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1 Coxeter Groups

Definition 1.1 A pair (W, S) is said to be a Coxeter system if

1. W is a group with the generating set S and

2. the relations are m(s,s) = 1 and m(s,t) = m(t,s) where m(s,t) de-
notes the order of st V s,t € S.

Remark 1.1 1. m(s,t) = 0o is allowed and has the obvious meaning.

2. If (W, S) is a Cozeter system, we also call W a Cozeter group by abuse
of language.

Examples

1. Let s, denote the symmetric group of degree n > 2. If s; is the trans-
position (i,i+1) for 1 <i<n—1and S ={s1,..., 8,1}, then (5,,5)
is a Coxeter system.

2. Let g}L:{@:ZpimZ:gp(a—i—n):ga(a)—i—nVaEZ}.

Then, we have a map

a : S 7

n

o= Y (i) =),

i mod n

If S, = Ker @ and S is the subset of n elements induced from the
transpositions (2,4 + 1) on {1,2,...,n+1},1 <4 < n then (S,,S5) is a
Coxeter system.

The group S, is infinite.
3. Suppose J is a complex semi-simple Lie algebra and h, a Cartan sub-

algebra of J. Let ® denote the system of roots of J with respect to h.
Then, the Weyl group of ® is a Coxeter group.



4. In a semi-simple algebraic group over a local field, the affine Weyl group
corresponding to a system of roots is a Coxeter group. This is infinite.

Definition 1.2 Suppose (W, S) is a Cozeter system and w € W. We define
the length of £(w) to be the smallest integer £(w) such that w = 5153 ... Sg(w), Si €
S. An expression of w, of length {(w) over S, is called a reduced expression
of w.

Proposition 1.1 (/B]) Suppose (W, S) is a Cozeter system. Then,

(i) L(w)=L(w )V weW.
(1) [0(w) — L(w")| < L(ww™1) VYV w,w € W.
(i11) For w,w € W, l(ww') = (w) + ¢(w") mod 2.

() For s € S and w € W with a reduced expression w = sy ...5,, exactly
one of the following holds: (a) {(sw) = {(w)+1 with ss; ... s, a reduced
expression of sw, (b) l(sw) = L(w) — 1 and $189...5;-1Si41...S4 i a
reduced expression (for some 1 < i < q) of sw (Exchange property).

(v) For s,t € S and w € W, if {(w) = {(swt) and {(sw) = L(wt), then

sw = wt.

(vi) Suppose M is a monoid and f a function of S into M.

For s,t € S, let m(s,t) denote the order of st; define

: if m(s,t) =20 <
a(s,t) = (f(8) () f(s), if m(s,t) =20+1< 00
1, if m(s,t) = oo.

If we have a(s,t) for s,t € S, then there exists a function g : W — M
such that g(w) = f(s1) ... f(sq) for each w € W and each reduced expression
51...84 of w.

Proof:



(i) If w = s1...5, 1s a reduced expression, then w™ = s,...s; and so

l(w™) < ¢(w). On the same count, £(w) < £(w™1).

(ii) Taking reduced expressions for w,w’, it is clear that ¢(ww’) < £(w) +
l(w').
Replacing w by ww'~!, we get {(w) — ¢(w') < ¢(ww'™!). Interchanging
w and w', {(w') — l(w) < L(w'w™) = L(ww'™T).

(iii) The map s — —1 on S extends to the homomorphism w + (—1)“®) of
W into {—1,1}.

(iv) Ifl(sw) > €(w), then {(sw) = £(w)+1 as l(wyws) < L(wy)+L(we) ¥V wy, wy €

Let {(sw) < l(w).

Since {(sw) = l(w) +1 mod 2 and |[{(w) — {(sw)| < £(s) = 1, we have
l(sw) =L(w) — 1.

We will prove the exchange property in three steps.

Step 1: Let T = {wsww € W,s € S}. Given a string § =
(81,-.-,8¢),8i € S,let ®(5) = (ty,...,t,) wheret; = s153...5,18;Si—1...5251.
If s;...5s,1s a reduced expression, then ¢; are all distinct.
For,ift; = t; for some ¢ < j, wehave sy ...8;-18;8;—1...51 = 81...5;-15;5j—1...51
so that

1= Si41---8j-15555-1 ... 5.

If we multiply by s; ... s;_; on the left and s;s;11—s, on the right, we get
51...8¢ = S1...8i—18i+1-.-8j—15j+1-..54. This gives a contradiction
because s;1...5;...5;...5; has lesser length.

Step 2: For any string 5§ = (s1,...,s,), define n(s,t) = #{i|t; = t}.
Then (—1)"%Y depends only on the expression s; ... s,.

To show this, we consider for s € S, the map Uy : {£1} xT — {£1}xT
defined by U,(e,t) = (€ (—1)%, sts™1).

The map s — U, extends to a homomorphism of F'(s), the free group
on S into Aut({+1} x T). We check that this goes down to W. For
this, consider any string § = (sy,...,s,) and write w = s;1...s, and
Us = U, ...Uy,. We show, by induction on ¢ that Us(e,t) = (e -



(vi)

(=)™ aptw=t). This is clear for ¢ = 0 or 1. For ¢ > 1, write

s (52,...,8q)andw/:SQ...Sq. We get

Us(e,t) = U, (e (=1)"D w'tw'™")
= (e- (—1)n(8/’t)+581,w’tw’1 S wtw ™).

But ®(5) = (w'"!s;w’, ®(s")). So n(s, t) = n(s',t)+ 0154 and hence
we have Us(e, t) = (e (— )”(St wtw™ ). So, to complete this step, it
is enough to show that if s,s" € S and ss’ has order r, then (Us;Uy)" =
Identity. Consider the string 5 = (sy,..., S2.) where s; is s for i odd
and s’ for i even. Then, t; = s;...8;,.185;_1...51 = (88)7ls V1<
1 < 2r. Thus ty,...,t, are distinct and ¢,; = t; for 1 < i < r. So,
VteT,n(s,t)=0or 2 Thus (UUy)" = Us = Identity.

Step 3: To complete the proof of the exchange property, let w =
s1...84 be a reduced expression. Since {(sw) = ¢ — 1, let sw =

$p---8y_1- Then w = s;...8, = s57...5, ; are reduced expressions
for W. Now call the string 5§ = (sy1,...,5,) and the string s’ =
(s,81,...,5,). Since s € ®(s) and n(s’,s) = 1, therefore n(s,s) = odd

and hence s € ®(5) i.e. s = 51...8.-188;_1...51 for some 1 < i < gq
i.e. 8§1...5_1=851...S;.

Either /(swt) = l(w) < l(wt) = {(sw) or {(swt) = l(w) > L(wt) =
((sw). Let us first assume ¢(w) < £(wt).

If w=sy...541s areduced expression, then wt = s; ... s, is a reduced
expression. Since {(swt) < ¢(wt), the exchange property implies that
§81...8-1 = 81...8; for some 0 < ¢ < ¢+ 1 where we denote sy =
S, 8q+1 = t.

Therefore if ¢ < ¢,851...5i-18;...5; = S1...5i—18i+1...8¢ 1.6 SW =
S1...8-1Si+1--.8¢ 1.e. L(sw) < qg—1<{l(w), a contradiction.

Thus i =q+ 1.

Therefore ss1...5, = 81...5441 = sw = wt.

For the other case when ¢(w) > ¢(wt), we use wt instead of w to get
s(wt) = (wt)t = sw = wt.

For each w € W, let D,, be the set of tuples (si,...,s,) such that
w = 5182...5, is a reduced expression and let F, : D, — M be
defined by F,(s1,...,8,) = f(s1)... f(sq)-

6



We will show by induction on f(w) that F, is constant. The cases
l(w) = 0 or 1 are trivial and we suppose that f(w) = ¢ > 2 and
assume the assertion proved for the elements with length < ¢. Let
s=(s1,...,8,) and &' = (s],...,sy) be in D,,.

Firstly we prove F,,(s) = F,(s") in the two cases:

(1) sy = s} or s, = s, and

(2) there exist u,v € S such that s; = s}, = v and s, = s = v for j
odd and k even.

To prove the result in the case (1), we consider

Fou(s1,...,8¢) = f(s1)Fywr(s2,...,8g) = Fur(s1,...,84-1)

for w' = s159...5,-1 and w” = s5...s, and use the induction hypoth-
esis to get F,(s) = F,,(s') if s; = 5} or s, = 5.

In the case (2) when there are u,v € S such that s; = s, = u # v =
s = s} for j odd and k even (the case u = v is obvious). Let s;...s, and
sy ...s, be reduced expressions. Then, uv has finite order; in fact, if ¢ is
even, s1...5 = (u)¥? = (vu)?? = ¢} ... s, = (w)? = 1 and if ¢ is odd,
S1...8, = ()T - u = (vu)q%1 cv = s)...8y = (uv)? = 1. Moreover,
order of wv divides ¢ and since s;...s, is a reduced expression, therefore
g = order of uv. Then it is clear that F,(s) = a(u,v) = a(v,u) = F,(s).
Now, we will show, in general, that F,(s) = F,(s') for any two strings
s=(s1,...,8¢) and 8" = (s},...,s;,) in D,,. Let, if possible, F,(s) # Fy,(s').
Consider the string t; = (s}, s1,...,5,-1). Now, w = s}...sy is reduced
= Sjw < W =51...5, = SHW = S1...8;_15i41 ... 5,4 is a reduced expression
for some 1 <i < gq. Thus (s}, s1, S2, ..., Si—1, Sit1,-- -, Sq) € Dy, and its image
under F, is equal to F,,(s") and is also equal to F,,(s) unless ¢ = ¢q. Since
Fy(s) # Fy,(s'), we must have i = g i.e. (s],51,...,8,-1) € Dy i.e. t; € D,
and F,,(t1) = Fy(s") # Fu(s).

Recursively, again (taking s and ¢; in place of ¢’ and s respectively), we
get ty = (81,87, 81,...,8-2) € Dy, and F,(t2) = F,(s) # F,(t1) and so on.
Finally, we get t,_1 and ¢, to be of the form of case (2) (where we have proved
the result) and such that F,(t,—1) # F(tw); this is a contradiction.

Hence, we have F,(s) = F,(s') V 5,5 € D,,.



2 Hecke Algebras

Definition 2.1 Let (W, S) be a Coxeter system. We define the Hecke algebra
H corresponding to (W, S) to be the free ZL[q]-module with a basis T,,, for each
w € W. The multiplication is defined by the rules

Ty -Tw = Ty if E(ww')zﬁ(w)JrE(w’)}

and T? = ¢T.+(¢—1)T;VseS (2.1)

Remark 2.1 1. The fact that there is a unique associative algebra struc-
ture on H, satisfying (2.1), will be verified in Proposition 2.1.

2. The same proposition will also show that the Hecke algebra can be de-
fined purely in terms of generators {Ls}ses and the (slightly more gen-
eral) set of relations ([I])

L? = ¢+q¢L;VseS
(LsLy)™st = (LiLg)™ if O(st) =2mg < 00 (2.2)
(LsLt>m5t . LS = (Lth)mSt . Lt Zf O(St) = 2mst + 1< o0

where the constants qs, q, satisfy qs = qs, and q, = q,, whenever so € S
is conjugate to s, in W; the earlier rules (2.1) arise as particular case
on setting gs = q and ¢, = q— 1 for all s.

3. If W is the Weyl group of a Tits-system (G, B, N,S) with G finite,
and if K is an algebraically closed field whose characteristic does not
divide the orders of G and W, then it is a Theorem of Tits that Hy ==
K[W]. This is shown by proving that if A is an associative algebra
over K[ty,...,t.] having finite rank as a free K[ty,...,t.]-module and
if the discriminant A(ty, ..., t,) of A relative to a basis of A is not zero,
then for any two specializations («;), (3;) € K" of t1,...,t, such that
Aay) #£0# A(B;), one has A(a;) ~ A(S;) as K-algebras.

Thus, if q is specialized to a prime power, we will have H @ C = C[W]. But,
Ziq)

the isomorphism itself may not be definable over ZL[q|, without introducting

q"/%. We will show in §4 that over Q(q'/?), there is a canonical isomorphism

(Theorem 4.1). That q'/? is necessary can be seen through examples after



Theorem 4.1. The representation theory of a Chevalley group G over IFy is

connected with the study of irreducible representations of H ) C.
Ziq

Concrete realization of H as an algebra of double cosets

The Hecke algebra can also be realized as an algebra of double cosets as
follows. Let G be a group and B be a subgroup such that [B : BN oBo™!]
is finite for all ¢ in G. Let H = H(G, B) be the free Z-module spanned
by the double cosets T, = BoB(o € G). A multiplication is defined in H
as Ty - Tr = > mi - T, where m/ _is the number of cosets Bx which are

o, T

contained in lga‘lBu N BTB.

Note that BNz 'Bxr\B — B\BzB is a bijection
(BNz 'Br)y — Bxy

and so #(BNz 'Bx\B) = #(B\BxB) < 0o V z € G.

Thus each double coset is a finite union of right cosets.

Now, it can be seen that m/  is independent of the choice of the represen-
tatives o, 7, u in the double coset and that, for a given o, 7, the number of
double cosets BuB satisfying mf = # 0 is finite. H(G, B) becomes an asso-
ciative algebra with the unit element over Z. For example, let IF'; be a finite
field and consider G = GL,(IF,), B = upper triangular matrices inside G.
Then, the set of double cosets is in bijection with S,. (2.1) can be easily
verified. For instance, for s = (12), the set BN sBs™' = {b € B/bj; = 0}

and since m¢ , is the index of B in BsB = Index of BNsBs™" in B, we have
q—1

mS, =qas B= |J(BNsBs ')u®, where u is the unipotent matrix whose
a=0

only non-zero diagonal entry is uyo = 1.

Let us now show that the Hecke algebra can be defined by generators and
relations as in (2.2).

Proposition 2.1 Let C be the set of conjugacy classes of elements of S and
let {uc,v.,c € C} be indeterminates over Z. We write us,vs (for s in c)



instead of ue,v.. Let V' be the free Zfu.,v.]-module spanned by W. Then,
there exists an associative multiplication % in V' such that

| sw, if (sw) > ¢(w), and,
S*wW = { ussw + vew, if £(sw) < l(w) . (2.3)

Such a multiplication is unique. Also, then (2.3) are the defining relations
for H over Zlu.,v.;c € CJ.

Proof: First note that the existence of a unique associative multiplication
V satisfying (2.3) shows that (2.3) form defining relation for H, by virtue of
Proposition 1 (vi).

Now, the uniqueness of the multiplication is clear from its associativity and
from (2.3) let us show the existence.

Define P, € End (V) for s € S by the right hand side of (2.3) and @, €
End (V) similarly with s on the right instead of the left.

Now, Proposition 1(v) gives

PSQt = QtPS i S,t € S. (24)
Let R and J denote the sublagebras of End(V') generated by {P; : s € S}
and {Qs; s € S} respectively. Then, the maps

P:R—-V and v:L—->V
fr=fQ@) s+ g(1)

are bijective. In fact, for any reduced expression w = sy...s,, we have
©(Ps, ... P;,) =w from (2.3). Thus ¢ and v are surjective. Also, if ¢(f) = 0,
then f(1)=0=g(f(1))=0Vge L

= f(g(1)) =0 from f(1) =0 = g(f(1)) =0V ge L
= f =0 from the surjectivity of 1.

