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Let G be a group, and let an(G) = |{H ≤ G : [G : H] = n}|.
We want to study the arithmetic function n 7→ an(G), or the function n 7→
sn(G) = Σm≤nam(G). This is called the growth function of G. Notice that
an < ∞ when G is finitely generated, but this is not necessary.

The concept was inspired by the ‘word growth’ of Gromov et al. In word
growth, one studies the following function. If G is generated by a finite set
Σ, bn = |{g : lΣ(g) ≤ n}|. We will say more about this a little later.

For any function f : IN → IN , the group G = Πp(ZZ/p)1+logp f(p) satisfies
f(n) ≤ sn(G) < ∞.

Hence, it is better to restrict our study to finitely generated groups to get
interesting results. However, it should be kept in mind that there are exam-
ples of groups which are not finitely generated but the growth of an is like a
polynomial and a major open problem is to characterise these.

Subgroup growth is a subject that took off in a major way about 10 years
ago. It has unexpected connections with subjects like model theory as well as
with the traditional ones like number theory, algebraic and arithmetic groups,
classification of finite simple groups, combinatorics and probabilistic number
theory. Recently, deep analytic number-theoretic methods have come into
play.

The first result of the subject is that of Marshall Hall in 1949. He obtained a
recursive formula for an(G) when G is a free group of rank at least 2. From
that formula, one concludes that an ∼ n(n!)r−1 where r is the rank. This
growth is sometimes called superexponential. Since each subgroup of index
n corresponds to a transitive, r-generated subgroup of Sn, it follows that
‘most’ r-generated subgroups of Sn are transitive.

Note that, for any group G, an(G) = an(G/R(G)) where R(G) = ∩{H ≤ G :
[G : H] < ∞}. Thus, for our study we may assume without loss of generality
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that the group G is residually finite i.e., R(G) = {1}. It is well-known (and
easy to prove) that all finitely generated, linear groups are residually finite.

Three questions that obviously arise:
Q1. What are the possible growth types?
Q2. Given G, what is its growth type?
Q3. Given a type of growth, which groups have it?

(We say that the growth type is a function f(n) if, an ≤ f(n)a for all n, and
an > f(n)b for infinitely many n, for some constants a, b > 0.)
Since any d-generated group G is an image of the free group Fd, its growth
is at most as fast as that of Fd. So, the fastest possible growth type is the
superexponential type nn.

On the other hand, for finite groups, sn is eventually constant. For ZZ, sn = n.
One might ask whether this is the slowest possible growth type for infinite
groups. The answer is ‘yes’ but is surprisingly hard to prove and uses what
is thought of as one of the major results in the subject so far:
We say that G has polynomial subgroup growth (PSG) if there is a constant
c > 0 so that sn(G) ≤ nc for all n.

Theorem (Lubotzky-Mann-Segal)
A finitely generated, residually finite group G has PSG if, and only if, it is
virtually solvable, and of finite rank. Equivalently, these things happen if,
and only if, G is virtually solvable and is linear over Q.
Finite rank means (even for infinitely generated groups) that there is a con-
stant d > 0 such that all finitely generated subgroups are d-generated. A
property holds virtually if a subgroup of finite index has that property.

As we saw, the growth type nn is the fastest possible one for finitely generated
groups. The theorem shows, in particular, that the slowest possible type for
infinite groups is the type n. For, if G is a counterexample to the assertion,
it must have PSG. Therefore, it must be virtually solvable and will have a
subgroup H of finite index which has a quotient isomorphic to Z. If [G :
H] = d, then sn(G) ≥ s[n/d](H) ≥ [n/d] for every n.

The Lubotzky-Mann-Segal theorem was first proved by Lubotzky & Mann
(Inventiones Math. 104, 1991) for the main case of linear groups over char-
acteristic 0 fields. The main point of the proof is that for finitely generated,
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linear groups which are not virtually solvable, an ≥ nc log n/ log log n for some
constant c > 0. In particular, this implies that there is a gap in the possible
growths of finitely generated, linear groups. We shall prove it shortly.

Zeta functions
For a group G such that an(G) < ∞, let us define its zeta function as

ζG(s) =
∑∞

n=1
an(G)

ns . This was introduced for nilpotent groups in 1988 by
Grunewald, Segal and Smith. For instance, ζZZ is the Riemann Zeta function.

