of the geodesic from Q to
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P , we get σ(P1) = P1 i.e. P1 ∈ Xσ. This contradicts the definition of n as

noted earlier.

Hence `(P, σ(P )) = `(P, Q) + `(Q, σ(P )) = 2n since the geodesic from Q

to σ(P ) is the σ-translate of the geodesic from Q to P . It is obvious that Q

is the midpoint of the geodesic joining P and σ(P ).

Our aim is to prove a result of Tits which characterises an automorphism of

a tree which acts without fixed points.

Proposition 9.6. (Tits). Let σ be an automorphism of a tree X. Then, σ

has no fixed points if, and only if, there exists an infinite path on which σ

acts by translation of some non-zero amplitude.

(Such an automorphism is called hyperbolic).

Proof: Suppose T is an infinite path in X on which σ acts as a translation

of amplitude d > 0.

If σ had fixed points on X, then ∀ Q ∈ T , look at the unique geodesic

QP between Q and Xσ. Evidently P 6∈ T ; otherwise `(P, σ) would be d > 0

by hypothesis.

We proved that the geodesic joining Q and Qσ is obtained by juxtaposing

QP and P ·Qσ. But the whole geodesic joining Q and Qσ is in T ; so P ∈ T

which again gives a contradiction. So, σ has no fixed points on X.

Conversely, suppose σ has no fixed points on X.

Look at the number d = inf{`(P, P σ) : P ∈ V ert(X)}. Consider T
d
=

{P ∈ X : `(P, P σ) = d}. We shall show that T is an infinite path on which

σ acts by a translation of amplitude d.

Let P ∈ T . Look at the geodesic p = P1, P2, . . . Pd joining P = P0 and

Pd = P σ. Consider the geodesic pσ which joins P σ and P σ2
. It is P σP σ

1 P σ
2 . . ..

If the juxtaposition ppσ had backtracking, then Pd−1 = P σ
1 .

91



This is impossible if d = 1 since σ acts without inverting the edge P0P1.

If d > 1, then again we would get that `(P1, P
d
1 ) = d− 2 which is impossible

by the definition of d.

Hence, the geodesics p and pσ can be juxtaposed without any backtrack-

ing. Similarly, by induction, one can show that ∀ n ∈ ZZ, the geodesic pσn

can be juxtaposed without backtracking to yield a (doubly) infinite path, say

TP . In fact, we will show that T = TP .

If Q ∈ X is at distance ` from TP , then ∃ P ′ ∈ TP for which `(Q,P ′) = `.

As we observed in the previous proof, the juxtaposition QP ′, P ′(P ′)σ and

(P ′)σQσ has no backtracking and `(Q,Qσ) = ` + d + ` = d + 2`. Therefore

Q ∈ T , we would have `(Q,Qd) = d i.e., ` = 0. So Q ∈ TP .

One of the main aims of this section is to show that SL3(ZZ) is not an

amalgam. This will be proved by showing that SL3(ZZ) has property (FA).

To do this, it will turn out that it suffices to show that under an action

of SL3(ZZ) on a tree, certain generating elements must have fixed points.

Towards this, we first prove:

Proposition 9.7. : Let A,B ≤ G and suppose G acts on a tree X so that

XA 6= φ 6= XB. If Xab 6= φ ∀ a ∈ A1b ∈ B then the subgroup H = 〈A,B〉
has fixed points on X.

Proof: Since XH = XA ∩XB, we need to show that XA and XB cannot

be disjoint under the given hypotheses. Suppose they are. Let P ∈ XA, Q ∈
XB be such that PQ is the shortest geodesic between XA and XB. If PQ is

PP1P2 . . . Pn−1Q, then P1 6∈ XA. So ∃ a ∈ A such that P a
1 6= P1. Therefore,

the juxtaposition of the geodesics QPn−1 . . . P1P and p · P a
1 P a

2 . . . Qa gives

the geodesic from Q to Qa = Qb (as Q ∈ XB, Qb = Q). By a previous

proposition, the element ab fixes the midpoint P of the geodesic from Q
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to Qab. Thus P ab = P i.e., P b = P a−1
= P i.e., P ∈ XB, which is a

contradiction. Hence XA ∩XB 6= φ.

Corollary: Let G = 〈g1, . . . , gn〉 act on a tree X so that each gi and each

gigj have fixed points. Then XG 6= φ.