Thus, one can define the product v * v/ = (¢ (v)e 1 (v™1)) for v,v' € V.
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Definition 2.2 Let H be the Hecke algebra corresponding to a Coxeter sys-
tem (W, S), and over Zlq,q']. We define a map: H — H by

pr<Q)Tw = pr(qil)Tu:—H
for pw(q) € Zlq,q '] and ¥V w € W.
Note that each T, is invertible for H over Z|[q, ¢~"].

Lemma 2.2 —: H — H 1is a ring involution.

Proof: The only thing to check is that T, - T, = T, - T for s € S. But

T, T, = q+@—-1)T,=q¢ '+ (¢ =T, "
(' Ty +q¢t =0Tt =TT =T, - T,

Definition 2.3 (Standard partial order on any Coxeter system)

For w,w' € W, we say w < w' if w is obtained from w' by dropping some
elements from a reduced expression for w'.

Theorem 2.3 (Kazhdan-Lusztig) [KL1]

For all w € W, there exists a unique element ¢, € H over Z[q"/?, q~"/?] such
that

(i) Cor =y and (ii) ¢y = q_%f(“’) > P,uw(q) - T,

y<w

where P, .,(q) € Zlq] is

of degree §%ify<w
=1if y=w.

Before embarking upon the proof, let us see how this theorem is related to

a problem concerning Verma modules - ‘The Kazhdan-Lusztig Conjecture’.
(Now solved independently by Brylinski-Kashiwara [BK] and Bernstein-Beilinson
[BB].)

11



Let J be a complex reductive Lie algebra, h C J a fixed Cartan subalgebra,
and b = h + n a fixed Borel subalgebra containing h, with nil radical h.
Let J denote the set of equivalence classes of irreducible (possibly infinite
dimensional) J-modules L such that

(i) the center Z(J) of the enveloping algebra of J acts on L as it does in
the trivial representation; and

(ii) L has a highest weight vector i.e. a vector v # 0 killed by n.

Denoting p = p(n) = 3 > o and W = Weyl group of h in J, one knows

acs
from Harish-Chandra’s theorem on Z(J) that, for L € J, the highest weight
vector v is unique upto a scalar multiple and there is a w € W such that v
has weight —(wp + p) for h. This defines a bijection J < W.

So, for w € W, let L, denote the unique element of J of highest weight
—(wp + p) ie. My =U(T) @b C_(wptp)- It is known that M, has a finite
composition series and all its irreducible composition factors lie in J. If we
denote by [L,,] and [M,], their formal characters, then we have the following
theorem.

Theorem 2.4 [M,] = > my.[Ly| + [L,] where my,, are integers > 0, the
y<w
multiplicities of L, in M,,. Further, these formulae can be inverted to give

(L) = > My[M,)] + [M,] where M,,, are some integers.

y<w

Also, My, a (—1)"@=4w0) where wy is the largest element (this is Weyl
character formulas). Kazhdan-Lusztig conjecture is an algorithm for com-
puting M, ,,. It says that M, , = (—=1) @~ . p  (1). (See Cor. 4.2.1 to
deduce the Weyl character formula from Kazhdan-Lusztig conjecture.)

We will show in Corollary 2.10 that this is equivalent to saying that m, , =
Py yuwo (1) where wy is the unique longest element of w. Later, we will prove
a geometric version of the conjecture in relation to singularities of Schubert
varieties (Theorem 3.4).
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Before proving Theorem 2.3, we will define, for y,w € W,y < w if (a)
y <w, (b) l(y) # ¢{(w) mod 2 and (c) P,, (once it is known) has a non-zero

Lw)=¢(y)=1
2

coefficient of ¢ . For y < w, we will write u(y,w) for this coefficient.

We also define y — w if either y < w or w < y. p(y,w) is also defined for
y — w if we write u(y, w) = p(w,y) if w < y.

Proof of Theorem 2.3 We first note that if we put 7}, = q_@ ToVweW,
the statement of the theorem is equivalent to finding for any w € W, a unique

element ¢, in H such that ¢, = ¢, and ¢, = > (—l)z(y)M(w)qaw);Z(y) P, w(q)
y<w
Ty where P, ,, is a polynomial is ¢ of degree < % for y < w and such

that P, = 1. (See Corollary 2.6 for the relation between ¢, and ). We
shall prove the theorem in this formulation.

Let us write T, ZR(Q) —H@) . T,, where R,, € Zlg,q"']. We can

inductively compute R 2y aS

Rz sy if sx <z and sy <y
R,y =14 Rasys, if rs <z andys <y
(¢ — 1) Rspy + qRsz sy, if sz > 2 and sy <y.

It is clear that R,, # 0 & 2 < y and that R,, € Zq] is of degree <

(y) — ().

Uniqueness The equation ¢,, = ¢, can be written as

Z(_1)£($)+Z(w) . q@ . q_€($)Px,w : Tw
z<w
w ~ ) Y
_ Z(_l)g(y)""e( ) . q > . qz(y)Py,w . (Zq E( ) . R‘Z’yTx> .
= Ty

Equivalently, V x < w,

(—1){@+w) q@ R A

w ) —L(x
Z (_l)z(y)+z( ) g 2 ,qé(y) L(z) . Rey Pyu

Yy
e<y<w

13



ie.,

(quxyw - (]w : Px,w) (_1)5(1’)4‘@(“1) -

Z (_1>£(z)+€(y) . qé(y)*LSJ)J(TI) "Ry yPyw Vo <w.

y
r<y<w

Thus, if P,,, for all y in 2 < y < w are known (2 < w fixed), then the above

equation cannot have more than one solution for P, ,, since no cancellations
can take place on the left-hand side due to the fact that q[(m;z(z) Py isa

£(x)—L(w)

polynomial in ¢'/? without constant terms and ¢ - P, ., 1s a polynomial
in ¢~/? without constant term. Hence, the uniqueness follows by induction
on the length function.

Existence Clearly C, =T..

Assume as induction hypothesis, that the existence of ¢, has been already
proved for each w’ of length < ¢(w).

Write w = sv with s € S such that ¢(w) = ¢(v) + 1. Define

Cw = <q_%TS — q%> Co — Z w(z,v)e,. (2.5)

z=<v
sz<z

Observe that ¢=1/2T, — /2 = ¢~'/2 . T, — ¢/? so that ¢, = ¢,. So, we can

write ¢, = > (—1)@+w) . q@_e(y) - P, ,,T,, where
y<w
(v)—L(2)
Pyw = q' ¢ Poyow+ 4" Pyy— Z w(z,v) - q# - Py for y <w, (2.6)
y§z<v
sz2<z

and

- 1, ifsy<y
1 0, if sy>uw.

We have also used the connection P, , =0 for x £ v.

By induction hypothesis, it is now clear that P,,, is a polynomial in ¢ of
degree < E(”);—e(y) if y < w and that P, , = 1.

14



Thus, the proof of the theorem is complete. (Note that the proof gives an
algorithm to compute P, ,,’s.)

Corollary (of Proof)

(i) If v € sv, then Tye, = qc, + ¢Y%csp +¢% - S p(z,v)c..

z<v
sz<z

(ii) If v > sv, then Tsc, = —c,.

Proof: (i) is just the equation (2.5).

(ii) Replace v by sv in (i) to get

Tscsv = (Cs + q1/2 *Cy + q1/2 : Z H’(Z> SU)CZ

z<sv
sz<z

= q1/2Tsz = ((] + (q - 1)Ts)csv - quCsv - q1/2 ' Z :u(za SU)TSCZ

z<sv
sz<z

— —¢"?¢, by induction.

Corollary 2.5 (i) If sv < v, then c.c, = (¢"/* + ¢ '/?)¢,

(11) If sv > v, then c.c, =, + > p(z,v)c,.
z=<v
52<z

Proof: Firstly, we note that the connection between ¢, is given as ¢, =

(—1)4®) . j(c,) where j is the algebra involution defined by

jlaw(a) - Tw) = (1) - ¢~ - ay(q) - T

cc = (=1 O* (e - j(v) = (D) e,
= (D (= 4 g )en)
_ qfl/sz i q1/2 _ <q1/2 + q*1/2)c;

using (ii) of the previous corollary.

15



C;C; = (_1)£(w)+l ] Csv + Z u(z, U)C

z<v
sz<z

since sv > v and from Cor.2.5(i)

_ Z L(v)—L(z)+1 u(z, U) . C;

z=<v
sz<z

= Cl+ Z p(z,v)CL since z < v = (v) # £(z) mod 2.

z<v
sz<z

We give a simpler proof of Theorem 2.3 by Gabber.

Proof (Gabber) As before, the problem is to find V x € W, a unique
element C, € H such that C, = C, and C, = Y. W?S?%Ty where 7, .(q) €

y<z
Z[q'/?] is without constant term and has degree (as a polynomial in ¢'/?) <

£(z)—L(y) _
—2=L for y <z and 71, , = 1.

Let us write, for convenience T, = > r,
z<y

Ly)—t(=)

Tey=¢q 2 ~Rp,forz<uy.
We also know that R, , € Z[q] is of degree ((y) — {(z) for x < y.
Uniqueness (This is completely similar)

The condition C, = C, is equivalent to

Cr = E : E : 77217:87“z,y

- z<y<x
1.€. E Tow 1y = E E 7Ty7z”f’z’y
<
E= z<xz<y<x
.. My, = E Tyalzy V2 <X
Y
2<y<z
1.6 Moy — Moy = E Tyalzy V 2 < 2. (2.7)
Y
z<y<lzx
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Now, if 7, , is known V y such that z < y < z (for a fixed z < ), then
(2.8) gives at the most one solution for 7, , since 7., and 7., would be in
%]q"/?] and Z[q~'/? respectively and are without constant terms so that no
cancellations can take place on the left hand side of (2.8). Thus, by induction,
the uniqueness follows V 7, ,,, Vy < w in W.

Exsitence: Clearly C, = T.. We will use induction. Call the RHS of (2.8) to
be > Ciq/? = ¢(q), say, which is assumed to be known. Then, if we show
icZl,
©(q) + ¢(q) = 0, it is clear that from (2.8) we can define 7., = Y C;q"/2.
i>0

Therefore, let us show ¢ + ¢ = 0.

Now o+ @ = > Tyaley+ D, TpuTas,. Writing for m,, from (2.8) since
z<§§z z<$§x
z < v <z, we have

My = E , Tyz * Toy-

y
v<y<w
Therefore
pte = E , Tyalzy T E , PlyaTzoToy
y Y,
z<y<zx z<v<y<z
= E , Tyalzy + E Ty * E Tzwloy
Y Y v
z<y<z z<<z z<v<y
- z : ﬁ’yaz : : : TZ:” : T”)y = : : ﬁ-yﬂ? ' 52,?4 = 0'
y v y
z<y<x 2<v<ly z<y<lzx

Also, since Ry, € Z[q] is of degree £(y') — ¢(z') for each 2/ <y’ in W.
Therefore 7, = > Cig"/?, where a = ((y') — {(z) V 2/ < ¢ in W,

By induction hypothesis, if we assume m,, = > a;q"?, where u = {(z) —
i=1
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ly) ¥V y,z <y < z, then from (2.8) we see that 7, , is a polynomial in
¢*/? with degree > 1 and < ((z) — {(z) (since . 7,.r., = Y. big"/? with

Yy i=—c
z<y<z

¢ =/{(x) — {(z)). Hence, the proof is complete.

We have the following which will be used in Theorem 2.9:-

Lemma 2.6 (i) R,, = (—1){@+W . g@-tWp,

(i) Y. (=) OFD R Ry, =0, Yz <y

z<t<y

(1i1) If W is finite and wy, its longest element, then Ry wow = Ray-

Proof: Firstly recall that R, , are defined by

Ty = Ty_—ll = Z Rﬁ,y . q_g(‘r) . TCE

<y

and we have the inductive procedure for their computations, as follows:

| Reypsy if st <zandsy<y
R%y B { RxS,ys if zs<axandys <y. (2.8)

and

R,y =(q¢—1)Ryy+ qRsp sy if sz > and sy <. (2.9)

(i) We assume the result to be time for all y' with ¢(y/) < £(y/), and take
s € S such that sy > y. Also, we assume that the result holds for all R, ,
with £(z) < ¢(u) where u < sy.

We will prove the result for R, .

If sx < x, then the equations (2.9) give R, s, = Ry, and so

Rysy = Rspy= (—1)4 s+ | GHso)—Hy) R, by induction hypothesis
= (1)@ 1) L R since fsz = ((x) — 1
_1)f(w)+f(sy) SRS &

—~

x,sY "
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If sz > x, then (2.10) gives R, sy = (¢ — 1)Rss.5y + ¢Rszy s0 that

Rs,my _ (qfl _ 1)(_1)£(sx)+£(sy) . qé(s:):) _qfé(sy) . Rsx,sy
+q—1<_1)£(sx)+€(y) . qﬁ(sx)—f(y) ‘R

ST,y
_ (_1>Z(sx)+€(y) . qf(w)—f(sy) . {_q(q—l B 1)Rs:p,sy + q—l . q2 . Rsx,y}

since sx > x,s8y >y
C(sx)+L L(x)—L(s
- (_1)( )+ (y),q() (y),Rwy

(ii)) Now
Ty = qué(t) T,
<y
= T,= 7__jy - Z Rt,yqﬁ(t) (Z R_m,tqg(x)Tx>
t<y <t
= Z Z Rt,yqe(t) ~R_mq_e(w)Tx.
<y t

z<t<y

Therefore, > R;,q"VR,.q '@ =4,,Vz<y.

t
z<t<y
Therefore, from (i), we will get

Z Rt,y ) (_1)Z(I)+€(t) ’ Rx,t = 5m,y Vo< Y.

t
z<t<y

(iii) Again, we apply induction. Note that wou < wyv < u > v. Assume the
result for all R,;, with ¢(b) < ¢(y) and also for all R, ,, with {(z") > {(z)
where 2/ < ys.

We will prove the result for R, .
If xs < x, then

R,ys = Ry, from (2.9)
Ry woms Dy induction hypothesis
= Ryuyswoz DY (2.9).
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If xs >z, then R, ys = (¢ — 1) Rysys + qRusy by (2.10) = (¢ — 1) Rugyswons +

quoy,woa:s = Rwoys,wog: .

Theorem 2.7 Assuming W to be finite and wq to be its longest element, we
have S (=1 P Pyine: = 0uy Vo <y in W,
r<z<y

Proof: Let M, , be the left-hand side above.

As induction hypothesis, we assume that z < y and that M, , = 0 for all
t < sin W such that ¢(s) — £(t) < l(y) — £(z).

