PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 134, Number 2, Pages 351–354 S 0002-939(05)07985-2 Article electronically published on July 7, 2005

A NOTE ON THE SPECIAL UNITARY GROUP OF A DIVISION ALGEBRA

B. A. SETHURAMAN AND B. SURY

(Communicated by Martin Lorenz)

ABSTRACT. If D is a division algebra with its center a number field K and with an involution of the second kind, it is unknown if the group SU(1, D)/[U(1, d), U(1, D)] is trivial. We show that, by contrast, if K is a function field in one variable over a number field, and if D is an algebra with center K and with an involution of the second kind, the group SU(1, D)/[U(1, d), U(1, D)] can be infinite in general. We give an infinite class of examples.

1. INTRODUCTION

Let K be a number field, and let D be a division algebra with center K, with an involution of the second kind, τ . Let U(1, D) be the unitary group of D, that is, the set of elements in D^* such that $d\tau(d) = 1$. Let SU(1, D) be the special unitary group, that is, the set of elements of U(1, D) with reduced norm 1. An old theorem of Wang [7] shows that for any central division algebra over a number field, SL(1, D) is the commutator subgroup of D^* . It is an open question (see [4, p. 536]) whether the group SU(1, D) equals the group [U(1, D), U(1, D)] generated by unitary commutators.

We show in this note that, by contrast, if K is a function field in one variable over a number field, and if D is an algebra with center K and with an involution of the second kind, the group SU(1, D) modulo [U(1, D), U(1, D)] can be infinite in general. More precisely, we prove:

Theorem 1.1. Let $n \ge 3$, and let ζ be a primitive n-th root of one. Then, there exists a division algebra D of index n with center $\mathbb{Q}(\zeta)(x)$ which has an involution of the second kind such that the corresponding group SU(1, D)/[U(1, D), U(1, D)] is infinite.

Our algebra will be the symbol algebra $D = (a, x; \zeta, K, n)$ where $K = \mathbb{Q}(\zeta)(x)$ and $a \in \mathbb{Q}$ is such that $[\mathbb{Q}(\zeta)(\sqrt[n]{a}) : \mathbb{Q}(\zeta)] = n$. This is the K-algebra generated by two symbols r and s subject to the relations $r^n = a$, $s^n = x$, and $sr = \zeta rs$. If we write L for the K subalgebra of D generated by r, it is clear that L is just the field $\mathbb{Q}(\zeta, \sqrt[n]{a})(x)$. The Galois group L/K is generated by σ that sends r to ζr : note that conjugation of L by s has the same effect as σ on L. An easy computation

©2005 American Mathematical Society

Received by the editors April 19, 2004 and, in revised form, September 21, 2004.

²⁰⁰⁰ Mathematics Subject Classification. Primary 16K20, 12E15.

This work was done when the first-named author visited the Indian Statistical Institute, Bangalore. He thanks the Institute for the wonderful hospitality it showed during his stay there.

shows that x^n is the smallest power of x that is a norm from L to K, so standard results from cyclic algebras ([3, Chap. 15.1] for instance) show that D is indeed a division algebra. It is well known that D has a valuation on it that extends the x-adic valuation on K. This valuation will be crucial in proving our theorem.

2. The valuation on D

We recall here how the x-adic valuation is defined on D. Recall first how the x-adic (discrete) valuation is defined on any function field E(x) over a field E: it is defined on polynomials $f = \sum_i a_i x^i$ ($a_i \in E$) by $v(f) = \min\{i \mid a_i \neq 0\}$, and on quotients of polynomials f/g by v(f/g) = v(f) - v(g). The value group Γ_L is \mathbb{Z} , while the residue \overline{L} is E. This definition gives valuations on all three fields $\mathbb{Q}(\zeta + \zeta^{-1})(x)$, K, and L, all of which we will refer to as v. These fields have residues (respectively) $\mathbb{Q}(\zeta + \zeta^{-1})$, $\mathbb{Q}(\zeta)$ and $\mathbb{Q}(\zeta, \sqrt[n]{a})$ with respect to v. It is standard that the valuation v on $\mathbb{Q}(\zeta + \zeta^{-1})(x)$ extends uniquely to K, a fact that will be crucial to us.

With v as above, we define a function, also denoted v, from D^* to $(1/n)\mathbb{Z}$ as follows: first, note that each d in D^* can be uniquely written as $d = l_0 + l_1 s + \cdots + l_{n-1}s^{n-1}$, for $l_i \in L$. (We will call each expression of the form $l_i s^i$, $i = 0, 1, \ldots, n-1$, a monomial.) Define v(s) = 1/n, and $v(l_i s^i)$ as $v(l_i) + iv(s)$. Note that the n values $v(l_i s^i); 0 \leq i < n$ are all distinct, since they lie in different cosets of \mathbb{Z} in $(1/n)\mathbb{Z}$. Thus, exactly one of these n monomials has the least value among them, and we define v(d) to be the value of this monomial. It is easy to check that v indeed gives a valuation on D. We find $\Gamma_D = (1/n)\mathbb{Z}$, so $\Gamma_D/\Gamma_K = \mathbb{Z}/n\mathbb{Z}$. Also, the residue \overline{D} contains the field $\mathbb{Q}(\zeta, \sqrt[n]{a})$. The fundamental inequality ([5, p. 21]) $[D:K] \geq [\Gamma_D/\Gamma_K][\overline{D}:\overline{K}]$ shows that $\overline{D} = \overline{L} = \mathbb{Q}(\zeta, \sqrt[n]{a})$.