Proof: Take A = 〈g1, . . . , gn−1) and B = 〈gn〉. Applying the proposition,

it follows by induction that XG 6= φ.

Remarks: We shall see in the next section while discussing group actions

on so-called R-trees that the above corollary generalises to this more general

situation also. The following result, although of independent interest, will

also be useful in the proof that SL3(Z) has the property (FA).

Combining the previous corollary with the first corollary of this section,

we get :

Corollary : If G is a group generated by a finite set of torsion elements,

then G has property (FA). In particular, triangle groups of the form

< x, y|xa, yb, (xy)c >

for a, b, c ≥ 1 cannot be amalgams.

Proposition 9.8. : Let G be a finitely generated nilpotent group acting on

a tree X. Then, exactly one of the following two possibilities occurs:

(a) G has a fixed point. (b) ∃ a nontrivial homomorphism θ : G → ZZ and a

straight path T on which each g ∈ G acts as translation by θ(g). In particular

if S ⊆ G is a subset where each s ∈ S has a fixed point, then 〈S〉a itself has

a fixed point.

Proof: Note first that if G satisfies (b) and if θ(g) 6= 0, then Tit’s

proposition shows that g cannot have a fixed point. Thus, (a) and (b) are

mutually exclusive.
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We shall agrue by induction on the length n of a composition series

{1} = G0 ⊆ G1 ⊆ . . . ⊆ Gn = G

where Gi/Gi−1 is cyclic.

Clearly, if G = {1} (i.e. n = 0), (a) holds. Suppose n ≥ 1 and that Gn−1

satisfies either (a) or (b). If Gn−1 satisfies (a), then one can consider the

action of the cyclic group G/Gn−1 on the tree XGn−1 and the last proposition

implies that G itself has a fixed point.

If Gn−1 has no fixed point, then consider the straight path T on which

Gn−1 acts by translations given by a nontrivial homomorphism α from Gn−1

to ZZ. As Gn−1 £ G, T is left stable by G. Thus, we have a homomorphism

G → Aut(T ) whose image contains a group of translations α(Gn−1) ∼= ZZ.

Hence, this image either be ∼= ZZ or ∼= D∞, the infinite dihedral group.

However, D∞ is not nilpotent. Thus G does act on T by translations via a

nontrivial homomorphism from G to ZZ. Thus G satisfies (b).

Corollary: If G is as above and if g ∈ G satisfies gn ∈ [G,G] for some

n ≥ 1, then g has a fixed point on any tree on which G acts.

Proof: If G itself has a fixed point, there is nothing to prove. If not,

then G satisfies (b) of Proposition. Under a homomorphism θG → ZZ, the

element g evidently maps to 0. Therefore, g leaves the tree T fixed.

Theorem 9.9. : SL3(ZZ) has property (FA). In particular, it is not an amal-

gam.

Proof: It is very easy to see that SL3(ZZ) is generated by the matrices

Xij = I + eij for i + j. This is proved by using the Euclidean algorithm. In

fact, using the properties eijekl = δjk, it follows that

X23 = [X21, X13], X31 = [X32, X21],

X12 = [X13, X32].
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Note that the matrices X13, X21, X32 are also commutators:

X13 = [X12, X23], X21 = [X23, X31], X32 = [X31, X12].

Notice that the group generated by {X21, X13} is nilpotent and X23 is in the

commutator subgroup. Similarly, it is true that each of these six elements in

the commutator subgroup of a finitely generated nilpotent group.

Using the previous corollary, it follows that when SL3(ZZ) acts on a tree

X, each of these six matrices has a fixed point. Consequently, each of the

corresponding six nilpotent subgroups has fixed points on X. In particular,

the products X21X13, X32X21 and X13X32 have fixed points.

By an earlier corollary, the group generated by X13, X21 and X32 has a

fixed point on X. However this is the whole group SL3(ZZ).

As mentioned in the first section, this theorem has been generalized to

all Chevalley groups of rank at least 2 by Margulis and Tits.

10 R-trees

One may think of our (simplicial) tree as a set of vertices provided with a

distance function which takes only integer values - we did so in section 2.

It turns out that this point of view can be profitably generalized as follows.

Let Λ be a totally ordered abelian group. Then, a Λ-metric space is a set X

along with a distance function d : X ×X → Λ which satisfies :

d(x, y) = 0 if, and only if, x = y;

d(x, y) = d(y, x) and;
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d(x, z) ≤ d(x, y) + d(y, z).