We start with the identity equation (2.5) in the Proof of Theorem 2.3):

Pro= Y (=1)f@HO R P g OHE Y g < 2 in W

<tz

Substituting this and for P,y w,. in M,,, we get

M,, = Z (_1)5(11)%(8) .q*f(t)ﬂf(é‘) - Rt Rugyavgs - My s

t,s

e<t<s<y

By induction hypothesis, the only ¢, s which contribute to the above sum are
those such that either t = s or t = x and s = y. Thus

M,, = g t@)+w) . M, + Z (1) W+ . Rat - Rugywot-

But

EE: (=) O Ryt - Rugyut

a<i<y
= (=)@ N ()OO L R, - Ry, by Lemma 2.9(ii)
a<i<y
= (—1)'@~4®) .4, by Lemma 2.9(ii)
= 0.
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Therefore x < y. Thus M, = ¢ ‘@+W . M,

Hence

£(z)—L(y) /-’(z)—é’(y))
2 2

M

M,y = q - (2.10)

q

But the bounds on the degree of the polynomials P, ,, give that q’(z(z);ay)) .

M., is a polynomial in ¢'/? without constant term since , . - Puyywez = Pz :

P, , is a polynomial in g of degree < w.

Thus (2.11) is not possible unless it is = 0. Hence, the theorem is proved.

Corollary 2.8 For finite W, . (=1)/@+=) =5, Vo <yinW.

z
z<z<y

Proof: Putting ¢ = 0 in Theorem 2.9, we get

Z (—1)4@+4=) . p© pO) =0,y Va<yin W

Z,2 7 Wy, woz

z
r<z<y

But, V 2 < y in any Coxeter group W, P, , is a polynomial in ¢ with con-
stant term 1 as seen (by the equation (2.6) in the proof of Theorem 2.3) by
induction.
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3 Intersection Cohomology and Schubert Va-
rieties

Definition 3.1 Let X be a complex algebraic variety of dimension n. Then
X admits a locally finite decomposition into disjoint connected nonsingular
analytic subvarieties { X} of varying dimension called strata, which satisfies
a homogeneity condition along the strata: for any two points p and q on a
stratum X, there exists a homeomorphism of X to X, preserving all the
strata and taking p to q. If ¢, denotes the codimension of X, then the space

Y2 which is the union of all X, such that ¢, > 0 contains all singularities of
X.

Example: If G is a connected semi-simple linear algebraic group /C, and
B = G/ B is the variety of all Borel subgroups of G, then for w in the Weyl
group W of G, we define the Schubert cell

B, = {B' € B|B' = gBg™!, for some g € BwB}.

The Schubert variety B, is the closure of B,, in B. It can be verified that
{B.}:<w is a stratification of B,, with the given properties.

Remark 3.1 We will attach to B, a collection {H'(By,)} of sheaves of
vector-spaces on B,. If By, is smooth at a point x, then the stalks at x

satisfy H.(B,) = { %’Zzi%

If B,, is singular at x, the stalks H'.(B,,) measure the failure of local Poincaré
duality at x.

Definition 3.2 Let X be an algebraic variety /C.

1. A sheaf F of complex vector-spaces on X, is said to be constructible if
X = | X, where X; are locally closed and F/X; is locally constant.
finite
(Recall that a sheaf S on X is locally constant if ¥ x € X, 3 a neigh-
bourhood U such that S, «— I'(U,S) — S, are isomorphisms for each
yelU).
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2. ]f]:" denotes a complex of sheaves (of degrees > 0), then F is said to be
constructible iff the homology sheaves are all constructible and are zero
for large degrees. Here the cohomology sheaf Hp(]:") 1s defined to be the
sheafification of the presheaf whose space of sections over an open set
U is the p-th homology of the chain complex

= DU = D(U,F7) =

3. 1If P and Q are two complexes of sheaves, a quasi isomorphism from

P to Q is a diagram of complezes P & R4 Q so that o« and (3
induce 1somorphisms H'P & HR S HlQ V i. We note that quasi-
1somorphism is an equivalence relation and quasi-isomorphic sheaves
are interchangeable for all calculations with cohomological functors.

4. Any complex F of sheaves is quasi-isomorphic to a complex I with
each sheaf injective i.e., we take the canonical injective resolution of
each sheaf and construct the total complex corresponding to the double
complex. The cohomology of the global section complex 0 — T'(X, I°) —
D(X, ') — ... is called the hypercohomology of X in F and the hyper-
cohomology groups are denoted by TH'(X, ]-") Stmilarly, taking sections
with compact support, we can define the hypercohomology groups with
compact support, which are denoted by TH.(X, ]:")

5. Let F be a complex of sheaves over X. For x € X, we choose any
neighbourhood U in X and define the local cohomology groups HYF), =
H(U, F/U).

The definition is independent of the set U chosen. Similarly, we define
H(F). = H (U, F/U).

Theorem 3.1 Suppose X is an irreducible complex algebraic variety of com-
plex dimension n. Then, there is a unique (upto quasi-isomorphism) con-
structible complex F of sheaves (of degrees > 0) such that

(i) codim. {x € X|H'(F). # 0} >i fori=1,2,...

(ii) codim. {x € X|H?""*(F), #0} >i fori=1,2,...

(1i1) ]:|0pen dense subset = C (the constant sheaf).

(A single sheaf S is thought of as the complex S — 0 — 0 — ...)
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Definition 3.3 F is called the intersection cohomology sheaf of X in C. It
is denoted by 1C(X,C).

Remark 3.2 (i) For a non-singular variety, IC(X,C) is quasi-isomorphic
with C.

(ii) The intersection homology of a singular algebraic variety satisfies many
of the special properties of the ordinary homology of a Kahler manifold like
Poincaré duality, Kiunneth theorem over a field, Lefschetz hyperplane theorem
and Hard Lefschetz theorem which are not satisfied by the usual homology of
the singular variety.

Definition 3.4 For any complex algebraic variety X, D%(X) denotes the bounded
constructible derived category of the category of sheaves of Q-vector spaces on

X i.e. 1t is the set of bounded complexes of sheaves of Q-vector spaces on X
which are locally constant on the strata X, for some stratification of X.

We will talk if objects in the derived category D%(X) and complexes of Q-
sheaves interchangeably. Therefore if S € Db(X),and U C X, then IHX(U, S)
denotes the hypercohomology of S/U.

If p € X, the ‘open disk’ Dg of points at distance (usual Euclidean distance

with respect to a local analytic embedding of a neighbourhood of p in cM)
less than e from p is such that, for any S € D%(X),IH*(DJ,S) is independent
of the local embedding, provided e is small enough.

A local system on a space X is locally constant ()-sheaf on X. We have, more
generally then Theorem 3.1, the following:

Let dim.X = n and U be a non-singular Zariski open dense subvariety and £
be a local system on U. Then, there is an object IC(X, £) in D’(X) defined
upto canonial isomorphism in D%(X) satisfying:

L IC(X,L)/v = L[-n]

2. X can be stratified with strata {X;} with dim X; = ¢ such that if
p € X;, then H(DY,IC(X, £)) # 0 = j > n+iand HL(D},IC(X, L)) #
0=j<n-—i
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Also, IC(X, L) is independent of U.

Definition 3.5 Let X,Y be complex algebraic varieties. Let f : X — Y.
Let P and Q be complexes of sheaves on X and Y respectively. We define
the pushforward complex f.(P) on'Y by T'(U, f.(P)) = {y e T(f~Y(U), P),~
has compact support}. Thus, the stalk cohomology

H(f.(P)), = H(t™'(v), P).

Also the pullback complex f*(Q)) on X can be defined by

H(F(Q))e = H(Q) pw)-

Theorem 3.2 (BBD) [ If f : X — Y is a locally trivial fibration with
non-singular fibres, then

ey, €)) = 10(X, €).

II. (The decomposition theorem :) If f : X — Y is a proper projective map
of complex algebraic varieties, then

Rf.(IC(X,C)) = IC(Y,C) & @ IC(Y;, L;)[~Ni]
Y:ZY

where Y; are proper closed subvarieties of Y and L; are locally constant
sheaves, and N; are some integers.

(In the above, for a complex of sheaves {A'}, A[N| denotes the complex of
sheaves { B'} where Bt = AN )

Corollaries:
1. Poincaré duality [GM 2]
Denoting by Loc (Y,n) the direct sum of the £; for those i such that

Y =Y, and n = N;, Poincaré directly simply says that there is an
isomorphism Loc (Y, n) — Hom (Loc(Y, —n),@Q).
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2. Hard Lefschetz theorem [BBA]
3 a map A : Loc (Y,n) — Loc(Y,n + 2) for all n, such that for n > 0

A" : Loc(Y, —n) = Loc(Y,n) is an isomorphism.

3. If f: X — Y is a resolution of singularities of Y, then since IC(X) =
Qx, therefore H*(IC(Y)) is contained in H*(X).

4. [GM 3] Let X be non-singular and f : X — Y be a proper projective
algebraic map. For any point p € Y, the closed disc D, C Y is the set
of points at a distance less than € from p (where distance is the usual
Euclidean one with respect to some local analytic chart at p; note that
cohomologies of D, with ‘nice’ complexes of sheaves are independent
of the choice of the local embedding provided e is sufficiently small).

Call M = f~1(D,) and B = f~!(S), where S is the boundary of D,.

For small enough €, M is a compact manifold with boundary B.
Let K = Ker (H,(B) & H,(M)).

Now, since B is the boundary of M, K is a maximal (totally) isotropic
subspace for the intersection form on H,(B). In particular dim K =
+dim H,(B). We will show the stronger :

Theorem 3.3 If Y is an n-dimensional variety with an isolated sin-
gular point at p, and f : X — Y is a resolution of singularities (so f
is a homeomorphism), then

K=H,B)® H,41(B)®...® Hy, 1(B).

Proof: We have only to see which cycles in H,(S) are boundaries in
H.(IC(D,)) because, in D, the decomposition looks like /C(Y) and
terms concentrated at p, of which, only IC(Y') gives contribution to
K.

But now since D, is topologically a cone with base S and vertex p, any
cycle in S is the boundary of a cone with vertex p. So, a cycle in S
will be a boundary in IC(D,) provided the cone of the cycle to p is a
chain in /C(B) which is so, by definition, if the dimension of the cycle
is > n. Thus H,(S) @ ... ® Ha,—1(S) C K. But, the left-handed side
being a maximal isotropic subspace of H,(S), has to equal K. Hence,
the theorem is proved.
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5. Generalized invariant cycle theorem

Before stating the theorem, let us define some things.
Let, once again, f : B — S be as before.
We will construct a complement to K in H.(B).

Let {U,} be a stratification of S with strata of odd dimension, such that f
is a topological fibration onto each U,. Triangulate S such that each U, is
a union of interiors of simplices. Define R to be the union of all simplices A
of the barycentric subdivision of the above triangulation which satisfy

1
dim(ANU,) < §dz’m Uy, V .

Define J C H,(B) to be Im(H.(fY(R)) — H.(B)).

For example, if f is a topological fibration and S is a manifold of dimension
2m — 1, then J = F,,_1H.(B) where F} denotes the filtration of H.(B) of
the Leray spectral sequence of f.

Then, we have :

Theorem 3.4 (GM 3) (Generalized invariant cycle theorem :)
J is independent of the choices (Uy,) and triangulation of S, and is a maximal
isotropic subspace of H.(B). K is a vector space complement to J in H.(B).

Proof: The decomposition theorem gives the decomposition

H.(B) = D H.(IC(Y, L)).

As in the proof the last theorem, we have

K =@ H,(IC(SNY;, L) ® ... ® Hyo 1 (IC(SNY;, L;))

where a; = dimY;.
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We claim that

J=EDH(IC(SNY;, L) @ ... @ Ho 1 (IC(SNY;, L7)).

This will clearly prove the theorem.

To prove the claim, taking an open regular neighbourhood R° of R, we have

J =@ Im[H.(IC(R"NY;, L;)) — H(IC(SNY;, Ly))].

We will show that V i, the term above, inside the direct sum
=Hy(IC(SNY,L))®...8 Hy 1 (IC(SNY;, L))

Firstly, since we can find a homeomorphism (using stratified general position)
h :Y; — Y, isotopic to the identity such that h(R NY;) N RNY; is empty,
it follows that J is self-annihilating under the intersection pairing. Thus the
containment O follows.

To show the inclusion C, we note that Y; is a union of strata U, and the
fact ([GM2], §3.4) that we have some basic subsets R; in Y;(1 < j < 2a,)
such that H;(IC(Y;, £;)) = Im(H;(R;) — Hj(Rj41)). In fact, in [GM 2],
they analogously construct such a family and show Poincaré duality and the
independence of H(IC(X)) of the stratification. By the construction in [GM
2], §3.4, it is also clear that R; C R°NY; for 1 < j < a; — 1 (recalling that
A € R& dim(ANU,) < idim U,).

Thus, for

1<j<a—1,H(IC(SNY;, L)) = Im(H;j(R;,L;) — Hj(Rjy1,L;))
C Im(H;(IC(R°NY;, L;)) — H}(IC(SNY;, Ly))).

Hence the claim is proved.

Example: If Y is a curve, the theorem is just invariant cycle theorem, which
says that the composed map H; 1(M, B) Y, i+1(B) 2 H;(F) is a surjection
onto the Kernel of 1 — p, where ¢ : F' — B is the inclusion of a fiber and
w: H (F) — H.(F) is the monodromy map.
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To see this, we show that the Wang sequence for the fibration f : B — S*
is exact ie. H;q(F) 5 Hipy(B) LN H;(F) = H;(F) is exact. Once we have
shown this, then the invariant cycle theorem is clear from the theorem since,
by definition, I'm ¢, = JNH,;41(B) and so, Im ¢* = Im ¢*1) because for any
b € Hi1(B), writing b = j+k as in the theorem we have k € Ker(H,1(B) —
Hiyy(M))=Imyand b—k=j€ Im p. = Ker ¢*.

Now, we will show the exactness of the sequence,
Hi1(F) %5 Hipo(B) S Hi(F) =4 Hy(F).

More generally, we show

Lemma 3.5 Ifp: B — S™ is a fibration with fiber F'. Then ... — H,(F) —
H,B) = Hy_n(F) — H,—1(F) — ... is ezxact.

Proof: Consider the exact sequence
.— H,(F)— HyB) = H;—n(F) — H;1(F) — ...

We are thinking of S™ as the suspension S(S™™!) of S"! and the fiber F' =
p~(yo) for some o € S"L.

Now, denote the upper and lower cones of S"~! as E and E, respectively.
Since Ey, E, are contractible, we have p |,-1z+) and p | -1 to be fiber
homotopically equivalent to the respective trivial fibrations i.e 3 f_ : E~ X
F —pY(E;)and g4 : p Y (E}) — E} X F such that f_ |, «xr is homotopic

to the map (yo, z) — 2z and g, |p is homotopic to the map z — (yo, z) where
f- and g, are homotopy equivalences preserving the fibers.

So, we have a commutative diagram

(F)-
Hy(B,F) = Hy(B,p'(Ef)) — H,(pp~"(E;),p7(S"™") = H,((E;, ") xF)
9/ 9./ 9/ 9/
i+ | (f)
Hyo(F) = Hea(p'(EF)) < Hpa(pr'(S"7Y) = Hya (S xF).
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But (j.)~! is the composite isomorphism

(proj)«

* p
Hy1(Ey x F) = Hyo(F)

s
R+
=

Hq—l(p_l(E:f))

as g4 |r is homotopic to the map z — (yo, 2).