For nilpotent G, the zeta function has some nice features:
(i) G has PSG - equivalently, ζG(s) actually converges in some right half
plane,
(ii) ζG(s) = ΠpζG,p(s), where ζG,p(s) =

∑
i≥0 api(G)p−is. Thus, ζG has an

Euler product decomposition - this restates the fact that a finite nilpotent
group is the product of its Sylow subgroups.

Thus, for nilpotent G, the zeta function shares some of the nice properties
of the Riemann (or the Dedekind) zeta function.

Remarks
(i) We could also study the zeta function which counts the subgroups of a
given index isomorphic to the whole group or the zeta function that counts
normal subgroups of a given index. It is still unclear which might be the best
analogue.
(ii) For general finitely generated G, it turns out that the analogy of ζG

with Dedekind zeta functions is too simplistic and very recently, it has been
revealed that a better analogy is with the Weil zeta function of an algebraic
variety over Z. We shall discuss this in detail later.
(iii) There are examples of non-nilpotent groups whose zeta function has an
Euler product expansion.

Theorem
ζZZr(s) = ζ(s)ζ(s− 1) · · · ζ(s− r + 1)

It would be difficult to show without using the zeta function that sn(ZZ2) ∼
π2n/12.
Several proofs of the above theorem are known. Here is one.

Proof. If H ≤ ZZr, [ZZr : H] < ∞, then H = gZZr, for some g ∈ Mr(ZZ) ∩
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GLr(IQ). Moreover, g1ZZ
r = g2ZZ

r ⇔ g−1
1 g2 ∈ GLr(ZZ). Therefore, ζZZr(s) =∑

g∈C | det g|−s where C is the set Mr(ZZ) ∩GLr(Q)/GLr(ZZ). One can take
for C, the set of lower triangular matrices where the entries aij are nonneg-
ative integers satisfying aij < aii for all i > j, and with aii ≥ 1. A simple
counting gives the expression in the theorem.

(Curious) Corollary

np(n) =
n−1∑

i=1

σ(i)p(n− i) + σ(n)

Proof. First, we observe for an arbitrary group G that an = tn/(n − 1)!,
where tn is the number of transitive actions of G on {1, 2, · · · , n}. Further,
if hn = |Hom (G,Sn)|, then one has the relation

hn =
n−1∑

k=1

(
n− 1
k − 1

)
tkhn−k + tn

(for each 1 ≤ k ≤ n, there are
(

n− 1
k − 1

)
ways to choose the orbit of 1, tk

transitive actions on it, and hn−k actions on its complement).
Rewriting the relation in terms of the an, one has

an = hn/(n− 1)!−
n−1∑

k=1

hn−k

(n− k)!
ak · · · (♠)

Note that for G = Fr, this give Hall’s formula

an(Fr) = n(n!)r−1 −
n−1∑

k=1

(n− k)!r−1ak(Fr)

Let us apply this to our case which is ZZ2; one has hn(ZZ2) = n!p(n) (x can
be arbitrarily chosen in Sn, and y chosen in its centraliser CSn(x), so that
hn =

∑
x |CSn(x)| = |Sn|∑ 1/|[x]| = |Sn||[x]|1/|[x]| = |Sn|p(n).)

Also, ζ(s)ζ(s − 1) =
∑ σ(n)

ns so that an = σ(n). Now, the equation ♠ is
precisely the assetion of the corollary.

The Zeta function for a nonabelian group
One can calculate ζG for the Heisenberg group G consisting of the matrices
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1 a b
0 1 c
0 0 1


 with a, b, c ∈ ZZ. It turns out that

ζG(s) =
ζ(s)ζ(s− 1)ζ(2s− 2)ζ(2s− 3)

ζ(3s− 3)

It is curious to recall Ramanujan’s formula

∑ σa(n)σb(n)

ns
=

ζ(s)ζ(s− a)ζ(s− b)ζ(s− a− b)

ζ(2s− a− b)

(I don’t know whether there is a connection.)

Because of the double pole at s = 2, we get for this Heisenberg group that

sn ∼ ζ(2)2n2logn
2ζ(3)

.

Very recently, Grunewald & duSautoy have proved the following remarkable
theorem using certain tauberian theorems:

Theorem. Let G be a finitely generated nilpotent infinite group. Then,
(i) the abscissa of convergence α(G) of ζG(s) is a rational number and ζG(s)
can be meromorphically continued to Re(s) > α(G)− δ for some δ > 0. The
continued function is holomorphic on the line Re(s) = α(G) except for a pole
at s = α(G);
(ii) there exist a nonnegative integer b(G) and real numbers c, c′ such that

sn ∼ cnα(G)(logn)b(G)

sα(G)
n ∼ c′(logn)b(G)+1

as n →∞.

