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Abstract. If D is a division algebra with its center a number field K and with

an involution of the second kind, it is unknown if the group SU(1, D)/[U(1, d),
U(1, D)] is trivial. We show that, by contrast, if K is a function field in one
variable over a number field, and if D is an algebra with center K and with
an involution of the second kind, the group SU(1, D)/[U(1, d), U(1, D)] can be
infinite in general. We give an infinite class of examples.

1. Introduction

Let K be a number field, and let D be a division algebra with center K, with
an involution of the second kind, τ . Let U(1, D) be the unitary group of D, that
is, the set of elements in D∗ such that dτ (d) = 1. Let SU(1, D) be the special
unitary group, that is, the set of elements of U(1, D) with reduced norm 1. An
old theorem of Wang [7] shows that for any central division algebra over a number
field, SL(1, D) is the commutator subgroup of D∗. It is an open question (see [4,
p. 536]) whether the group SU(1, D) equals the group [U(1, D), U(1, D)] generated
by unitary commutators.

We show in this note that, by contrast, if K is a function field in one variable
over a number field, and if D is an algebra with center K and with an involution
of the second kind, the group SU(1, D) modulo [U(1, D), U(1, D)] can be infinite
in general. More precisely, we prove:

Theorem 1.1. Let n ≥ 3, and let ζ be a primitive n-th root of one. Then, there
exists a division algebra D of index n with center Q(ζ)(x) which has an involution
of the second kind such that the corresponding group SU(1, D)/[U(1, D), U(1, D)]
is infinite.

Our algebra will be the symbol algebra D = (a, x; ζ, K, n) where K = Q(ζ)(x)
and a ∈ Q is such that [Q(ζ)( n

√
a) : Q(ζ)] = n. This is the K-algebra generated by

two symbols r and s subject to the relations rn = a, sn = x, and sr = ζrs. If we
write L for the K subalgebra of D generated by r, it is clear that L is just the field
Q(ζ, n

√
a)(x). The Galois group L/K is generated by σ that sends r to ζr: note

that conjugation of L by s has the same effect as σ on L. An easy computation
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shows that xn is the smallest power of x that is a norm from L to K, so standard
results from cyclic algebras ([3, Chap. 15.1] for instance) show that D is indeed a
division algebra. It is well known that D has a valuation on it that extends the
x-adic valuation on K. This valuation will be crucial in proving our theorem.

2. The valuation on D

We recall here how the x-adic valuation is defined on D. Recall first how the
x-adic (discrete) valuation is defined on any function field E(x) over a field E: it
is defined on polynomials f =

∑
i aix

i (ai ∈ E) by v(f) = min{i | ai �= 0}, and
on quotients of polynomials f/g by v(f/g) = v(f) − v(g). The value group ΓL

is Z, while the residue L is E. This definition gives valuations on all three fields
Q(ζ+ζ−1)(x), K, and L, all of which we will refer to as v. These fields have residues
(respectively) Q(ζ +ζ−1), Q(ζ) and Q(ζ, n

√
a) with respect to v. It is standard that

the valuation v on Q(ζ + ζ−1)(x) extends uniquely to K, a fact that will be crucial
to us.

With v as above, we define a function, also denoted v, from D∗ to (1/n)Z as
follows: first, note that each d in D∗ can be uniquely written as d = l0 + l1s+ · · ·+
ln−1s

n−1, for li ∈ L. (We will call each expression of the form lis
i, i = 0, 1, . . . , n−1,

a monomial.) Define v(s) = 1/n, and v(lisi) as v(li)+ iv(s). Note that the n values
v(lisi); 0 ≤ i < n are all distinct, since they lie in different cosets of Z in (1/n)Z.
Thus, exactly one of these n monomials has the least value among them, and we
define v(d) to be the value of this monomial. It is easy to check that v indeed
gives a valuation on D. We find ΓD = (1/n)Z, so ΓD/ΓK = Z/nZ. Also, the
residue D contains the field Q(ζ, n

√
a). The fundamental inequality ([5, p. 21])

[D : K] ≥ [ΓD/ΓK ][D : K] shows that D = L = Q(ζ, n
√

a).
Note that since D is valued, the valuation v (restricted to K) extends uniquely

from K to D ([6]).

3. Computation of SU(1, D) and [U(1, D), U(1, D)]

Write k for the field Q(ζ + ζ−1)(x), and τ for the nontrivial automorphism
of K/k that sends ζ to ζ−1. Note that since a and x belong to the field k, we
may define an involution on D that extends the automorphism of K/k by the rule
τ (frisj) = τ (f)ζijrisj for any f ∈ K (so τ (r) = r, τ (s) = s; see [2, Lemma 7].)

Proof of the theorem. Let d be in U(1, D), so dτ (d) = 1. Since v and v ◦ τ are two
valuations on D that coincide on k, and since v extends uniquely from k to K, and
then uniquely from K to D, we must have v ◦ τ = v. Thus, we find 2v(d) = 0, that
is, d must be a unit. Then, for any d and e in U(1, D), we take residues to find
ded−1e−1 = ded

−1
e−1. However, D = L = Q(ζ)( n

√
a) is commutative, so d and e

commute, so ded−1e−1 = 1.
Note that we have a natural inclusion of L in the v-units of L; we identify L

with its image in L. Under this identification, for any l ∈ L ⊆ L, l = l. Since the
commutator of two elements in U(1, D) has residue 1, it suffices to find infinitely
many elements in SU(1, D) ∩ L to show that SU(1, D) modulo [U(1, D), U(1, D)]
is infinite.