Let ji. = joli.(f)s; ie, i : S"' x F — F is defined by g, f_(y,2) =
(y, iy, 2)); it is called a clutching function for p.

We have the commutative diagram

H(B,F) = H, . (F)
d | 0l

;(1_*
H, (F) = H,,(S""'xF).

Hence the lemma is proved.

For our case n = 1, we can choose f_, g, such that ji(y, —1) = Identity and
iy, 1) = p(y) and so we have 1,0 = Identity — ..

Definition 3.6 Let G be a connected reductive complex algebraic group. Let
By be a (fixred) Borel subgroup.

Let B = set of Borel subgroups; this can be identified with G/By. The By-
orbits in B are parametrized by w € Weyl group. For w € W, the By-
orbit of wBow™! is called a Bruhat cell and is denoted by B,,. These are
smooth, simply connected algebraic varieties; indeed B, is an affine space of
dimension {(w). One can also write, B, = {B|By — B} where B = B’
denotes gBg~' = By = w™tgB'g 'w for some g € G.

The closures B, are called Schubert varieties (in general, they are singular).

We have B
B,=JB,

y<w

Since By acts on B, we consider By-equivalent complexes of sheaves on B,,,.

If A, is a By-equivariant constructible complex of sheaves on B, for some
w e W and if s € S such that ws > w, we define a new By-equivariant
constructible complex of sheaves on By as Ay, o As = pra, (pri(Aw)) where

pri={(B,B")|By = B=B'} - B, = | B,

y<w
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and
pra={(B,B")|By =¥ B= B'} = Bus = | B,

y<ws

We note that Hi(Aw)By = H"(flw)m vV x e By, and for all y < w, since A, is
a By-equivariant complex.

Now, we define a map of By-equivariant complexes from B, to the Hecke
algebra H by writing

hAy) = {Z q*dim Hi(Aw)By} T,

y<w >0

Lemma 3.6 Let w € W,s € S such that ws > w. Let flw be a By-
equivariant constructible complex of sheaves on By, and A, o A, be the cor-
responding complex induced on B,. Assume that ¥V odd i, Hi(flw)B =0 for
every point B in B.. Then the same is true for flw o As and we have

h(Aw © As) - h(Aw) ’ (Ts + 1)

Proof: Let Q = {(B, B')| By B3 B'}. Let p; and p, denote the projec-
tions Q — B, (B, B') — B and Q) — B, (B, B') — B! respectively.

Let B € B,y < ws. We want to show that Hi(Ay o Ay)p = 0 for all odd .
Now, by the definition of A, o A,, H (A, 0 Ay)p = IHL(p1py ' (B'), Ay,). But
pipy (B = {B|By =% B =3 B'} C {B|B = B'} ~ IP'. Thus pip; '(B') is
either a point or IP!.

If it is a point, then by hypothesis we get Hi(flw o AS)B/ = 0 for odd 7. If
p1ps H(B') is the whole of {B|B = B’} ~ P!, we write it as {point} UL

If ys > y, then the point will be { B’} and B,, will be IA! (note that B, 2 B,).

Applying long exact sequence for THL associated to a partition of a space into
an open and a closed subspace, we have a short exact sequence

0 — H{(Ay) g — H (A0 A) g — H(AYA,) — 0.

Therefore dimH (A, o Ay)p = dim Hi(Ay) + dim H'(A', Ay). Projecting
IA' to a point we will get H'(AA', Ay) = H7?(Ay)p, where B € By,. Thus,
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we finally get the formulae:

w P imH (A, 5 o gi—2( A :
dimH (A 0 Ay) g = { dimH EAw>B + dimHM (gw)B, if ys >y
w B

dimH2(Ay) g + dimH(A,) if ys < y.

In any case, by hypothesis it follows that Hi(flw o fls) g = 0 for all odd 1.
The above formula is just equivalent to saying that

h(Ay 0 Ay) = h(Ay)(T, +1).

Theorem 3.7 (KL 2) (a) H'(IC(B,,C))s =0V odd i, B € B,
(b) h(IC(B,,C)) = 3 P,w(q) - T, where P,,, are the Kazhdan-Lusztig

y<w
polynomials as in Theorem 2.3.

Proof: We apply induction on ¢(w).
(a) and (b) are clear for w = e. So we assume the results for w and prove
them for ws > w.

(a) Let us denote IC (B, 0) by Ay, . Denoting by A, 0 A, the corresponding
complex on By, we have H'(A, o Ay)p = 0 for all odd i by the lemma 3.3.

Now, by the decomposition theorem 3.2 (ii),

Ayo Ay = Ays ® @ @inyi A, li]. (3.1)

y<ws
ys<y

Since the odd cohomologies at a point vanish for the left-hand side, they
continue to do so for the right-hand side and hence H'(A,s)p being a direct
summand, is zero for all odd 7.

Thus, by induction, H{(IC(B,,C))p = 0 for all odd i. Hence, we note that
h(IC(B,,C)) € > Zlq] - T,.

y<w

Corollary 3.8 P,.,(q) has all coefficients > 0V y,w e W.
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Corollary 3.9 The equality C!, = C'  of Theorem 2.3 simply expresses the
fact that local Poincaré duality is satisfied by the Intersection cohomology
sheaves of the Schubert variety B,,.

Conjecture 3.1 For any Coxeter group W, P,,,(q) has all coefficients >
OV yweW.
(Goresky has verified for the finite Coxeter group Hs, on a computer.)
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4 Representation of Hecke Algebras

Definition 4.1 Let (W, S) be a Cozeter system. For x € W, let
L(x)={s e S|sx <z}, R(z) ={s € S|lzs < x}.

(a) For x,x' € W,
r < 2! & 3 a sequence ¥ = x9,11,...,7, = x' in W such that (i)

L
L(x;) € L(xi41) and (it) either z; < x;1q or xi1 < x;,1=0,...,n—1.

(b) x < x' is similarly defined. Note that v < x' < 7! < 2/7L.
R R L

(c)r < 2 & Jx = zg,21,...,0, = &' in W such that for each i =

LR
0,1,...,n—1, (i) either L(x;) € L(z;y1) or R(z;) € R(xir1) and (ii)
either x; < xi11 or X1 < ;.

(d) x ~ 2! & o < 2! <z The equivalence classes are called left cells.
L I

We have seen that the Hecke algebra corresponding to the Weyl group of a
Chevalley group G over a finite field, plays an important role in the represen-
tation theory of GG. So, it is desirable to construct irreducible representations
of the Hecke algebra with a special basis. The left cells of any Coxeter group
W, which are defined combinatorially can be used to construct representa-
tions of the Hecke algebra H over Z[q'/?] via W-graphs.

In general, a W-graph is defined to be a set of vertices X, with a set Y of
edges such that, for each vertex x € X, we are given a subset I, of S and, for
each ordered pair of vertices y, x such that {y, x} € Y, we are given an integer
w(y, ) # 0. In the case of a left cell, X consists of elements W, I, = L(z) and
{y,z} € Y iff y — x (recall that this means y < x or z < y and u(zx,y) # 0.
Here we are using the polynomials P, ).

We define (given a W-graph) a representation of H by taking F to be the
free Z[q'/?]-module with basis X and defining V s € S,

-, if sel,
s yeX
z}EY
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Usually, for convenience (when, say, the function p = 1) a W-graph will be
represented by vertices as circles, inside which are described the correspond-
ing subset I, of S.

These will be used now to show a theorem on the structure of the Hecke
algebra of a Chevalley group over a finite field.

Iwahori conjectured that the Hecke algebra over ) of a Chevalley group GG
over a finite IF; with respect to a Borel subgroup G isomorphic to the group
algebra over @) of the Weyl group. As remarked in §2; the analogous statement
with Q replaced by @ was proved by Tits. Then, Benson and Curtis proved
by case-by-case analysis that Iwahori’s conjecture is true over ) for G simple
of type # E;, Eg and false over ) for G of type E7, Fg.

Using left cells etc., we prove the following theorem for a finite Weyl group
W. Let W be a (finite) Weyl group and consider the Hecke algebra of W
over Q[q¢"/?]. Let E be the free Q[¢'/?]-module with basis (£y,)wew -

We define a left H-module structure on E by

—ly, if sw < w

Toly = ¢ qly + @l + @2 X ply,w)l,, if sw>w
y<w
sy<y

and a left W-module structure on E by

A, if sw < w

Skly = Ly + L+ > ply,w)ly, if sw > w.
y<w
sy<y

We can similarly define right H-module and right W-module structures.

Theorem 4.1 (a) There is a unique homomorphism of Q[q*/*]-algebras ¢ :
H — Q[q"?|[W] such that, ¥V h € H and w € W, hly, — p(h) * £, is a

linear combination of £,,y L<R w.
(b) Given any homomorphism x ofQ[q"/?] into a field K, the K -homomorphism

oyt H® K — K[W] is such that its Kernel consists of nilpotents. In
particular, ¢, is an isomorphism if H @ K is semi-simple.
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Let us mention some combinatorial conjectures now.

Conjecture 4.1 An affine Weyl group has only finitely many left (right)
cells (see §4.8). (Recently R. Bédard has shown that 3 an infinite Cozxeter
group with 3 generators which is not an affine Weyl group and has infinitely
many left (right) cells.)

Conjecture 4.2 For an affine Weyl group, the # of two-sided cells = # of
unipotent conjugacy classes. (For example, this is 4 for By ad 5 for G,.)

Conjecture 4.3 Let (W,S) be any Coxeter system. 3 a constant ‘a’ de-
pending on W such that

q¢"? T, T, € ZZ[QI/Q]C}, vV w,w e Ww.

(For example, in case of finite or affine Weyl groups, by §4.4.4, this can be
taken to be the # of the roots of the underlying finite Weyl group.)

Conjecture 4.4 For any x,y, z in an affine Weyl group W, we have Cy,, . =
Cyow=Chypy (see 4.4.2 for definition).
Note that this conjecture = conjecture 4.1 (see 4.8 for a proof of this).

. From now on, in this section we will be proceeding towards a proof of the
Main theorem 4.1.

Lemma 4.2 y < y', L(y') € L(y) = y = sy' and u(y,y*) = 1 where s €

S
L(y') — L(y). Similarly, y < y", R(y") € R(y) = y =y's and u(y,y') = 1
where s € R(y*) — R(y).

Proof: Assume that s € L(y')\L(y). Now, since sy’ < y', we have by
Corollary 2.5 that T,Cyy = —C1. Comparing the coefficients of T, on both
sides, we get

- eyh)
(_1)€(Sy)+é(yl)(q - 1)q£(y1)/29_£(8y)PSy,y1 + (—1)€(y)+£(yl) : q%—z(y) ) Py7y

/
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() =
= (_l)g(sy)+g(y)+1 : qe 2 7£(sy) ° Psy,y/
i.e., Py’y/ = Psyﬂ/.

Lyt —L(sy)—1

Therefore if sy # y', then P,,n = P, and

sY,Y

1 has degree < 5
< %, which is a contradiction of the fact that u(y,y') # 0.

Thus sy = y* and so P, 1 = 1.
Corollary 4.3 W finite = P, ,, = YVyeW.

Proposition 4.4 = < 2’ = R(x) D R(z2'). Hence, ~ ¥ = R(x) =R(z').
L

Proof: We can assume without loss of generality that £(x) € L(2') and
either z < 2’ or 2’ < x.

In the case ' < z, the lemma 4.2 gives s € L(x)\L(2") such that 2/ = sz
and p(x,z’) = 1. So, if t € R(2'), then a't < a’. Therefore {(sxt) < {(sz).
But sz < x = {(sz) = {(x) — 1. Therefore {(sxt) < {(x) — 2. But {(sxt) =
l(xt) £1 = ((x) £1) £ 1. Therefore {(zt) = l(z) — 1 ie. t € R(x). Thus
R(z") C R(x).

In the other case z < 2/, if we do have R(2') € R(x), then again by the
same argument we see that £(z) C L(2), a contradiction of our assumption.
Thus, in any case R(z') C R(x).

Before proceeding further to the proof of Theorem 4.1, we will describe algo-
rithmically the cells in S,. In the proof of Theorem 4.1 we will see that any
left cell (for any Coxeter group) gives rise to a representation of the Hecke al-
gebra. In the case of S,,, the representation so obtained are irreducible and all
the irreducible representations of the Hecke algebra of .S,,, occur in this way.
The left cells in S, arise from partitions of n, by the Robinson-Schensted
algorithm. This algorithm gives a one-to-one correspondence between the el-
ements of S, and pairs (7, 7’) of standard Young tableaux of the same shape,
of size n. A left cell in S,, corresponds to a subset (7,7') with 7/ fixed and
7 of the same shape as 7. A two-sided cell corresponds to a set of pairs
(7,7") which are of fixed shape. Thus S,, is decomposed into two sided cells
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(one for each partition of n) and each 2-sided cell is a disjoint union of a
number of left cells equal to the dimension of the corresponding irreducible
representation of S,,. This is the prototype of what applies to any Coxeter

group.
We will describe the cells of the symmetric group S,, in a number of ways,

some of which are combinatorial thereby enabling us to compute them more
easily than would be possible by our definition.

(i) Robinson-Schensted algorithm [Kn]

They show (by actual construction), a one-to-one correspondence between
permutations 7 of {1,2,...,n} and ordered pairs (P(7),Q(7)) of Young
tableaux formed from {1,2,...,n} where P,Q have the same shape. This
correspondence is such that the inverse permutation goes to (Q(7), P(7))
so that involutions are parametrized by tableaux formed from {1,2,...,n}.
(Note that, in S, each left cell (by our definition) contains a unique involu-
tion.) We will describe this in another way as follows:

Let s,t € S such that O(st) = 3. Let Dp(s,t) = {w € W[L(w) N {s,t}
has exactly one element}. If w € Dy(s,t), then exactly one of sw,tw is in
Dy (s,t); this is denoted by 4, V.

We claim that w ~ w' =, W. We can assume v’ = sw.
b ,

If w< w, then s € L(w')\L(w) so that w' < w. Also w' € Dp(s,t) and
L
seL(w)=t¢& L(w), and w € Dr(s,t) and s & L(w) =t € L(w) so that
L(w) < L(w') and so w < w’ Thus w ~ w'.
L

If w > w', we can interchange the roles of w and w’ since w = sw'.

(ii) Joseph defined w < w’ < ann L, 2O ann L, , where ann L, is the

L

left annihilator of L, in U(J). This is also equivalent to our definition.
(This is basically just Harish-Chandra’s theorem that if A\,u € H*, then
Xa=Xu = A+ p=(u+p)* for some w e W).

(iii) Vogan-Jantzen defined w ~ w e (1) Rlw) =R(W'), (2) R(ws s p..) =

R(W. .y .) if Wepe .. etc. make sense.
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/ /

L~

L~
Therefore, clearly by Proposition 4.3, w w in the sense of Vogan = w w
in the sense of our definition.

We will show that the converse implication also holds.

Let y,w € Dr(s,t) and y ~w. Then, it is enough to show that .y ~ .
s,t

Let y = yo,...,yn = w where y; < y;41 and R<yz) Z R(Y;'-H) and R(yi—i-l) A

Clearly v; ~ Yy Y i, so that by Proposition 4.3, L(y;) = L(y) V i. Since

y € Dr(s,t). Therefore y; € Dr(s,t) since L(y;) = L(y)V i. Thus s,y
are well-defined. We can also show that since y; — y;+1, we have 4,1, <,
Yi+1 Y i.

