A NOTE ON THE SPECIAL UNITARY GROUP OF A DIVISION ALGEBRA

B. A. SETHURAMAN AND B. SURY

(Communicated by Martin Lorenz)

Abstract. If D is a division algebra with its center a number field K and with an involution of the second kind, it is unknown if the group $SU(1, D)/[U(1, d), U(1, D)]$ is trivial. We show that, by contrast, if K is a function field in one variable over a number field, and if D is an algebra with center K and with an involution of the second kind, the group $SU(1, D)/[U(1, d), U(1, D)]$ can be infinite in general. We give an infinite class of examples.

1. Introduction

Let K be a number field, and let D be a division algebra with center K, with an involution of the second kind, τ. Let $U(1, D)$ be the unitary group of D, that is, the set of elements in D^* such that $d\tau(d) = 1$. Let $SU(1, D)$ be the special unitary group, that is, the set of elements of $U(1, D)$ with reduced norm 1. An old theorem of Wang [7] shows that for any central division algebra over a number field, $SL(1, D)$ is the commutator subgroup of D^*. It is an open question (see [4, p. 536]) whether the group $SU(1, D)$ equals the group $[U(1, D), U(1, D)]$ generated by unitary commutators.

We show in this note that, by contrast, if K is a function field in one variable over a number field, and if D is an algebra with center K and with an involution of the second kind, the group $SU(1, D)$ modulo $[U(1, D), U(1, D)]$ can be infinite in general. More precisely, we prove:

Theorem 1.1. Let $n \geq 3$, and let ζ be a primitive n-th root of one. Then, there exists a division algebra D of index n with center $\mathbb{Q}(\zeta)(x)$ which has an involution of the second kind such that the corresponding group $SU(1, D)/[U(1, D), U(1, D)]$ is infinite.

Our algebra will be the symbol algebra $D = (a, x; \zeta, K, n)$ where $K = \mathbb{Q}(\zeta)(x)$ and $a \in \mathbb{Q}$ is such that $[\mathbb{Q}(\zeta)(\sqrt[n]{a}) : \mathbb{Q}(\zeta)] = n$. This is the K-algebra generated by two symbols r and s subject to the relations $r^n = a$, $s^n = x$, and $sr = \zeta rs$. If we write L for the K subalgebra of D generated by r, it is clear that L is just the field $\mathbb{Q}(\zeta, \sqrt[n]{a})(x)$. The Galois group L/K is generated by σ that sends r to ζr: note that conjugation of L by s has the same effect as σ on L. An easy computation...
shows that \(x^n \) is the smallest power of \(x \) that is a norm from \(L \) to \(K \), so standard results from cyclic algebras (Chap. 15.1) for instance) show that \(D \) is indeed a division algebra. It is well known that \(D \) has a valuation on it that extends the \(x \)-adic valuation on \(K \). This valuation will be crucial in proving our theorem.

2. The valuation on \(D \)

We recall here how the \(x \)-adic valuation is defined on \(D \). Recall first how the \(x \)-adic (discrete) valuation is defined on any function field \(E(x) \) over a field \(E \): it is defined on polynomials \(f = \sum_i a_i x^i \) \((a_i \in E)\) by \(v(f) = \min \{ i \mid a_i \neq 0 \} \), and on quotients of polynomials \(f/g \) by \(v(f/g) = v(f) - v(g) \). The value group \(\Gamma_L \) is \(\mathbb{Z} \), while the residue \(\mathcal{T} \) is \(E \). This definition gives valuations on all three fields \(\mathbb{Q}(\zeta + \zeta^{-1})(x), K, \) and \(L \), all of which we will refer to as \(v \). These fields have residues (respectively) \(\mathbb{Q}(\zeta + \zeta^{-1}), \mathbb{Q}(\zeta) \) and \(\mathbb{Q}(\zeta, \sqrt[n]{\alpha}) \) with respect to \(v \). It is standard that the valuation \(v \) on \(\mathbb{Q}(\zeta + \zeta^{-1})(x) \) extends uniquely to \(K \), a fact that will be crucial to us.

With \(v \) as above, we define a function, also denoted \(v \), from \(D^* \) to \((1/n)\mathbb{Z} \) as follows: first, note that each \(d \in D^* \) can be uniquely written as \(d = l_0 + l_1 s + \cdots + l_{n-1} s^{n-1} \), for \(l_i \in L \). (We will call each expression of the form \(l_i s^i \), \(i = 0, 1, \ldots, n-1 \), a monomial.) Define \(v(s) = 1/n \), and \(v(l_i) = v(l_i) + v(s) \). Note that the \(n \) values \(v(l_i s^i); 0 \leq i < n \) are all distinct, since they lie in different cosets of \(\mathbb{Z} \) in \((1/n)\mathbb{Z} \).