Note that since D is valued, the valuation v (restricted to K) extends uniquely from K to D ([6]).

3. Computation of SU(1, D) and [U(1, D), U(1, D)]

Write k for the field $\mathbb{Q}(\zeta + \zeta^{-1})(x)$, and τ for the nontrivial automorphism of K/k that sends ζ to ζ^{-1} . Note that since a and x belong to the field k, we may define an involution on D that extends the automorphism of K/k by the rule $\tau(fr^is^j) = \tau(f)\zeta^{ij}r^is^j$ for any $f \in K$ (so $\tau(r) = r, \tau(s) = s$; see [2, Lemma 7].)

Proof of the theorem. Let d be in U(1, D), so $d\tau(d) = 1$. Since v and $v \circ \tau$ are two valuations on D that coincide on k, and since v extends uniquely from k to K, and then uniquely from K to D, we must have $v \circ \tau = v$. Thus, we find 2v(d) = 0, that is, d must be a unit. Then, for any d and e in U(1, D), we take residues to find $\overline{ded^{-1}e^{-1}} = \overline{ded}^{-1}\overline{e}^{-1}$. However, $\overline{D} = \overline{L} = \mathbb{Q}(\zeta)(\sqrt[n]{a})$ is commutative, so \overline{d} and \overline{e} commute, so $\overline{ded^{-1}e^{-1}} = 1$.

Note that we have a natural inclusion of \overline{L} in the *v*-units of L; we identify \overline{L} with its image in L. Under this identification, for any $l \in \overline{L} \subseteq L$, $\overline{l} = l$. Since the commutator of two elements in U(1, D) has residue 1, it suffices to find infinitely many elements in $SU(1, D) \cap \overline{L}$ to show that SU(1, D) modulo [U(1, D), U(1, D)] is infinite.

Write L_1 and L_2 (respectively) for the subfields $\mathbb{Q}(\zeta + \zeta^{-1})(r)$ and $\mathbb{Q}(\zeta)$ of \overline{L} ; note that L_2 is the residue field of K. Then the involution τ on D acts as the nontrivial automorphism of \overline{L}/L_1 , so for any $l \in \overline{L}$, $l\tau(l)$ is the norm map from \overline{L} to L_1 . The automorphism σ of L/K restricts to an automorphism (also denoted by σ) of \overline{L}/L_2 , and it is standard that the reduced norm of l viewed as an element of D is just the norm of l from L to K ([3, Chap. 16.2] for instance), and hence the norm of l from \overline{L} to L_2 . We thus need to find infinitely many $l \in \overline{L}$ such that $N_{\overline{L}/L_1}(l) = N_{\overline{L}/L_2}(l) = 1$.

Now, the set $S_1 = \{l \in \overline{L} : N_{\overline{L}/L_1}(l) = 1\}$ is indexed by the L_1 points of the torus $T_1 = R_{\overline{L}/L_1}^{(1)} \mathbf{G_m}$ (see [4], §2.1). Similarly, the set $S_2 = \{l \in \overline{L} : N_{\overline{L}/L_2}(l) = 1\}$ is indexed by the L_2 points of the torus $T_2 = R_{\overline{L}/L_2}^{(1)} \mathbf{G_m}$. To show that $S_1 \cap S_2$ is infinite, we switch to a common field by noting that the groups $T_1(L_1)$ and $T_2(L_2)$ are just the k_0 points of the groups $(R_{L_1/k_0}T_1)$ and $(R_{L_2/k_0}T_2)$ respectively, where $k_0 = \mathbb{Q}(\zeta + \zeta^{-1})$. Thus, it suffices to check that $(R_{L_1/k_0}T_1 \cap R_{L_2/k_0}T_2)(k_0)$ is infinite, and for this, it is sufficient to check that $(R_{L_1/k_0}T_1 \cap R_{L_2/k_0}T_2)^0(k_0)$ is infinite. As both $R_{L_1/k_0}T_1$ and $R_{L_2/k_0}T_2$ are k_0 -tori, the connected component $(R_{L_1/k_0}T_1 \cap R_{L_2/k_0}T_2)^0$ is a k_0 -torus as well, since it is a connected commutative group defined over k_0 consisting of semisimple elements. So, its k_0 points are Zariski dense in its $\overline{\mathbb{Q}}$ points by a theorem of Grothendieck (see p. 120 of [1]). Hence, it suffices to check that there are infinitely many $\overline{\mathbb{Q}}$ points in $(R_{L_1/k_0}T_1 \cap R_{L_2/k_0}T_2)^0$.