This also uses the following earlier result of duSautoy:

Theorem. Let G be finitely generated, nilpotent, torsion-free. Then, for any
prime p, ζG,p(s) = Σn≥0apn(G)p−ns is a ration function of p−s.

This implies, in particular, the sequence {apn} satisfies a linear recurrence.
The proof uses model theory in an essential manner.

The proof of the LMS-theorem
Now, we talk in some detail about the proof of the theorem that finitely gen-
erated, residually finite PSG groups are exactly the virtually solvable groups
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of finite rank. We notice that the class of finitely generated, residually finite
groups is a rich one, including in it all finitely generated, linear groups. More-
over, many results which fail for abstract, finitely generated groups hold good
for the residually finite ones among them. A glaring example is the Burnside
problem which was solved in the affirmative by Efim Zelmanov: A finitely
generated, residually finite group of finite exponent is finite. Residual finite-
ness is equivalent to the profinite topology being Hausdorff. One completes
G with respect to this topology to get what is called the profinite completion
Ĝ of G. Similarly, one can have other kinds of completions like the pro-p
completion G(p) for a prime p. The latter topology is defined by taking the
subgroups of p-power index to be a fundamental system of neighbourhoods
of the identity. One has G ≤ Ĝ if G is residually finite and G ≤ G(p) if G is
residually-p.

For a profinite group, by finite generation one means topological finite gener-
ation, and one measures the growth of open subgroups. PSG has the obvious
meaning. It is evident that an(G) = an(Ĝ). Hence if G has PSG, then so
does Ĝ as a profinite group. The proof of the LMS-theorem uses the following
characterisation of p-adic Lie groups which is of independent interest.

Theorem. A finitely generated, pro-p group G is a p-adic Lie group if, and
only if, G has PSG.

The LMS-proof proceeds by first reducing to the case of residually-p groups.
On using the above theorem, it follows that G ≤ G(p) ≤ GLn(IQp) ≤ GLn(IC).
By standard algebraic group-theoretic arguments, one further reduces to the
case of a finitely generated subgroup Γ of GLn(ZZs) for some finite set S of
primes. The main part of the theorem is to prove the theorem for such groups
Γ. The idea is to show that if Γ is not virtually solvable, even the subclass
of ‘congruence subgroups’ of a given index grows faster than polynomially.
More precisely, if Γ is not virtually solvable, its Zariski closure G is a non-
solvable algebraic group. A deep theorem of Nori and, independently, Math-
ews, Vaserstein & Weisfeiler implies that Γ has strong approximation i.e., the
closure of Γ in the S-congruence topology of G(ZZS) is open in Πp 6∈SG(ZZp).
Equivalently, the closure of Γ in G(ZZS) is a subgroup Γ0 of finite index in
G(ZZS). From this, one gets sn(Γ) = Σm≤nam(Γ) = subgroups of index at
most n in Γ ≥ cn(Γ0) = congruence subgroups of index at most n in Γ0. It
should be noted that the classification of finite simple groups is used in the
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proof of the above strong approximation result.

Main claim. cn(G(ZZs)) ≥ nc log n/(log log n)2 for some c > 0.

In the proof of the claim, we will use the prime number theorem. As a matter
of fact, one has the following stronger result using stronger versions of the
prime number theorem in arithmetic progressions. The proof by Lubotzky
had a gap which has been filled recently by him and Goldfeld.

Let Γ be a finitely generated linear group. Then, either Γ has PSG or there
exists c > 0 such that sn(Γ) ≥ nclogn/loglogn.

Proof of the main claim.
We call R = ZZS for simplicity. For any positive integer m, denote by
G(m) the congruence subgroup mod m i.e., the kernel of the map G(R) →
G(R/mR). Strong approximation means that G(R) surjects onto G(R/pR)
for almost all primes p. Also, for almost all primes p, the finite group
G(R/pR) has even order (by Lang’s theorem, the group has a split torus
- this contributes a subgroup of order p − 1). We augment S by adjoining
these finitely many exceptional primes to S and call it S again. Let N be a
large positive integer. By the prime number theorem, the number of primes
outside S which are ≤ N is like l = N/ log N . Moreover, the prime number
theorem says that Σp6∈S,p≤N log p ∼ N . Hence M =

∏
p6∈S,p≤N p ∼ eN . By the

Chinese remainder theorem, [G(R)/G(M)] = Πp/M [G(R)/G(p)] contains an
elementary abelian subgroup of order 2l. But, an elementary abelian 2-group
of rank l has at least 2l2/4 subgroups of rank [l/2]. Thus, G(R) has atleast
2l2/4 congruence subgroups containing G(M). Now, [G : G(M)] ≤ Md where
d = dim G. Hence, cMd(G(R)) ≥ 2l2/4. Rewriting this as

log cMd

log(Md)
=

log cMd

dN
≥ l2 log 2

4dN
∼ c

N

(log N)2

this claim is proved.