Thus, exactly one of these \(n \) monomials has the least value among them, and we define \(v(d) \) to be the value of this monomial. It is easy to check that \(v \) indeed gives a valuation on \(D \). We find \(\Gamma_D = (1/n)\mathbb{Z} \), so \(\Gamma_D/\Gamma_K = \mathbb{Z}/n\mathbb{Z} \). Also, the residue \(\mathcal{D} \) contains the field \(\mathbb{Q}(\zeta, \sqrt[n]{\alpha}) \). The fundamental inequality ([5, p. 21]) \([D : K] \geq [\Gamma_D/\Gamma_K][\mathcal{D} : \mathcal{T}] \) shows that \(\mathcal{D} = \mathcal{T} = \mathbb{Q}(\zeta, \sqrt[n]{\alpha}) \).

Note that since \(D \) is valued, the valuation \(v \) (restricted to \(K \)) extends uniquely from \(K \) to \(D \) ([1]).

3. Computation of \(SU(1, D) \) and \([U(1, D), U(1, D)]\)

Write \(k \) for the field \(\mathbb{Q}(\zeta + \zeta^{-1})(x) \), and \(\tau \) for the nontrivial automorphism of \(K/k \) that sends \(\zeta \) to \(\zeta^{-1} \). Note that since \(a \) and \(x \) belong to the field \(k \), we may define an involution on \(D \) that extends the automorphism of \(K/k \) by the rule \(\tau(f r^i s^i) = \tau(f) \zeta^{ijr^i s^i} \) for any \(f \in F \) \((\tau(r) = r, \tau(s) = s; \text{ see } [2 \text{ Lemma 7}].\)\)

Proof of the theorem. Let \(d \) be in \(U(1, D) \), so \(d \tau(d) = 1 \). Since \(v \) and \(v \circ \tau \) are two valuations on \(D \) that coincide on \(k \), and since \(v \) extends uniquely from \(k \) to \(K \), and then uniquely from \(K \) to \(D \), we must have \(v \circ \tau = v \). Thus, we find \(2v(d) = 0 \), that is, \(d \) must be a unit. Then, for any \(d \) and \(e \) in \(U(1, D) \), we take residues to find \(\frac{d e^{-1} - e^{-1}}{d \tau(d) - \tau(e)} = 1 \). However, \(\mathcal{D} = \mathcal{T} = \mathbb{Q}(\zeta)(\sqrt[n]{\alpha}) \) is commutative, so \(\mathcal{D} \) and \(\tau \) commute, so \(\frac{d e^{-1} - e^{-1}}{d \tau(d) - \tau(e)} = 1 \).

Note that we have a natural inclusion of \(\mathcal{T} \) in the \(v \)-units of \(L \); we identify \(\mathcal{T} \) with its image in \(L \). Under this identification, for any \(l \in L \subseteq L, \mathcal{T} = l \). Since the commutator of two elements in \(U(1, D) \) has residue 1, it suffices to find infinitely many elements in \(SU(1, D) \cap \mathcal{T} \) to show that \(SU(1, D) \) modulo \([U(1, D), U(1, D)]\) is infinite.

Write \(L_1 \) and \(L_2 \) (respectively) for the subfields \(\mathbb{Q}(\zeta + \zeta^{-1})(r) \) and \(\mathbb{Q}(\zeta) \) of \(\mathcal{T} \); note that \(L_2 \) is the residue field of \(K \). Then the involution \(\tau \) on \(D \) acts as the nontrivial automorphism of \(\mathbb{L}/L_1 \), so for any \(l \in L, l \tau(l) \) is the norm map from \(L \)
to \(L_1\). The automorphism \(\sigma\) of \(L/K\) restricts to an automorphism (also denoted by \(\sigma\)) of \(L/L_2\), and it is standard that the reduced norm of \(l\) viewed as an element of \(D\) is just the norm of \(l\) from \(L\) to \(K\) (see \(\mathbb{[3]}\) Chap. 16.2 for instance), and hence the norm of \(l\) from \(L\) to \(L_2\). We thus need to find infinitely many \(l \in \overline{L}\) such that \(N_{L/L_1}(l) = N_{L/L_2}(l) = 1\).

Now, the set \(S_1 = \{l \in \overline{L} : N_{L/L_1}(l) = 1\}\) is indexed by the \(L_1\) points of the torus \(T_1 = R_{L/L_1}^{(1)} \mathbb{G}_m\) (see \(\mathbb{[3]}\) §2.1). Similarly, the set \(S_2 = \{l \in \overline{L} : N_{L/L_2}(l) = 1\}\) is indexed by the \(L_2\) points of the torus \(T_2 = R_{L/L_2}^{(1)} \mathbb{G}_m\). To show that \(S_1 \cap S_2\) is infinite, we switch to a common field by noting that the groups \(T_1(L_1)\) and \(T_2(L_2)\) are just the \(k_0\) points of the groups \((R_{L_1/k_0}T_1)\) and \((R_{L_2/k_0}T_2)\) respectively, where \(k_0 = \mathbb{Q}(\zeta + \zeta^{-1})\). Thus, it suffices to check that \((R_{L_1/k_0}T_1) \cap (R_{L_2/k_0}T_2)(k_0)\) is infinite, and for this, it is sufficient to check that \((R_{L_1/k_0}T_1) \cap (R_{L_2/k_0}T_2)(k_0)\) is infinite. As both \(R_{L_1/k_0}T_1\) and \(R_{L_2/k_0}T_2\) are \(k_0\)-tori, the connected component \((R_{L_1/k_0}T_1) \cap (R_{L_2/k_0}T_2)\) is a \(k_0\)-torus as well, since it is a connected commutative group defined over \(k_0\) consisting of semisimple elements. So, its \(k_0\) points are Zariski dense in its \(\overline{\mathbb{Q}}\) points by a theorem of Grothendieck (see p. 120 of \(\mathbb{[4]}\)). Hence, it suffices to check that there are infinitely many \(\overline{\mathbb{Q}}\) points in \((R_{L_1/k_0}T_1) \cap (R_{L_2/k_0}T_2)\).