Write any $l \in \overline{L}$ as $l = X + (\zeta - \zeta^{-1})Y$ where $X, Y \in L_1$. Then, $X = \sum_{i=0}^{n-1} x_i r^i$ and $Y = \sum_{i=0}^{n-1} y_i r^i$ where $x_i, y_i \in k_0$. Consider the equations $N_{\overline{L}/L_1}(l) = 1$ and $N_{\overline{L}/L_2}(l) = 1$. Rewrite these in terms of powers of r, invoking the actions of σ and τ and using the fact that $r^n = a$. The first equation now involves the 2n variables x_i, y_i and has coefficients in L_1 . Equating the coefficients of r^i $(i = 0, \ldots, n - 1)$ on both sides, we get n equations in the variables x_i, y_i with coefficients in k_0 . Similarly, the second equation involves the variables x_i, y_i and has coefficients in L_2 . Using the fact that $(\zeta - \zeta^{-1})^2 \in k_0$ and equating the coefficients of 1 and $\zeta - \zeta^{-1}$ on both sides, we get two equations in the variables x_i, y_i with coefficients in k_0 . As $n \geq 3$, we have n + 2 < 2n, and these equations have infinitely many common solutions over $\overline{\mathbb{Q}}$. This proves the theorem.

4. Concrete illustration for n = 3

We illustrate the theorem for n = 3 by concretely constructing infinitely many elements in SU(1, D)/[U(1, D), U(1, D)]. We take a = 2 for simplicity. Write $l = a+b\sqrt{-3}$, where a and b are in L_1 . Then $N_{\overline{L}/L_1}(l) = a^2+3b^2 = 1$ has a parametrized set of solutions $a = \frac{s^2-3}{s^2+3}$, $b = \frac{2s}{s^2+3}$, for $s \in L_1$. Write $s = t_0 + t_1r + t_2r^2$ for $t_i \in \mathbb{Q}$ and substitute in a and b above. Then compute $N_{\overline{L}/L_2}(l)$, noting that $\sigma(s) = (t_0 + \omega t_1r + \omega t_2r^2)$. We solve for the t_i so that $N_{\overline{L}/L_2}(l) = 1$. We claim that if we take $t_0 = 1$ and $t_1 = 0$, then for arbitrary $t_2 = t$, $N_{\overline{L}/L_2}(l) = 1$. Indeed, l = u/v, where

$$u = 2\omega + t^2r - 2t\omega^2 r^2,$$

$$v = 2 + t^2r + tr^2.$$

Then, an easy computation, using $r^3 = 2$, shows that

$$N_{\overline{L}/L_2}(u) = (2\omega + t^2r - 2t\omega^2r^2)(2\omega + t^2\omega r - 2t\omega r^2)(2\omega + t^2\omega^2r - 2tr^2) = -8t^3 + 2t^6$$

Similarly,

 $N_{\overline{L}/L_2}(v) = (2 + t^2r + tr^2)(2 + t^2\omega r + t\omega^2 r^2)(2 + t^2\omega^2 r + t\omega r^2) = -8t^3 + 2t^6.$

Thus, we have an infinite set of solutions and we are done. (Actually, the parametric solution above was first obtained using MathematicaTM. The program gives other parametric solutions as well, for instance, $t_0 = 0, t_1 = -\frac{1}{2t_2}$.)

References

- [1] A. Borel, Linear algebraic groups, Springer-Verlag, 2nd edition, 1991. MR1102012 (92d:20001)
- [2] Patrick J. Morandi and B.A. Sethuraman, Noncrossed product division algebras with a Baer ordering, Proc. Amer. Math. Soc., 123 1995, 1995–2003. MR1246532 (95i:16019)
- [3] Richard S. Pierce, Associative Alegbras, Graduate Texts in Mathematics, 88, Springer-Verlag, 1982. MR0674652 (84c:16001)
- [4] V.P. Platonov and A.S. Rapinchuk, Algebraic groups and number theory, Academic Press, 1994. MR1278263 (95b:11039)
- [5] O.F.G. Schilling, The Theory of Valuations, Math Surveys, No. 4., Amer. Math. Soc., Providence, R.I., 1950. MR0043776 (13:315b)
- [6] Adrian R. Wadsworth, Extending valuations to finite dimensional division algebras, Proc. Amer. Math. Soc., 98 1986, 20–22. MR0848866 (87i:16025)
- [7] S.Wang, On the commutator group of a simple algebra, Amer. J. Math., 72 1950, 323-334. MR0034380 (11:577d)

Department of Mathematics, California State University Northridge, Northridge, California 91330

E-mail address: al.sethuraman@csun.edu *URL*: http://www.csun.edu/~asethura/

Stat-Math Unit, Indian Statistical Institute, 8th Mile Mysore Road, Bangalore 560 059, India

E-mail address: sury@isibang.ac.in

354