Lubotzky proved that the growth of congruence subgroups in characteristic
0 satisfies the inequalities

nc1logn/loglogn ≤ cn ≤ nc2logn/loglogn
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This gives a very interesting group-theoretic characterisation of the arith-
metic property called the congruence subgroup property (CSP) in charac-
teristic 0. Indeed, if CSP does not hold good, then sn ≥ nclogn for some
c and infinitely many n. In other words, the growth rate of all subgroups
of finite index is strictly greater than the growth rate of the congruence of
subgroups among them. This makes it possible to formulate an analogue of
the CSP for non-arithmetic lattices. In particular, it is natural to conjecture
that sn ≥ nc log n for all lattices in SO(n, 1).

It is appropriate to point out here a rather important open problem (called
‘quite a challenging problem’ by Lubotzky, Pyber and Shalev):
• Does there exist a gap in the growth of abstract, finitely generated groups?
In particular, is it true that is an ≥ nc log n/(log log n)2 for infinitely many n, for
such groups?
We draw attention to the fact that Lubotzky, Pyber and Shalev have proved
that there exist nonlinear finitely generated groups whose growth type is nlogn/(loglogn)2.
Their example involves the profinite group

∏
n≥5 An which is topologically

finitely generated.

Remark. For an arithmetic group Γ in positive characteristic, one only
knows the weak inequality nc log n ≤ sn ≤ nc′(log n)2.

It is not known (even for SL2(ZZ)) whether limn→∞
log cn

(log n)2/ log log n
exists.

Probabilistic methods.
Two major problems have been to characterise:
(i) profinite PSG groups,
(ii) abstract PSG groups which are not finitely generated. It is interesting to
note that, in contrast to (ii) above, profinite PSG groups are automatically
finitely generated. The proof of this involves two interesting new notions
which turn out to be equivalent!

A profinite group G is positively finitely generated (PFG) if the probability
P (G, k) > 0 for some positive integer k. Here P (G, k) is the measure of the
set of k-tuples of G which generate G. The measure is relative to the k-fold
product of the Haar measure of G normalised to be a probability measure.
Analogous to PSG one can define PMSG - polynomial maximal subgroup
growth. Obviously PSG ⇒ PMSG.
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Lemma. PMSG ⇒ PFG.
Proof. Let G be a profinite group with PMSG and let k be a positive integer.
Since G has PMSG, there is c > 0 such that the number mn of open maximal
subgroups of index n is bounded by nc. Now, a k-tuple of elements of G
generates a proper subgroup if, and only if, these elements lie in a maximal
subgroup. The probability of this is at most Σn≥2

mn

nk ≤ Σn≥2n
c−k. Evidently,

for k ≥ c + 2, the sum is less than 1; so P (G, k) > 0.

It turns out that the reverse implication is true although the proof is much
deeper and uses the classification of finite simple groups. In fact, it is based
on their result that a finite simple group has at most n1.875+o(1) maximal
subgroups of index n.

Theorem (Mann-Shalev). PMSG ⇔ PFG.
Thus, PSG ⇒ PMSG ⇔ PFG ⇒ f.g for a profinite group.

It can be shown that for an arithmetic group satisfying the CSP, in char-
acteristic 0, the profinite completion has PFG. It is unknown whether this
characterises the CSP.

Degree of growth.
For an abstract or profinite PSG group G, one can define deg(G) =

lim sup log an(G)
log n

. In other words, deg(G) is the ‘smallest’ positive real number

c such that an(G) = O(nc+ε)∀ ε > 0.

The following theorems of Shalev rely heavily on some deep and delicate ana-
lytic number-theoretic results on the distribution of primes such as the funda-
mental lemma from sieve theory and Bombieri-type short intervals theorem.