Also

R(seyi) = Ry:) by (i)
Z R(yit1) = Rs+¥i+1) and vice versa.

Thus sy sl Therefore all the four definitions of cells are equivalent.

JFrom now on, we assume that W is a finite or affine Weyl group.

Definition 4.2 Let A = Z[q'/?, ¢ /3], A* = Z[q"/?].

(i) For z € W,a(z) is defined to be the smallest natural number such that

(T CC,EAT-Cor Y A CoV ayeW.

Z'#z

We will show in Corollary 4.4.4 that a(z) exists for affine Weyl groups also.
(ii) Let Q., be defined as Y. (—1)@HWP, (¢)Q,.(¢) = 6,.. Then, we

Y
e<y<z

have @y, =1 and deg Q. < % fory < z.
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Define

Z(x)
- ZQw

c T +q1/QZA+

Yy>x

Therefore Ty € Dy +q72 - 5 AT -

y>x
In the case of affine Weyl groups, the elements D, can be regarded as belong-
ing to the set H of formal (possibly infinite) A-linear combinations of the
elements T,,.

(iii) Let K = Q(q¢"?) and Hx denote H & K. Definet: Hgx — K
Z[q1/27q71/2]
by T(ECLIT;B) = a.. Then, we see that

T(Tx . Tm/) = T(Cx . Da;/) = T(Tml . Tx) = T(Cx/ . Dx)
_ { 0, ifa' #at

1, if ' = a7 L.

(iv) For x,y,z € W, define C’x,y,Z e X by

Cy-Cy — (C’a%yvzq —|— Higher powers of q)C.-1 € Z A-C,.
u#tz—1

This definition makes sense provided we show that a(z) = a(2™") V 2z € W.
To show this, we first note that T, — T,,—1 defines an antiautomorphism of

H.

Therefore, if we choose z,y € W such that

a(zo)

q TT :Zaxyz(] with ag,, ., & AT,

then we get

q 2 TyaTer = E :O‘:v,y,zcz—l = E :O‘x,y,Z‘lC
z

z
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But, the left-hand side is also = > | ay-1 -1 ,-C.. Thus a, -1 = o-1,-1, V2 €
z

W. Therefore,
a

g A

-1 -1
y 7'7; 7Z

Thus, by the definition of a(z;'), we have a(z;') > a(z) — 1. Therefore
a(z') > a(z). Similarly a(z9) > a(z,') and hence,

a(z) = a(zp ) V 2 € W.

Theorem 4.5 Let (W, S) be an irreducible affine Weyl group. Let v be the
number of positive roots. Then, for any x,y,z € W we have

TrTy = me,y,ZTz_l

where My, . s a polynomial in & = ("% — q=Y/2) with integral coefficients
> 0 and of degree < v.

Corollary 4.6 For any z € W, we have a(z) € .

Proof of Corollary: This is clear since T, € C,, +¢"/> 3> A" - C,.

y<w

Proof of Theorem 4.5 Before starting the proof, we will fix some nota-
tion for the affine Weyl group. Let F be an affine Euclidean space of finite
dimension ¢ > 1 with a given set F' of hyperplanes (In the case of simply
connected almost simple algebraic groups over an algebraically closed field of
characteristic p > 0, E = X(T)® IR and the set F' consists of the hyperplanes
Hsn ={X € E|a(X + p) = np} where & is a coroot and n € Z).

Now each H € F' defines an orthogonal reflection 90 — popy in E with fixed
point set H. We will take €2, the group of affine transformations generated
by {oy|H € F}, to be acting on the right on E. We will also regard €
as an infinite discrete subgroup of the group of affine motions of E, acting
irreducibly on the space of translations of E, and leaving F' stable. Now 2
acts simply transitively on the set X of connected components (= alcoves)

of - |J H.

HeF
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If S denotes the set of Q2-orbits in the set of faces of codimension one of the
alcoves, then S consists of £ + 1 elements which can be represented as the
¢+ 1 faces of any given alcove. For s € S and A, as alcove, we denote by sA
the alcove (# A) which has with A a common face of type s.

The maps A — sA generate a group W of permutations of X which is a
Coxeter group and we will regard our given affine Weyl group to be (W, .S)
as above. A special point v is a 0-dimensional facet of an alcove such that
there are exactly v hyperplanes (the maximum number possible) in F' passing
through v (Note that any hyperplane has exactly v directions).

A quarter with vertex v is a connected component of £ — |J H.
HeF

veH

It has ¢ walls. For a O-dimensional facet v of an alcove, we define W, to be
the stabilizer in W of the set of alcoves A containing v in their closure; W,
is a standard parabolic subgroup of W and its longest element w, has length
= v. Note that W, is generated by ¢ elements of S. For each special point v,
we choose quarter C;f” with vertex v such that for any two special points, v, V',
the quarters CF, C'} are translates of each other. Let A denote the unique
alcove contained in C; and having v in its closure, and put A, = w,A;.

For any alcove A, we define a subset L(A) of S as follows:

For s € S, if P is the hyperplane supporting the common face of type s
of A and sA. Then s € L(A) iff A is in the half-space determined by P
which meets Cf for every special point v of E. We will now define a ‘length
function’ on the set of alcoves. For any H € F, denote by E}; and E}; the
two connected components of E — H, where Ej}; so that half-space which
meets C.f for every special point v. Given two alcoves A and B, there are
only finitely many hyperplanes H separating them and we define

d(A,B) = > (1), where we count +1 if A C Fy,B C E} and —1 if
ACE},BC Eyg.

We have d(A, A) =0 and d(A, B) + d(B,C) + d(C, A) = 0. To see this last
equation, we see that the hyperplanes which contribute to all the three terms,
contribute zero to the sum clearly and if H is a hyperplane which contributes
to d(A, B) but not to d(B, (), then it means that A and B are in different
sides of H whereas B and C are on the same side so that A and C' will be

42



on different sides of H and clearly the contribution of H to d(C, A) = — its
contribution to d(A, B). Thus, we have

[ 1, ifs ¢ L(A)
d(A,s4) = { —1, if s € L(A).
and d(A, B) = d(Bw,, Aw,) for any special point v.

A length function § : X — 7 is defined by §(A) — §(B) = d(B, A). The
existence and uniqueness (up to a constant) of § are clear from the properties
of d. Finally, let us define a partial order < on X. We write A < Bif da
sequence of alcoves A = Ay, ..., A, = B such that §(A;) = 6(A;—1) + 1 and
Ai:Aifl‘UHi for some Hl S F, Vi= 1,...,n.

Note that A < B = d(A, B) > 0.

Now, consider the free Z[q'/?, ¢'/?]-module M with basis corresponding to
the alcoves. This can be regarded as a left H-module by defining

B SA 71f8¢£(*’4)
TSA—{ q(sA) + (g — 1A if s € L(A).

Since

§(A) —1if s € L(A)
0(sA) = { O(A)+ 1if s & L(A),

if we set A = q’wA, then
Y sA L if s & L(A)
’ sA+ (¢ —q VA | if s L(A).

We have fixed all the necessary notations etc. To complete the proof of the
theorem, we need the following three lemmata.

Lemma 1: For any z,y, 2 in W, m,,, . is a polynomial in & = (¢'/2 — ¢~%/?)
with integral nonnegative coefficients and of degree < min(¢(x), ¢(y),¢(z)).

Proof: We will show first, by induction on ¢(z), that m,, . is a polynomial
in ¢ = ¢*/? — ¢~/? with integral non-negative coefficients, of degree < ¢(z).
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Now, T.T, = Ty, or (¢/* — ¢~ V)T, + tildeT,, according as sy > y or sy < y.
Assume the induction hypothesis for some z € W. Let sx > . Now

Tl =TS gy T

= Z mm,y,z—lﬂz + Z ((q1/2 - q71/2>mx,y,z—1fz + mx,y,z—lTsz-
sz>z sz<z
Therefore, by induction, our claim follows easily.
Similarly, we also have that m,, , is a polynomial of degree < ¢(y). Now, we
have
Mgy = T(ToT,T.) = T(T,T,T,) = My . ..

Hence deg m,, . = deg m, .,

Lemma 2: If A is an alcove and w € W, then T, A = 5 MmA’Bé (finite
sum), where M, 4 5 are polynomials in ¢ = ¢'/? — ¢~'/2 with non-negative
integral coefficients, and of degree < v.

Proof: Again by induction on ¢(w), it follows that M, 4 p are polynomials
with non-negative integral coefficients.

Choose a special point v in the closure of A. Write uniquely w = w’ - wy
where w; € W, w" has minimal length in w'W, and ¢(w) = £(w') + {(w,).

We write A = wy(A, ), where wy € W, since A contains v in its closure and
W, is the stabilizer in IV of the set of alcoves containing v in their closure.
So A=1T,,A, and hence

TwlA = TwlTWQA; = E : mwl,wg,wS—lTwsA;
w3z €Wy,
—_ —
- E : wl,wg,ufl 3(A17)7
w3z Wy

where, by Lemma 1, m - has degree at the most {(ws) in (g2 —q1/?).

w1, w2,w

For a fixed w € W,, write ¢ = w3(A;). Let w' = si...s; be a reduced
expression.
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Then, it can easily be verified by induction on k, that

Tu - C=T, .. T (C) = (¢ —q PP sk 8, o Siy o 81y s1(C),

I

where the subsets I = {i; < iy < ... <1y, } of {1,2,...,k} are such that

Sz‘t...git71...§Z’2...Si1...81(0)<Sit...§it71...SZ‘Q...Sil...Sl(C)\V/t:1,2,...

Therefore if C is the quarter with vertex v and containing C' and if J(C) is
the set of all directions ¢ such that, for some hyperplane H with direction
i, we have C C E}, then it can be proved by induction on |J(C)| that
([L7], §4.3) pr < |J(C)|. But for our C, we see that |J(C)| = v — £(ws)
because d;(A,,C) = £(w3) for those directions i such that C C Ej; for each
hyperplane with direction ¢. Therefore,

- - P
T,A = mehwwg_lgpf Sk Siy e Sy s1(C).

ws, [

Therefore My,4,p has degree < v since deg(m,, ,, ,-1£") < v.

Lemma 4.7 Fory € W, 3 an alcove A such that T~y/~1 = &74

Proof: Let v be a special point in F and write y = ¢ - y; with y; € W,
and ¢y of minimal length in y'W,. Define A to be (y;'w,)A; = y;'A¥.
Therefore A} = y; A. Now, there are ¢(y; ) hyperplanes separating A and A}
and each such H gives a contribution +1 to d(A, A}) since A C E;. Thus
A(A, AF) = () ice. 3y A) = 6(4) + L(yn).

Similarly d(y' A, A7) = —0(y'™') = —L(y') i.e. d(AF,yA) = {(y'). Therefore
d(A,yA) = L(y1) +L(y') = L(y). Thus 6(yA) = 6(A) +{(y). Thus T,A = yA.

Completion of proof of Theorem 4.5 : Let z,y € W be given. Select A
corresponding to y as in the above lemma. Therefore

TEA = TyhA=3 MoyasB= myyr T.A

BeX zeW

= E Myy.1 M, ap-B.
z,B
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Thus Myyap=> Myy.—1- M. apV B e X. By Lemma 2, M, a5 € Z[¢]

has > 0 coeflicients and has degree < v. Therefore V 2, B,mg, .- M, o p €
(€] has degree < v.

Take B = zA; then M, 4 g # 0. Therefore M, 4.4(§ =0) = 1. Thus m,, .
has degree < v V z € W. Thus, the proof of the Theorem is complete.

—(*? +q VO, if st <z ifse L(x)

Theorem 4.8 (a) C,C, = ¢ > ply,x)Cy, if sx £ wie ifsdg L(x).
sy<y
(b) Writing Cyr,Cyy = > Qo y(Q)Cy and oy wry(q) = D Ciq"?, we have
y =/
(—1)iC; > 0.

(¢) T(C,C,D,) = q_@ - Cyy..+ Higher powers of q.

(d) Cypy.#0=z % rt 27t % y.

Proof: Proof of (b) involves (i) intersection Cohomology (i.e. Theorem 3.4)
(ii) interpreting the multiplication in H via sheaves and (iii) induction, and
we will not give it here.

(a) If sx < x, then clearly the Corollary 2.5 (of proof) to the main theorem
2.3 gives T,C, = —C,, and so C,C, = (¢ /*T, —¢'*)C, = —(q¢/*+¢'/?)C,.

If sx > z, the same Corollary gives

C,Cp=Cyy + Z w(y, z)C,.

y<x
sy<y

Now, if z < y and s € L(y)\L(z), then the lemma 4.2 gives y = sz and
w(z,y) = 1.

Thus, for sx > x, we can write

CsCy = Z w(y, x)Cy.

Yy

s€L(y)
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(c) Writing C,.C, = 3" a,(q) - C,. we have 7(C,C,D.) = a* (q) since

0,r # 2zt

1,r =21

rcny - {

But, by definition of Cy ,, .,

a() .
a,-1(q) =q 2 -Cpy.+ Higher powers of q.

(d) Now C,,. # 0 = 7(C,C,D,) # 0 by (c). Therefore C;,D, # 0 and
similarly D,C, # 0 because 7(C,D;) = 7(D,C,). Write Cy, - D, = > ay -
¢

D;, o,y # 0 for some zy. Then T(CZO—I -Cy - D,) = a,, # 0. Now write
C,-1Cy =3 Bu- Cu. Then we have 7(C.-1 - Cy - D) = f,-1.

ﬂz—l = Oz, # 0.
Recall that h-C, € > A-C, V h € H, from Corollary 2.5. (The basis {C,}

u<z
L

is defined precisely for this reason.)

Thus, taking & = C,-1, we have 2~! < y. Similarly, we will have z < 27!
L L
from the fact that D, - C, # 0.

Proposition 4.9 Let x,y,z,2" € W such that 2’ < z. Let s € R(2') —R(z2).
(1) If ¢* - 7(C,C,D.) has a non-zero constant term, then 3 x' such that
q"'? - 7(CwCyD.s) has a non-zero constant term.

(2) a(?) = a(2).
(3) Cay= # 0= R(y) = L(2), L(x) = R(2).

Proof: (1) Now 7(C,C,D,) # 0i.e1(CyD,C,) # 0ie. D,C, # 0. Therefore

z < 7! from the proof of (d) in theorem 4.5.
L

Thus, R(z) 2 R(z~') by Proposition 4.4. Now, by hypothesis, s ¢ R(z) and
so s € R(z™1). Therefore sz > .
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Writing C,Cyy = Y a,,Cy,, we have

C.C.Cy = Ol + Y ayCiCy

w#z~ 1L

€ (o p(z 2 ) +0)Con+ Y A Cu

w/;,gzl—l

by (a) of Theorem 4.5 where ¢ denotes the coefficient of Ci—1in > «,,CsCY,
w#z~1
and is equal to —a -1 (¢"2+q V) + >0 ap-u(z 7 w). Writing 371 for

w;éz*l,zlfl
sSw>w

a1 - (271 271 46 and ay, by, d; for the coefficients of ¢=/% in a1, 3.1,
respectively, we have b; = a;-u(2'~", 271)+d;. But (—1)%a;, (—1)'d; > 0 by (b)
of Theorem 4.5. By hypothesis a; # 0 and p(z', 271) # 0. So (=1)'b; > 0.
Thus b; # 0.