One calls any subset S of X which is isometric to an interval [α, β] in Λ, a

segment. Given a segment, obviously the two points which map onto α and

β are called its endpoints.

One defines a Λ-tree to be a Λ-metric space X in which :

(a) any two points x, y are the endpoints of a unique segment (which we

denote by [x, y]);

(b) for x, y, z ∈ X, [x, y] ∩ [x, z] = [x,w] for some w;

(c) if [x, y] ∩ [x, z] is {x}, then [x, y] ∪ [x, z] = [y, z].

Note that our trees defined earlier are Z-trees.

We shall be concerned with groups acting by isometries on Λ-trees. The ana-

logue of ‘action without inversions’ (again referred to by this same phrase)

is the following :

whenever an element g leaves a segment [x, y] invariant, either g fixes both

x and y or, the distance d(x, y) is a multiple of 2 in Λ (in which case g fixes

the midpoint of [x, y]).

Then, our earlier observation that ’the free group acts (without inversions

and) freely on its Cayley graph which is a tree’, generalizes easily. It gives us

the fact that a free product of copies of Λ acts freely and without inversions

on a Λ-tree. In fact, the underlying set of this free product can be made into

a Λ-tree naturally and the action is by the (left) regular representation.

If Λ = R, then obviously the latter condition always holds, and so every

action is without inversions. In simple language, a metric space which con-

tains no homeomorphic image of a circle and in which any two points are the

extremities of a segment, is an R-tree. Unlike Z-trees, it turns out that there

are groups acting freely on R-trees which are not free products of copies of

R. Thus, the action of a group on an R-tree gives a new structure on the
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group. In fact, the fundamental groups of most Riemann surfaces admit free

actions on R-trees. These more general trees have come up naturally in the

work of Culler, Morgan, Shalen, Voigtmann etc. on Teichmuller spaces and,

are therefore, very useful to study.

Here are some generalities on IR-trees which will be used in a result due to

Culler & Voigtmann that we will discuss in the last chapter.

If (X, d) is an IR-tree, a subtree is a subset Y which is convex i.e, if a, b ∈ Y

then [a, b] ⊆ Y . Clearly, then (Y, d) is an IR-tree.

A subtree Y is said to be closed if Y intersects each segment of X either is

a segment of X or not at all. Clearly, segments are closed subtrees.

It is not hard to prove (see, for example, page 31 of Chiswell’s book):

Lemma 10.1. : Let Y, Z ⊆ X be closed subtrees of an IR-tree X and let

Y ∩ Z 6= φ. Then, there are points y ∈ Y, z ∈ Z such that [y, z] ∩ Y =

{y}, [y, z] ∩ Z = {z}. Moreover, [y, z] ⊆ [y0, z0] for any y0 ∈ Y, z0 ∈ Z.

Definition 1. The segment [y, z] above is called the bridge between Y and

Z.

One defines d(Y, Z) to be d(y, z) in this case.

If g is an automorphism of an IR-tree X, then either Xg 6= φ (in which case

g is called elliptic) or Cg
d
= {P ∈ X : [gP, P ] ∩ [P, gP ] = {P}} is a non-

empty, closed, 〈g〉-invariant subtree on which g acts as a translation by some

positive real number `(g). Page 82 of Chiswell’s book may be consulted

for a proof. In the latter case, g is called hyperbolic and Cg is called the

characteristic subtree corresponding to g. For uniformity of notation, let us

also put Cg = Xg and `(g) = 0 if g is elliptic. This is, in a sense, analogous

to the trace function of a representation. We have:

97



Lemma 10.2. Let g, h ∈ Aut(X, d). Then,

(a) Cghg−1 = gCh and `(ghg−1) = `(h),

(b) Cg−1 = Cg, and

(c) `(gn) = |n|`(g), Cg ⊆ Cgn ∀ n ∈ ZZ.

If `(g) > 0, then Cg = Cgn ∀ n 6= 0.

For more details on R-trees, the reader may consult Chiswell’s book ([C])

or the surveys by Culler & Shalen ([CS1], [CS2]). In the last chapter, we

discuss a criterion due to Culler & Voigtmann for the property (FA) to hold.

This would prove (FA) at one stroke for many groups including the automor-

phism group Aut F of a free group of rank at least 3 and the group SLn(Z)

for n ≥ 3.
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