Write L1 and L2 (respectively) for the subfields Q(ζ + ζ−1)(r) and Q(ζ) of L;
note that L2 is the residue field of K. Then the involution τ on D acts as the
nontrivial automorphism of L/L1, so for any l ∈ L, lτ (l) is the norm map from L
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to L1. The automorphism σ of L/K restricts to an automorphism (also denoted
by σ) of L/L2, and it is standard that the reduced norm of l viewed as an element
of D is just the norm of l from L to K ([3, Chap. 16.2] for instance), and hence
the norm of l from L to L2. We thus need to find infinitely many l ∈ L such that
NL/L1

(l) = NL/L2
(l) = 1.

Now, the set S1 = {l ∈ L : NL/L1
(l) = 1} is indexed by the L1 points of the

torus T1 = R
(1)

L/L1
Gm (see [4], §2.1). Similarly, the set S2 = {l ∈ L : NL/L2

(l) = 1}
is indexed by the L2 points of the torus T2 = R

(1)

L/L2
Gm. To show that S1 ∩ S2 is

infinite, we switch to a common field by noting that the groups T1(L1) and T2(L2)
are just the k0 points of the groups (RL1/k0T1) and (RL2/k0T2) respectively, where
k0 = Q(ζ + ζ−1). Thus, it suffices to check that (RL1/k0T1 ∩ RL2/k0T2)(k0) is
infinite, and for this, it is sufficient to check that (RL1/k0T1 ∩ RL2/k0T2)0(k0) is
infinite. As both RL1/k0T1 and RL2/k0T2 are k0-tori, the connected component
(RL1/k0T1 ∩ RL2/k0T2)0 is a k0-torus as well, since it is a connected commutative
group defined over k0 consisting of semisimple elements. So, its k0 points are Zariski
dense in its Q points by a theorem of Grothendieck (see p. 120 of [1]). Hence, it
suffices to check that there are infinitely many Q points in (RL1/k0T1 ∩RL2/k0T2)0.
But for this, it clearly suffices to check that there are infinitely many Q points in
(RL1/k0T1 ∩ RL2/k0T2).

Write any l ∈ L as l = X + (ζ − ζ−1)Y where X, Y ∈ L1. Then, X =
∑n−1

i=0 xir
i

and Y =
∑n−1

i=0 yir
i where xi, yi ∈ k0. Consider the equations NL/L1

(l) = 1 and
NL/L2

(l) = 1. Rewrite these in terms of powers of r, invoking the actions of σ and
τ and using the fact that rn = a. The first equation now involves the 2n variables
xi, yi and has coefficients in L1. Equating the coefficients of ri (i = 0, . . . , n − 1)
on both sides, we get n equations in the variables xi, yi with coefficients in k0.
Similarly, the second equation involves the variables xi, yi and has coefficients in
L2. Using the fact that (ζ − ζ−1)2 ∈ k0 and equating the coefficients of 1 and
ζ − ζ−1 on both sides, we get two equations in the variables xi, yi with coefficients
in k0. As n ≥ 3, we have n + 2 < 2n, and these equations have infinitely many
common solutions over Q. This proves the theorem. �

4. Concrete illustration for n = 3

We illustrate the theorem for n = 3 by concretely constructing infinitely many
elements in SU(1, D)/[U(1, D), U(1, D)]. We take a = 2 for simplicity. Write l =
a+b

√
−3, where a and b are in L1. Then NL/L1

(l) = a2+3b2 = 1 has a parametrized

set of solutions a =
s2 − 3
s2 + 3

, b =
2s

s2 + 3
, for s ∈ L1. Write s = t0 + t1r + t2r

2 for

ti ∈ Q and substitute in a and b above. Then compute NL/L2
(l), noting that

σ(s) = (t0 + ωt1r + ωt2r
2). We solve for the ti so that NL/L2

(l) = 1. We claim
that if we take t0 = 1 and t1 = 0, then for arbitrary t2 = t, NL/L2

(l) = 1. Indeed,
l = u/v, where

u = 2ω + t2r − 2tω2r2,

v = 2 + t2r + tr2.

Then, an easy computation, using r3 = 2, shows that

NL/L2
(u) = (2ω+t2r−2tω2r2)(2ω+t2ωr−2tωr2)(2ω+t2ω2r−2tr2) = −8t3 +2t6.
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Similarly,

NL/L2
(v) = (2 + t2r + tr2)(2 + t2ωr + tω2r2)(2 + t2ω2r + tωr2) = −8t3 + 2t6.

Thus, we have an infinite set of solutions and we are done. (Actually, the parametric
solution above was first obtained using MathematicaTM . The program gives other
parametric solutions as well, for instance, t0 = 0, t1 = − 1

2t2
.)
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