Also, (C,C,)Cy = > (@', x)CypCy by (a) of Theorem 4.5 so that

$/<—*$

s/ <z’
Z wx', x) - 7(CpCyDy) = B (4.1)
s?c/’zz"
since CsC,Cy € Bo—1-Cu—1 4+ >, A-Cy.

'lU/#Z/71
Comparing coefficients of ¢=/2 on both sides of (4.2) we have some z’ such
that the constant term of ¢/ - 7(CC, D) # 0.

(2) For i = a(z)—1, Isome 2,y in W such that ¢'/*>-7(C,C,D.) & A", by the

definition of a(z). Therefore 3 j > 0 such that ¢ -7(C:CyD;) has non-zero

constant term. Therefore, by (1) above, 3 2’ such that q% -7(CpCyD,s) has
non-zero constant term. Thus ¢ = a(z) — 1 < a(2').

(3) Coy: # 0 = R(2) O L(x),L(2) O R(y) by (d) of Theorem 4.5 and
Proposition 4.3. Assume that

te L(z) —R(y). (4.2)
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Writing C,Cyy = Y a,,Cy,, we have

CoC)Cr = ,11CmCi+ Yy CuC
wH#z—1

€ [, -Co1+ Z A-Cyy

w/#z—1

where 3,1 = —a,-1(¢"/? + ¢~'/?) 4+ 4, from the equation (4.B), J being the
coefficient of C,—1 from the sum > «,C,C;.

w#z—1

Denoting by m;,n;, p; the coefficients of ¢=*/? in f,-1, c,—1,d resp., we get

m; = —n;_1 — Niy1 + pi. Taking i = a(z) + 1, we have m, ;)11 # 0 since

Na(z)+2 = 0 and since (—1)2) ‘Mgz > 0, (—1)a=)+1 “ Pa(z)+1 = 0. Thus, the
z)—1 +a(z)

coefficient of ¢~ in 7(C,CyD,) is # 0 and so ¢~ = - 7(C,C,D,) & A",
which is a contradiction of the definition of a(z).

Thus £(z) = R(y). Similarly R(z) = L(x).

Corollary 4.10 (i) If 2/ < z, then a(z’) > a(z). Thus, a is a constant
L

function on two-sided cells.
(i1) If 2/ 2, L(Z') € L(2),R(2") € R(z), then a(2') > a(z).

In particular, by (i), z and 2’ are in different two-sided cells.

Proof: (i) It is clear that it is enough to assume 2’ < z and either £(2')
L(z) or R(Z') € R(z). In either case, (2) of the Proposition 4.6 gives a(z') >
a(z).

(il) We know by (i) that a(z’) > a(z). Assume a(z’) = a(z). Now, 3 z, y such
that C, . # 0 = qia2(z)

by (1) of Proposition 4.9, 3 z’ such that q_$ - 7(CyCyD,) has non-zero
constant term.

Since a(z) = a(2’), the above statement gives Cy,, .- # 0. By (3) of Propo-
sition 4.9, we have R(y) = L(z) = L(2'). This is a contradiction of the
assumption that £(z') € L£(z). Therefore, a(z") > a(z).

-7(C;CyD,) has non-zero constant term. Therefore
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Remark 4.1 The Corollary carries over to affine Weyl groups if we consider
the elements D, to be in the ‘completion’ H of formal (possibly infinite) A-
linear combinations of the T,,. No problem will arise since we do not have
products like Dy D, etc.

Proof of Theorem 4.1 Recall that we defined E to be the free Q[q¢"/?)-
module with a basis (e )wew. E is a left H-module under the action

—ey, if s € L(w)

Teew =< qew +q7?es, + Y2+ 3 uly,w)e,, if s ¢ L(w)
<y
i.e.
—ey, if s € L(w)
Teew = { qew+q"7 3 ply,wley, if s & L(w)
seL(y)
by Lemma 4.2.

Similarly, we have a right H-module structure on E. E is also a left W-
module under the action
—ey, if s € L(w)
ske, =1 ewt+ Y py,wey, if s € L(w).

Y—w

s€L(y)

The proof of the theorem would be much simpler if the left H-action and
the right W-action commute on E but this does not happen. So, given any
two-sided cell X C W, consider the Q[¢"/?]-submodule Ex of E spanned by
{ew|w LSR X}.

Define E’% to be the submodule spanned by {e,|w < X}. Then Ex/FEY% is
LR

a H-module.
Let gr(F) = €@  Ex/FE%. Hence gr(E) is naturally a left H-module

X
2—sided cell
structure and a right W-module.

We, firstly, claim that the left H-module structure and the right W-module
structure commute on gr(F). (This is true for affine Weyl groups also as the
proof uses only Corollary 4.10).
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Note that gr(E) has dimension = dim.E; infact it has a canonical basis {&,},
the images of {e, }.
Let s,t € S and w € W. Then

0, unless s € L(w),t & L(w)
(Tsew) xt — Ty(ey xt) = (¢ —1) ; w(y, wey, if s € L(w),t & L(w).
i
But the terms in the summand satisfy the conditions of Corollary 4.10 (ii)

and so satisfy y L<R w.
Thus (Tsey,) xt — Ts(€y xt) = 0 in gr(FE).

Now, let Endygr(E) be the algebra of Qqll1/2]-endomorphisms of gr(E)
which commute with the right W-action. By what we have proved above, we
have canonical homomorphisms o : H — Endygr(E) and 3 : Q[¢"/?][W] —
Endygr(E).

We claim that 3 is an isomorphism.

It is enough to show that for any homomorphism x of Q[¢'/?] into any field
K, the homomorphism 3 : K[w| — Endygr(E) ® K is an isomorphism.
Now (3 is the composite K[W] g, Endy @ K 7, Endwgr(E) @ K where
Endyw F ® K denotes those endomorphisms of £ ® K which commute with
the right W-action. Now ' is an isomorphism since the (W, w)-bimodule
FE ® K is the two-sided regular representation of W (see Corollary 2.5). But
(3" is an isomorphism since all K[IW]-modules are semi-simple. Thus [ is an
isomorphism and (a) follows on taking ¢ = 5~ 1a.

For (b), consider a homomorphism x of Q[¢'/?] into a field K. Let h € Kergp, .
Define & to be the endomorphism of E® K which is multiplication by h. Since
h € Kerp,, therefore h is the zero endomorphism of gr(E ® K) and so h is
a nilpotent endomorphism of £ ® K.

Case (i): If x(¢) # 0, then F® K is the left regular representation of H
(see Corollary 2.5) and hence h — h from H ® K — End(E ® K) is an
isomorphism (and thus injective) and so h is nilpotent.

Case (ii): If x(q) = 0, we consider the filtration of H ® K by the two-sided
ideals J; = Y. KT,. Then, clearly (as x(q) = 0) the associated graded

L(w)>i
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@ J;/Ji41 is isomorphic as a left H-module to gr(E ® K). Thus h is zero on
®J;/Jiy1 i.e hJ; C Jiyq and so h is nilpotent.

Remark 4.2 (i) An elementary proof of Corollary 4.10 to arbitrary Coxeter
groups, is desired.

(i1) We give below an example which shows clearly that ¢*/? is necessary for

the Theorem 4.1 to hold i.e we show that for the Coxeter group Hs, there
are irreducible representations of the Hecke algebra which have characters
involving ¢'/2.

Hj has generators sy, Sq, s3 and relations s = s3 = s3 = (s5152)° = (8253)° =

(5153)° = 1. Consider the Hecke algebra H of Hj over the field Q(q'/?).
H has 10 irreducible representations which can be obtained from left cells as
follows:

The left cells of Hj give rise to the following W-graphs (each vertex x is
represented by a circle and the set I, C S is given inside the circle; here the
p-function is = 1).

@
® 0.0 —@03—0—  .0BL--6-0
® (23

As defined in the beginning of §4, these W-graphs give rise to seven represen-
tations of H of dimensions 1, 6, 5, 8, 5, 6, 1 respectively. The representations
(a), (c), (e) and (g) are irreducible. The representations (b) and (f) split over
Q(q'?, \/5) into two three-dimensional irreducible non-equivalent represen-
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tations. For example, in (b), the representation spaces has basis elements

/

3
Ty Ty T3 Xh
3
corresponding to the vertices of (b) and the two subspaces V, = (z1 +

arh, o + arh, ars + o5) where a? = a + 1, are H-stable. We will discuss
(d) in details as it is the most interesting case. The representation space has

basis elements
T12 T13 T2 T3

Ty Ty Ty 2%
corresponding to the vertices of the W-graph (d).
We claim that the two subspaces V. = (1, + ex,, 71, + €x],, 12 + X3, X3 +
€X}),e = £1 are H-stable irreducible 4-dimensional representations and that

the element T}, acts on V, as multiplication by +¢'%/? where wy is the longest
element of Hsj.

In fact, wo turns out to be (s35951)°.

Also, (w1, +,, 11, +,, T2 +14, v3+23) is H-stable and, infact, the matrices

-1 0 q1/2 0
_ /2 ,1/2
Ts,,Ts,, Ts, with respect to this ordered basis are 8 01 qq q 0 ,
0 q
-1 ¢'/? 0 0 q
1/2 1/2
8 q1q/2 _01 qu and | 7 0 respectively.
0 0 0 gq 0 1/2
q/ P2 PR P /
1/2 3/2
q —q —q q + q
Then T. =
€N Lsssos: 0 _q3/2 0 q2+q5/2 )
0 —q 0 2
0 {7 P =g+ P
0 P ek P
T(sgsm)2 = _qz q5/2 _ qs _ q7/2 qs/z —q3 + q4 )
PP ¢ — ¢ ¢ — P
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—gb _q13/2 - q7 —qb +q13/2 q13/2

0 0 —q11/2 q6 + q13/2
Lisaszsn)t = —q'1/2 q° —q'1/? 6 and T,,, = —¢**/%Id.
0 0 —¢ q11/2

Thus, the character of T, genuinely involves ¢'/2.

Let us consider the conjecture of finiteness of the number of left (right) cells
in the case of a finite set S of generators of the Coxeter system (W, S).

Let W denote the set of equivalence classes of irreducible representations of
W. Then, there is a map (not necessarily one-one) from W to the set of
two-sided cells.

Let V' be an irreducible Q[W]-module and C be the corresponding two-sided
cell. Let K = Q(¢"/?), Ec = @ Ke,. Then E¢ is a left Hx-module under

wel
—ey, if sw < w
the action T} - e, = { 46w + /@ 22 p(y, w)ey, if sw > w.
o<y
yeC

E¢ is also a right W-module under the action

—ew, if ws < w
ew ks =14 €wt 2 py,wley, if ws>w.

vo<y

yeC
Consider V(q) = (Ec®qy V)" which is a left H-module by virtue of the action
of H on E¢, and is irreducible.
Thus V' — V/(q) defines a bijection between irreducible representations of W
and those of H.
Now, each irreducible representation of W has a canonical direct sum de-

composition as follows:

Let C = |JTI'; where I'; are right cells. Then, corresponding Fe = @ Er,.

If each Er, is itself a right W-module, then the following conjecture will be
true since (Er, @ V)W is meaningful.
Q

)

Conjecture: V(q) = Q(Er, @ V)V.
@

54



In most of the cases (Er, ® V)" will turn out to be one-dimensional spaces.
Q
So, to show that each Er, is a right W-module, we must show :

Conjectured lemma 4.8.1
< / d ~ / ~ /'
yﬁy an yLRy :>yRy
More generally, it is enough to show the stronger :

Conjectured lemma 4.8.2

y <y and a(y) =a(y) =>y~y.
R R

Assuming this lemma, we can write B, = @ Ke, = @ Er,. Then E,
would be a left as well as a right W—module.( %n the case of an affine Weyl
group W, E, can be regarded as a module over the translations in the affine
Weyl group and will be a subquotient of the group ring of this translation
part, and hence will be finitely generated. Thus, the conjecture of finiteness
of the # of right (left) cells would be true.

We now prove the conjectured lemma in the case of finite W. (Of course, the
‘finiteness of cells’ itself is a trivial problem here.) For this we first prove the

Lemma 4.11 C, . =C, ., =C, ..

Proof: If ¢ = C,, . # 0, then q¥ 'T(TyDZDx) has constant term = C.
Also, c £ 0=z <z ! = a(x) = a(z™!) < a(z) by Proposition 4.9 (2).

L

) a2)t1 S A* ,T(TyTZ, -D,)

Z'#z

writing for D, in terms of the basis {7, }. But the left-hand side and the first
term on the right-hand side have constant term = C' and so the last term
has constant term = 0. But then, by the definition of a(z),a(z) + 1 < a(x)

iea(z) < a(zx). Thus a(zr) = a(z).

Now ¢°5 -7(T,- D, D,) € ¢"5* - 7(T,T. - D.) +q

Therefore C, ,, ., = Cy . ». Cyclically hence C, . = Cy .. = C, 4.
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Corollary 4.12 C, . #0=x ~ y lLy~zlz~ua

Proof of conjectural lemma 4.8.2 for finite W

We can assume without loss of generality that z < 2’ and R(2') € R(z).

Now, 3 z,y such that C,,. # 0 ie. such that q¥ - 7(C,CyD,) has non-
zero constant term. Therefore by (1) of Proposition 4.9, 3 2’ such that
qu(zz) -7(CwCyD,) has a non-zero constant term. Thus C,,, - # 0. Therefore

b llary 4.12, y= ' ~ 2 and y=! ~ 2. Th ~ 2.
y Corollary Yz ZandyT ~2 us z ~ 2

Remark 4.3 Note that Lemma 4.8.2 would be true for affine Weyl groups
if conjecture 4.4 is true.

5 Representation Theory and Intersection Co-
homology

Intersection cohomology theory plays an important role in representation
theory. We have already seen its role in the first aspect mentioned below.
We will discuss briefly the following aspects:

1. Multiplicities of Verma modules (< problem about singularities of Schu-
bert variety).

2. Character formula (conjectural) for finite-dimensional irreducible rational
representations of a semi-simple algebraic group/k = k of char.p.

3. Multiplicities of weights in finite-dimensional irreducible representations
of a semi-simple algebraic group/C.

4. Representations of Weyl groups.
5. Representations of real Lie groups.
6. Representations of Chevalley groups over finite fields.

7. Representations of p-adic groups (Conjecture).
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8. Representations of Ka¢-Moody Lie Algebras (Conjecture).

5.1 Conjectural character formula in positive charac-
teristic

Let GG be a simply-connected, almost simple algebraic group defined over IF_p.
We wish to state a modular analogue of the conjecture of §2 stated for Verma
modules in char. 0.

Let T be a maximal torus and B a Borel subgroup containing it. Let W
denote the Weyl group. Let X (T') be the character group of T and @, the
subgroup generated by the roots. Let Wy¢; be the group of affine transfor-
mation of X (7')-generated by W and by translations by elements in pQ.