For this, it clearly suffices to check that there are infinitely many \(\overline{\mathbb{Q}}\) points in \((R_{L_1/k_0}T_1) \cap (R_{L_2/k_0}T_2)\).

Write any \(l \in \overline{L}\) as \(l = X + (\zeta - \zeta^{-1})Y\) where \(X, Y \in L_1\). Then, \(X = \sum_{i=0}^{n-1} x_ir^i\) and \(Y = \sum_{i=0}^{n-1} y_ir^i\) where \(x_i, y_i \in k_0\). Consider the equations \(N_{L/L_1}(l) = 1\) and \(N_{L/L_2}(l) = 1\). Rewrite these in terms of powers of \(r\), invoking the actions of \(\sigma\) and \(\tau\) and using the fact that \(r^n = a\). The first equation now involves the \(2n\) variables \(x_i, y_i\) and has coefficients in \(L_1\). Equating the coefficients of \(r^i\) \((i = 0, \ldots, n-1)\) on both sides, we get \(n\) equations in the variables \(x_i, y_i\) with coefficients in \(k_0\). Similarly, the second equation involves the variables \(x_i, y_i\) and has coefficients in \(L_2\). Using the fact that \((\zeta - \zeta^{-1})^2 = k_0\) and equating the coefficients of \(1\) and \(\zeta - \zeta^{-1}\) on both sides, we get two equations in the variables \(x_i, y_i\) with coefficients in \(k_0\). As \(n \geq 3\), we have \(n + 2 < 2n\), and these equations have infinitely many common solutions over \(\overline{\mathbb{Q}}\). This proves the theorem. \(\square\)

4. Concrete illustration for \(n = 3\)

We illustrate the theorem for \(n = 3\) by concretely constructing infinitely many elements in \(SU(1, D)/[U(1, D), U(1, D)]\). We take \(a = 2\) for simplicity. Write \(l = a + b\sqrt{-3}\), where \(a\) and \(b\) are in \(L_1\). Then \(N_{L/L_1}(l) = a^2 + 3b^2 = 1\) has a parametrized set of solutions \(a = \frac{s^2 - 3}{s^2 + 3}, b = \frac{2s}{s^2 + 3}\), for \(s \in L_1\). Write \(s = t_0 + t_1r + t_2r^2\) for \(t_i \in \mathbb{Q}\) and substitute in \(a\) and \(b\) above. Then compute \(N_{L/L_2}(l)\), noting that \(\sigma(s) = (t_0 + \omega t_1r + \omega t_2r^2)\). We solve for the \(t_i\) so that \(N_{L/L_2}(l) = 1\). We claim that if we take \(t_0 = 1\) and \(t_1 = 0\), then for arbitrary \(t_2 = t\), \(N_{L/L_2}(l) = 1\). Indeed, \(l = u/v\), where

\[
\begin{align*}
u &= 2t + t^2r - 2t\omega^2r^2, \\
u &= 2t + t^2r + tr^2.
\end{align*}
\]

Then, an easy computation, using \(r^3 = 2\), shows that

\[
N_{L/L_2}(u) = (2\omega + t^2r - 2t\omega^2r^2)(2\omega + t^2\omega r - 2t\omega r^2)(2\omega + t^2\omega^2 r - 2tr^2) = -8t^3 + 2t^6.
\]
Similarly,
\[
N_{L/L_2}(v) = (2 + t^2 r + t r^2)(2 + t^2 \omega r + t \omega^2 r^2)(2 + t^2 \omega^2 r + t \omega r^2) = -8t^3 + 2t^6.
\]

Thus, we have an infinite set of solutions and we are done. (Actually, the parametric solution above was first obtained using MathematicaTM. The program gives other parametric solutions as well, for instance, \(t_0 = 0, t_1 = -\frac{1}{2t_2}\).)

References

Department of Mathematics, California State University Northridge, Northridge, California 91330

E-mail address: al.sethuraman@csun.edu
URL: http://www.csun.edu/~asethura/

Stat-Math Unit, Indian Statistical Institute, 8th Mile Mysore Road, Bangalore 560 059, India

E-mail address: sury@isibang.ac.in