Theorem (Shalev).
∀c ≥ 1, there is a 2-generated profinite group G with PSG with deg(G) = c.
In fact, G can be taken to be a product of PSL2(IFp) over some set of primes.
Moreover, the degree cannot lie in (0,1).

Contrastingly,

Theorem (Shalev).
For a finitely generated, abstract group G with PSG,
(i) the degree cannot lie in the intervals (0,1), (1,3/2), (3/2,5/3).
(ii) If H ≤ G has finite index, then deg(H) ≤ deg(G) ≤ deg(H) + 1.
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This is unlike Gromov’s word growth where commensurable groups will have
the same degree of word growth. Moreover, unlike word growth, where the
degree is always an integer, our degree could be 6∈ ZZ. An example is the one
we computed earlier viz, for the Heisenberg group whose degree is 3/2. It
is not known whether the degree could be irrational and, whether the set of
degrees forms a countable set. No formula is known for computing the degree
for nilpotent groups. For word growth, a formula was given by Bass for the
degree of nilpotent groups.

In the above-mentioned paper, Shalev also proves the following two results of
independent interest:

Theorem.
Let G be a finitely generated residually finite group. Then,
an(G) = O(n) if, and only if, G is virtually cyclic.
Moreover, if an(G) = o(nloglogn), then G is virtually cyclic and the subgroup
growth is at most linear. Therefore, there is a gap from growth cn to growth
cnloglogn.

Theorem. Let G be a finitely generated residually finite group. Then deg(G) =
1 if, and only if, G is equivalent to one of the following groups:
(i) the dihedral group D∞,
(ii) a plane crystallographic group which does not contain a 180 degree rota-
tion,
(iii) ZZ[h, 1/h]. < h >, where h ∈ Q \ {0, 1,−1},
(iv) ZZ[h, 1/h]. < h,−1 >, where h ∈ Q \ {0, 1,−1}.

An interesting computation on which the first theorem is based is:

Proposition. Let K be a number field and R ⊂ K a finitely generated
subring with quotient field K. Let U ≤ R∗ be a torsion-free subgroup of the
group of units. Let G = R.U . Set d = [K : Q] and r = d(U), the minimal
number of generators of U . Then, deg(G) = d + r − 1.

As mentioned earlier, using model-theoretic techniques, duSautoy proved the
following deep result:
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Theorem.
The zeta function of a compact p-adic Lie group is a rational function of p−s.
Moreover, the degree is always rational.

A ‘challenging open question’ is to:
• Characterise non-f.g., PSG abstract groups.
In this regard, Shalev has proved:
The following are equivalent for a residually finite (possibly infinitely gener-
ated) group G:
(i) an(G) = o(n),
(ii) G has a central subgroup C of finite index whose finite quotients are all
cyclic,
(iii) the sequence {an} is bounded.

Immediately from this, we see that:
The degree of a PSG group cannot lie in (0, 1).
Proof. deg(G) = limsupn→∞

logan

logn
. Thus, α ≥ deg(G) if, and only if,

an(G) = O(nα+ε) for any ε > 0. Clearly, if deg(G) < 1, then an(G) = o(n)
and so, by the implication (i) ⇒ (iii), we have deg(G) = 0.

In this regard, one has the following:
Question. If G is a profinite group in which an(G) < n for all sufficiently
large n, does it follow that G has a procyclic central open subgroup?

Finally, another open problem which is considered to be important is:
• Characterise PSG profinite groups.

We end with a rather curious (and not superficial) connection of subgroup
growth (specificaly of the zeta function) with Mersenne primes viz.:

Theorem.
Let ∆ = ΠpPSLn(IFp). (that this is a finitely generated profinite group is
easy to see). Then,
(i) If n ≥ 3 or if n = 2, p ≥ 3, the zeta function ζ∆,p(s) is a rational function
of p−s.
(ii) If n = 2, then ζ∆,2(s) is a rational function of 2−s if, and only if, there
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are only finitely many Mersenne primes.

The reason that Mersenne primes enter the picture is that PSL2(Fq) has a
subgroup of index a power of 2 if, and only if, q is a Mersenne prime.

We summarise the discussion with some open questions in addition to the
ones we have already mentioned:

• What are the possible degrees of PSG abstract groups? Do they form a
countable set? Can a group have irrational degree?
• Is there a formula for the degree of a f ·g. nilpotent group? For instance, is
the degree the supremum over the degrees of the pro-p completions? Are the
latter numbers (which are rational by duSautoy’s theorem) constant along p
in arithmetic progressions?
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