Then W,ss is an infinite Coxeter group: its standard set of generators con-
sists of those of W, together with the reflection in the hyperplane {p €
X(T)|ao(¢) = p}, where ¢ is the highest coroot.

If p is the element of X (T') defined by the condition that it takes the value
1 on each simple coroot, then an element w of Wy is said to be dominant
if —wp — p is dominant.

Equivalently, w € Wyss is dominant < w = w'wy with {(w) = £(w") + ¢(wy)
and wy = longest element of W. For each dominant w € Wy, let L,, denote
the irreducible representation of G, of finite dimension over IF,, with highest
weight —wp—p. Let V,, be the Weyl representation of G over IF,, obtained by
reducing modulo p the irreducible representation with highest weight —wp—p
of the corresponding complex group. V,, is well-defined in the Grothendieck

group.

In fact, one has Weyl character formula for character of V,, as:

ch V, = Y (=1)4@ . emawle)=r . TT(1 — =)' where {e*} is a base of
zeW a>0

Z[X (T)] corresponding to {A} in X (7).

Then, as stated in [L2]:

Conjecture 5.1 Let w € W,y be dominant and satisfy the Jantzen condi-
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tion do(—wp) < p(p — h +2), where h is the Coxeter number. Then
ch Ly, = Z (_1)€(w)7f(y) - P, (1) -ch V. (5.1)

YEW, 11

y dominant

y<w

Kato [K1] shows that this conjecture is consistent with the Steinberg tensor
product theorem and that, on using results of Jantzen [J], it follows that this
modular conjecture contains as a special case the conjecture in §2 of Kazhdan
and Lusztig on Verma modules in char. 0. Also, from (5.1) one can deduce
the character formula for any irreducible finite dimensional representation of
G over Fp, by making use of results of Jantzen and Steinberg. The evidence
for this character formula is very strong. Lusztig has verified it in the cases
where G is of type Ay, By or Go. (Jantzen computed ch L, in these cases).

5.2 Weight multiplicities for complex semisimple groups

Let J be a complex simple Lie algebra, b C J a Borel subalgebra, h C b a
Cartan subalgebra, W the Weyl group and @) C h* the subgroup generated
by the roots. If P C h* is the subgroup consisting of those elements which
take integral values on any coroot, then @ has finite index in P. W, 7 C set
of affine transformations of h*, is the semidirect product of W and P.

Wazy is the affine Weyl group which is generated by W and Q. For A € P,
we denote by py the same element regarded in W,y Thus pan = pa - px for
NN eP.

Though Waff is not a Coxeter group, it has a well-defined partial order
and a well-defined length function induced from those of W,;;. In fact,
Waff = Q) x Wysr where (2 = Normaliser of S,¢f in Waff, Saff being the set
of simple reflections of W,y.

So, we define the length function on W, ff as
(dw) = L(wd) = L(w) ¥ w € Wepp, d € QL.
The partial order on W, is extended to one on Waff by defining

ow<duw i<, w<u,
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for 6,6" € Q and w,w" € Wzs. By virtue of these definitions, the statement
and proof of Theorem 2.3 carry over to Wey;.

If P** denotes the set of dominant weights in P, then P** parametrizes the
double cosets W\W, /W as A «— Wp,W.

We note that for A\, N € PTT A < X & my < my in Waff, where m,, is
the longest element in Wp) \W. Let us denote, as usual, for A\ € h*, by M,
the Verma module for J with highest weight A and L, its unique irreducible
quotient. Then, if A € P+, the J-module Ly is finite-dimensional. With

respect to the action of h, it decomposes into a direct sum Ly = @ +Ly , of
o
weight spaces parametrized by p € P.

If d,» = dim Ly, then it depends only on the p-orbit of W and thus it is
enough to find d,, \ for p € P**. It is known that d, , = 0 unless p < \.

It is proved in [L1] that
duy = Py (1). (5.2)

Here, of course, P, m, is defined in terms of the Hecke algebra H of Waf Iz
In fact Psy 50 = Pyw Vy,w € Wyss and 6 € Q. For type A, (5.2) is proved in
[L3] where it is also shown that P, , (¢) are the Green-Foulkes polynomials.

In fact, in [L1] a much stronger version of (5.2) is proved where P, m,(q) is
interpreted as a g-analogue of the multiplicity d, . These will be written in
the following fashion.

Consider the elements

1
kk:m' Z w,

weWp W
for A € P™ and

(o) (52)

for A € PT" + p of the group algebra Q[Wyss]. Then ky(A € PTT) form a
Z-basis for the subgroup

K'={z¢ ﬁ'z[waff] : (Z w) rT= (Z w) = [W]- z} QQ[Waff]

weW weW
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and jy\(A € PTT 4 p) form a Z-basis for the subgroup

(wezw(—l)““’) -w‘1> y=y <wezww> =[] -y} :

It follows that K is a subring of Q[W, ] with unit element | - > wand
weW
that J'- K C J' and that the map k +— j, -k of K' to J* is an isomorphism

of right K'-modules.

Jl = {y < Z[Waff]

Then, for A € P** and Cf = > d, -k, € K', Weyl character formula

H€P++
says that C{! is the unique element in K satisfying j,C{ = jai,-

The g-analogues of the elements jy, k) are the elements J,, K of H defined
aSK)\:W Z Tw,)\EP++and

weWy weWp\W

Jy = (Z(—q)“w -T;) /2, (Z T, > . e P4
wiW weW

where W, denotes the stabilizer of 0 in W and n, is the shortest element in
Wp)\W.

Note that Ky, Jy etc. reduce to ky, jy on putting ¢ = 1. It is, then, shown
for any A € P+ there is a unique element C4 € H ® Q(q'/?) such that

Jp : C;\ = ‘]>\+P and J)\+p = J)\+p (53)

and it is of the form C = ¢=* - Y. dux(q)K, where d, »(q) are in Z[q]
pepP++
<A

with deg. d,,\(g) < “2212) if ) < X and dy () = 1.
Thus, it is finally shown that for 4 < X in P,

() = Py (). (5.4)
Using (5.4), a g-analogue of the Kostant partition function is defined.

In fact, if u < Ain P and 7 € P satisfies (7, d,) > 0V s € S, the polynomial
P, is independent of 7 i.e. depends only on A — p. Here S is the set

Mpy+47,MN 1
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of reflections of W and & € h are the corresponding simple coroots. Thus,
there is a well-defined function

P={keQlk>0}— Zlg"|

which, by (5.4), is such that for any p < X in P with A — u = k, satisfies

A

P(k) = ¢ *”d, . i+(q) for any 7 € P such that (r,d,) >0V s € S.(5.5)

From (5.3) P(k) are seen to satisfy a recurrence relation and it is shown that

k) = Z g () (5.6)

T yenes ny >0
niol+...+nypop =k

where {a, ..., a,} is the set of all positive roots. For ¢ = 1, this is the usual
Kostant partition function.

It is conjectured here that for g < X in P™*, we have

¢~ d (@) = Y (=) Pw(A+ p) = (n+ p)).

weWw

This was shown to be true by Kato in [K2].

So, we have actually a formula for P, ,, as 4 < X in PT7 :

P (@) = 427273 7 (=1 P(w(A + p) = (u+ p)). (5.7)
weW

The right-hand side of (5.7) with the special case u = 0, appears in the
work (unpublished) of D. Peterson, regarding the F-module structure of the
(graded) co-ordinate ring of the nilpotent variety of J.

In fact, if A is the co-ordinate ring of the nilpotent variety of 7, then A =

P A;, each A; being a finite-dimensional representation of J. So, given
i>0

A € P71 Kostant defines [Ly : A;] to be the generalized exponents of F and
defines the polynomial Fy(q) = [Ly : Ailq".
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rkJ

(For Ly = adjoint representation of J, Fx(q) = >_ ¢“~!, where e; are the
i=1

exponents of J.)

It can be seen by Frobenius reciprocity that F)(1) = do . Peterson showed

that
Fy(g) = ™ > " (=1)™) . P(w(A+ p) — p).
weW
Thus, we have
Fx(a) = Prgma (9): (5.8)

5.3 Representations of real Lie groups

Note that the idea of the statement of Theorem 3.7 was to use the parametriz-
ing set W of J to define subvarieties By, of B, the set of Borel subgroups,
whose geometry was related to the multiplicities M, ,, of Theorem 2.4. There
are ways to try to do this for real groups. One, is to use the orbits of the
real group G on B (see §2.3]) but this has the disadvantage that the cells
produced are only components of (real) algebraic varieties. We will follow
another way.

The proper setting is Harish-Chandra’s category of reductive groups. We fix
a reductive algebraic group G, defined over R and assume that G has finite
index in the set of real points of G. Then G is a connected real semisimple
linear Lie group. Let K be Gg:’ where 6 is a Cartan involution on G, let B
denote the flag manifold of G. K acts on B and has finitely many orbits.
(Unlike the complex case, the orbits here are not simply connected.) If z € B,
we write K, for the isotropy group.

A K-equivariant local system on the orbit K -z is specified by a representation
of Kz/(Kx)y on the stalk at . Thus, one-dimensional stalks play a central
role. We define D to be the set of all pairs (0, £), with € an orbit of K on B,
and £ an 1-dim. K-equivalent local system on 6. For (0, L) € D, we write

¢((8, £)) = Length of (6, £) < dim 6.

Example 5.1 (/LV]) Consider G¢ x G¢ with the involution 6(x,y) = (y, x).
Then, the fized point set K s the diagonal subgroup of G X G¢ and its orbits
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on B x B are in one-to-one correspondence with the Weyl group W of G.
Thus, in this case D may be identified with W and the problem that we will
consider will turn out, in the case of this example, to be equivalent to the first
aspect which we have already discussed in §3.

Example 5.2 (/LV]) Suppose Ggr = SL(2,IR), and

1 0 1 0
Then K = G = the torus{(t -1 )/tEC*}.

The flag manifold B = IP" = CU {oc}. K acts by ;

C*,y € CU{o0}. K has 3 orbits {0}, {oo}, and C*; the isotropy groups being
K, K and {£I} respectively. Thus, the set D has four elements: three of
them the pairs with the orbit and constant sheaves on them, and a Mobius
band coming from the double cover of C*.

_1)-y=t2y,t6

Then, one has the

Proposition 5.1 (/V1]) The set of infinitesimal equivalence classes of irre-
ducible admissible representations of G, having same infinitesimal character
as the unit representation, is in a natural 1-1 correspondence with the set D.

Let us fix a representation (irreducible, finite-dimensional) F' of G. Let
(0,L) € D. Let X (0, L) denote the irreducible (7, K)-module corresponding
to (0, L) (i.e. the Harish-Chandra module with character defined by F).

Theorem 5.2 ([V1]) (a) X(0,L) has a finite composition series, and all
of its irreducible subquotients are in G’, the set of infinitesimal equivalence
classes of irreducible admissible representations of GG, on which the centre of
U(F) acts as it does in the trivial representation.

(b) X(0,L) has a unique irreducible subrepresentation X (6, L).
(¢) X(0,L) exhaust G.

Let ©(0,L) and theta(9, L) denote the characters of X(0,L) and X (0, L)
respectively, in the Grothendieck group of (J, K)-modules of finite length.
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Writing ©(0, L) = Y ao.0).00.c7O(0', L"), we have the :
(¢',L)eD

Theorem 5.3 ([V1]) The above formulae can be inverted to give
04,L) = Z Bio.c).0.c)OO, L)

(0',£)eD

for unique integers B ) o0 c1).-

Example 5.3 (/V1]) Let us take the case of SL(2,IR) as in example 5.2.
The four irreducible (J, K)-modules (i.e. the four elements of G’) corre-
sponding to the four elements of D are X 4(1), X4(—1), X.(1)(0) and X.(1)(1),
where Xq(&£1) are discrete series representations, X.(1)(0) is the trivial rep-
resentation, and X.(1)(1) is the irreducible principal series representation
(this corresponds to the ‘Mobius band’ in D).

In §3, we studied the Hecke algebra and constructed the polynomials P, ,,
etc. We try to copy the construction in our case by taking (in place of the
Hecke algebra H of the Weyl group of ), the H-module M which is a free
Z]q"?, ¢ '/?]-module with basis D and the H-module structure defined as
follows:-

For s € S, the set of simple reflections, we have a natural projection 7y :
B — P, = variety of parabolic subgroups of G of type s.

Then L2 = 77! (7s(z)) = P!(z € B) is the line of type s through z. Suppose
(6,7) € D. Fix z € 0. Let us denote § = |J L;. Then,

yeo

1. If L8 C 6, define T,y = ¢*/2,

2. If L N0 = {z} and 6 — 6 is a single K-orbit, then define Ty = 410 — 60
where 4 is the unique locally constant extensions of v to 6.

3. If L; N0 = L;-{point}, then (it being necessarily true that 0—0is a
single K-orbit) define T,y = (¢"/2 — 1)y + ¢*/*(3|6 — ),

4. 1f L; N0 = {z,y}, then it follows that 6 — 6 is a single K-orbit, and v
has two distinct extensions 9; to 6 and so, we define Tyy = v + (% +

ﬁ/2>|<é - 0),
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5. If L; N6 = L; - {two points in one K-orbit} and v extends to 0, then
writing 4" = 4|0 — 6 and 45 for the other extension of 4 to 6, we define
Ty = (¢ = 1)y — Al + (¢'% = 1)7,

6. If L* N6 = {z}, and 0 — 6 is the union of two orbits #’ and ¢” labelled
so that dim 6 = dim 0" = dim ¢’ — 1, we define Tyy = 4|60’ + 5|0,

7. If L3N0 = LF - {two points in two K-orbits} and v extends to 0, calling
the orbits ¢', 0", we define Tyy = (¢/2 — 1)y + (¢*/> = 1)(3/0' +4/6"),
and finally

8. If Lt N0 = L? - {two points} and, v does not extend to f, we define
TS,Y =—7.

That the endomorphisms 7 make M a module for H can be checked (cf.
Prop. 5.5 of [LV]).

The function ¢(0,v) = dim 6 on D plays the role of the length function on
W in the complex case. The Bruhat-ordering on D is the smallest order such
that:

If (¢/,¢") € D and § appears in 7,0’ with a non-zero coefficients, and ¢(§) +
0(0") + 1; and if v and + have the same relationship (with the same s) and
if v/ < ¢’, then we require that v < § and ¢’ < 0. This does reduce to the
Bruhat order in Example 5.1.

We can also define an anti-linear (with respect to ¢'/? + ¢~%/2) automor-
phism of M compatible with the Hecke algebra action and the Bruhat order-
ing. (This is done using Verdier duality). In fact :

Theorem 5.4 ([LV]) There is a unique Z-linear map D : M — M, subject
to the following conditions:

(a) D(¢"?m) = ¢~ '2D(m) ¥ m € M,

(b) D((Ts + 1)m) = ¢ V3T, + 1)D(m) ¥V m € M,s € S and

e [5+2Rv,5<q>-7].

v<é

(c) If § € D, then D(0) = q~
The R, ;s are actually polynomials in q¢*/* of degree atmost £(8) — £(7).
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Then, the analogue of Theorem 2.3 is true (cf Theorem 1.11 of [LV]). Once
the R, ; are known, P, s may be computed exactly as for the Hecke algebra
case.

Let (0,L£) € D. One can construct the Deligne-Goresky-Macpherson inter-
section cohomology complex of sheaves IC(6, £) on 6 as an extension of £ to
6. It can be characterized as the unique K-equivariant constructible complex
F' of sheaves on 0 satisfying the following:

(i) F is self-dual,

(ii) [ =0 for i < 0, where F' are the cohomology sheaves of ',

(i) F°|0 = £, and

(iv) if i > 0, then supp(F") has codimension > i + 1 in .

Let us write £ instead of IC (0, L) for simplicity. We regard its cohomology
sheaves £ to be defined on all of B by extending it by zero outside of 6.
Given (6, £) and (¢, £') in D, we write [£ : £] for the multiplicity of £ in
the Jordan-Holder series for £". These are measures of the singularity of 6.

The main theorem proved in [LV] is
Theorem 5.5 Let (0,7),(0',0) € D. Then,

(a) 6" =0 for odd i, and
(b) Pys(q) = X[y :0%] - ¢

7

Also, [V2] shows

Theorem 5.6 For 7,0 as before, the integers 3,5 are given by

Brs = (=1) 70 Py s(1).

5.4 Luszting’s conjecture for p-adic groups

G is a simply connected, almost simple group /Q,. I is an Iwahori subgroup.
Then, there is a bijection I\G/I < Wy, the affine Weyl group. Let F/(G/I)
be the set of locally constant functions on G which are I-invariant. Then
End;F(G/I) = Double coset algebra of G with respect to I = Hecke algebra
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H of W,y with coefficients in C.
Borel-Matsumoto proved :

Theorem 5.7 There exists a one-one correspondence between the set of ir-
reducible admissible representations V' of G such that VI # 0 and the set of
wrreducible finite-dimensional representations of H.

Thus, it is useful to construct some irreducible representations of H and we
endeavour to do so.

Therefore let E= @ Ce,,EZ"= @ Ce,, E' = E='/E=""!. These are

weWayy a(w)>i

left H-modules as well as right W-modules.

Note that though these two structures do not commute on E or EZ% they
do commute on E* just as in the proof of Theorem 4.1 since Corollary 4.10
carries through to affine Weyl groups.

Thus, if V' is an irreducible right C[W,ys]-module, then (E* @ V)w,,, is an
¢

irreducible left H-module.

We claim that there is a canonical choice for i such that (E* @ V)w,,, # 0.
¢

For this, we consider 0 — E='/E=""! = F' — F/E>" — F/E2" — 0. We
have then

(B ® VW, — (E/E=" ® V)Wass = (B/E ® Ve, — 0.
¢ ¢ ¢

Now, by lemma 4.7, E=* = 0 for large 7 and hence 3 a unique n such that
a; # 0 is an isomorphism for ¢ > n and a; = 0 for ¢ < n. For the choice
i = n, we clearly have (E" @ V)w,,, # 0.

¢

We call this n to be a,.

Thus if V = (B & V)w,,,, then V — V — 0 as W-modules.
¢

(In the case of finite Weyl groups, V>V ie we get a representation of H
with the same dimension as that of the given representation of W.)
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We have the

Conjecture 5.2 (Lusztig)

(i) The H-module V has a unique irreducible quotient V. All other compo-
sition factors are of the form V' with ay: < ay .

(i) V. — V is a bijection between irreducible representations of W and
irreducible representations of H.

A.V. Zelevinskii [Z] obtained all the irreducible representations of the Hecke
algebra in the case of GL,,. In fact he obtained a classification of irreducible
complex representations of the groups GL,(Q,). These are parametrized
by collections ‘a’ of ‘segments’ in the set of cuspidal representations. With
each collection‘a’ of ‘segments’, there is associated the induced module 7,
and the irreducible module (a) that is the only irreducible submodule of
7. Particular cases of m, are the representations of the principal series. At
present, the computation of the multiplicity my,, with which the irreducible
representation (b) occurs in the Jordan-Holder series of the module pi, is an
open problem. He formulates the p-adic analogue of the Kazhdan-Lusztig
hypothesis for this set-up as follows:

The role of G/B is taken by the variety E = E(V') of linear operators of
degree 1 acting on a fixed graded finite-dimensional vector space V' over the
field @,, The automorphism group Aut V' of V', preserving the gradation, acts
naturally on F, and its orbits on E are the analogues of the Schubert cells.
They are parametrized by the collections of segments in Z. If X, denotes the
orbit in E corresponding to a collection ‘a’ of segments in Z, then the study
of X, is connected with that of the irreducible representations of G L,(Q,)
as seen from Langlands reciprocity.

He then formulates the

Conjecture 5.3 (Conjectural Hypothesis) All sheaves H'(X}) are equal
to 0 for odd i, and

Mpa = Z dim H%(Xb)Xa'
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In the above, of course, the intersection cohomology sheaves etc. are the
usual ones (i.e over C); also one takes V over C, in the conjecture. He verifies
the hypothesis in some cases when my,, are known (for eg. the determinant
varieties - the varieties of rank not exceeding a preassigned value). In these
cases, he computes the sheaves H'(X,) starting from the explicit construction
of the resolution of singularities of X;. He also shows that, in general, m; , #
0 & X, C X;. (This would follow from the hypothesis above, once it is
shown.)

5.5 Representations of Weyl groups

Springer shows in ‘good’ characteristic (i.e. large characteristic - he worked
over Lie Algebras and used the non-degeneracy of the Killing form) a con-
nection between the Etale cohomology of B,, the variety of Borel subgroups
containing a unipotent u and representations of Weyl group by showing one
between Representations of Weyl group and Unipotent conjugacy classes.
(Note that Luzstig showed that in all cases the # of unipotent conjugacy
classes is finite.) He did not use any Intersection homology techniques in
Schubert varieties. We give an alternative approach which works over any
characteristic. We have an important

Lemma 5.8 (Gorseky-Macpherson) [GM2] Suppose f : X' — X be a ‘small’
map which is birational and generically one-one where X' is an irreducible
non-singular variety and X is a singular variety.
(By definition, ‘small’ means that V i,

Codim {x € X/dim f~'(x) =i} > 2i,
so that the fibres will have dimension < 1dim z.) Then, IC(X) = Rf.(C).

Let X = G, a semi-simple, connected algebraic group over k = k. Let
X'=G=1{(g9,B)|g € B}.

Both X and X’ are non-singular and the first projection X’ % X satisfies
the conditions of the lemma.
In fact, p; ' (g) = B, = set of Borels containing ¢ has dimension < 1{dim C¢(g)— rank G}.
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In fact, the equality holds in ‘good’ characteristic [St 1], [Sp 2]. Therefore
by the lemma 5.8,

(p1)«(C) = IC(G, L), where L is a local system on G.

Since there is a canonical action of W on L, there is a canonical extension
to IC(G, L) also.

Thus, we have

H'(IC(G, L)), = H'(B,), the ordinary cohomology V g € G. (5.9)

5.6 Representations of Chevalley groups over finite fields

Let G be a connected reductive algebraic group /IF,. Let F': G — G be the
Frobenius map. We can imbed G in GL,(IF,) in such a way that F' = 7|G,
where 7 @ (2 — (27). If T"is a maximal turns/IF, C B, a Borel subgroup
J/IF, U = radical of B and W is the Weyl group, we define a decomposition

of B=G/BasB= |J X,, where X,, = {¢4B € B: g'f(g9) € BwB}
weW
is a locally closed subvariety which is smooth of dimension ¢(w). X, are

locally isomorphic to the Schubert varieties B,. G(IF,) = GF acts on X,
by conjugation. Define X, = {g(UNwUw™) € B: gt F(g) € wU} C
G/(UnNnwUw™).

Then T, := {t € T : F(t) = w™'tw} acts on X,, by right multiplication and
has no fixed points.

We have Xw/Tw = X, i.e. Xw — X, is a finite étale covering.

If0:7T, —Q,, the ]HiC(XW,QZ)g is a finite-dimensional vector-space over Q,
on which G¥ acts. (Here H!(X,,,Q,)s is the subspace of H(&,,Q,) on which
IF, acts by the character 0).

Then, Ry, 9 = S (=1 H!(X,,Q,)s is called a virtual representation of G(IF).

(2

It is known that

Theorem 5.9 (1) £Rr, ¢ is irreducible for ‘almost all” 6.

(2) Any irreducible representation of G(IF) appears with non-zero coeffi-
cients in some Ry, 4.
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A proof may be found in Lusztig’s book on character sheaves.

Assume from now on that G is split /IF,. Then, 3 a maximal torus 7'/IF, such
that F\(t) =t? V¢t e T. Call R, = Rr,1. If pis a unipotent representation
of G(IF), then :

Proposition 5.10 (i) dim p = ﬁ (p, Ry)dim Ry,
weW

(ii) {p, Ry) = Tr(s, p) for some semireqular semisimple element in T,,.

Suppose F is a irreducible representation of W.
Define Ry = ﬁ S>> Tr(w,E)R, € (Grothendieck group of G') @Q.
weW

Two such E and E’ are said to be in the same family (we say F ~ E')
if 3 a unipotent representation p of G such that (p, Rg) # 0 # (p, Rg:).
Similarly, we can define a family of unipotent representations of G. Then,

we will have a bijection
U — {Rep(W)}

where U denotes the set of families of unipotent representations of G(IF,)
and the association is p < F iff (p, Rg) # 0.

In the case of GL,, the equivalence relations are trivial i.e. each family
contains exactly one element.

We will show that the above two sets are also in bijection with the set of
two-sided cells in W.

For this, first write

w= ][ c

C
2—sided cell

Here any [C] is regarded as a W-module by regarding it as the quotient

P [C']] P [C’] of two-sided ideals.
cce T o#e

Then, we have Q[W] = €[C]. But, we can also write Q[W] (since it is a

c
semi-simple algebra) as a sum Q[W] = @ Ig of two-sided simple ideals.
E
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Thus, @ [C'] and @ [C'] are also subdirect sums of this form.
crce c'ge

So, for any two-sided cell C,[C] = @ Ig. If we define two representations
E

E and E’ of W to be equivalent, if Ir and I occur in the same two-sided
cell, then it can be checked that this is the same equivalence relation defined
before i.e. we have bijections

U — {Rep(W)} < 2 — sided cells.
With help of this identification, one can show :

Theorem 5.11
R =3 (=)' H (X, Q) = 3 Pyu(l) (Z(—l)iﬂﬂxy,m)) -
% y<w i
In fact, we can obtain ]Hi(XW,QZ) as an explicit linear combination of Ry, y <
w.
Suppose, now F is an irreducible representation of W. Then, we have ag as

in §5.4 i.e. ag = a(w) V w € C where E appears in the two-sided cell C.

Then, if E(q) denotes the corresponding representation of H as in §4.8, we
have V x € W,

Tr(T,, E(q)) = ijEq_aTE + higher powers of ¢/ where Cor € L.

If F'is the family of representations of W corresponding to a 2-sided cell C,

then 3 a left cell £ C C satisfying the property that the matrix (Cy g) s is
ECF

the character table of a finite group ['c.
(In the above matrix, we delete rows or columns which are identically zero.)

Then, the main theorem is :

Theorem 5.12 There is a bijection

U~ Uc./\/l (Fc
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where M(T') := {(z,0)|z € T upto conjugacy and o is an irreducible repre-
sentation of Cr(x)}.

The main lemma which makes everything work is

Lemma 5.13 V2 € W, if a, := (=1)"® Y. C, gE, then
B
R,, = (=)@ X" C, pRg is an actual representation of G(IF,).
B

The proof uses intersection cohomology.

It should be remarked that each unipotent representation of G(IF,) occurs
in some R,, and if we know all the R, and their inner-products, we can
recover all unipotent representations.

Let us see through some examples as to which x € W give non-zero «,.

(i) In S, each left cell contains a unique z such that a, # 0; this will turn
out to be the unique involution in the left cell.

(ii) In B, C,, D,, we have a,, # 0 < z is an involution.

Also, each left cell contains some involution; the number of involutions in
a left cell is a power of 2 (this fact can be proved a priori only using rep-
resentation theory techniques which, in turn, use intersection cohomology
techniques!).

(iii) In exceptional groups, there are non-involutions = with a, # 0. Finally,
we have the

Conjecture 5.4

az#0<:>xrzx_1.

5.7 Conjectural representation theory of Kac-Moody
algebras

We will be following [DGK].
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Definition 5.1 Let A = (a;j)nxn be a matriz over C. We can associate a
Lie algebra G(A) over C which is uniquely defined upto an isomorphism by:

(i) G(A) contains an Abelian diagonalizable subalgebra H such that G(A) =

P G, where
acH*
Go={r e G(A): [hz]=alh)zVhe H}
and Gy = H,
(i) there exists a linearly independent set of linear functions oy, -+ o, € H*

and elements ey, ... en, f1,..., fn in G(A) such that

1. G,, = Ce;,G_o, =Cfi(1 <i<n),

2. [es fi] =0 fori # j,

3. {e1, .. yen, f1,. -, fu] UH generates G(A) as a Lie algebra,
4. the elements h; = le;, f;](1 < i < n) are linearly independent,
5. aj(hy) = a;;(1 <i,5 <n),

6. if h € H is such that a;(h) =0V 1 < i <n, then h € Y Ch;, and
=1

1=

7. any ideal of G(A) which intersects H trivially is zero.

G(A), H and A are called a contragradiant Lie algebra, a Cartan subalgebra
of G(A) and the Cartan matriz of G(A) respectively.

Denoting by T, the lattice in H* generated by {«1,...,a,} and by I'" the
set {Ek;o; € T'k; > 0,1 <i < n}, we define, for A € H*,

D) =A-T"={\A—plpelt}.

For \,u € H*, we say A > p if p € D(N). Thus, we can define posi-
tive and negative roots etc. in the obvious manner. Also, we write N, =
> GoyN_= > G_,. The Cartan matrix A is said to be symmetrizable

acAt aEA~
iff there exists a non-degenerate matrix D = diag.(dy, ... ,d,) such that D- A

is symmetric. We, then have the following:
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Theorem 5.14 If A is symmetrizable, then 3 a non-degenerate C-valued
symmetric bilinear form (, ) on G(A) such that:

(i) (', ) is G(A)-invariant,

(i1) the restrictions of (, ) to H and to G, & G_,(a € AT) are non-
degenerate,

(i) (Gar Gs) = 0 if a5 £0,

(iv) ¥V o € AT, one has [eq, o] = (€a,€ o) - ha for any e, € Go,e_o € G,
where ho, = Xk;d;h; if o = Xk, and

(v) (hihy) = d; ay; = dag, Vi, j.

If A = (a;;) is symmetrizable and such that (1) a; = 2, (2) a;; are non-
positive integers for ¢ # j and (3) a;; = 0 = aj; = 0, then the associated Lie
algebra G(A) is called a Kaé-Moody Lie algebra.

In the above discussion, we choose (as we can) the d; to be positive rational
numbers. We define s; on H* by s;(A\) = A — A(h;)a; YV A € H*. Let W be
the group generated by these reflections {s;}!" ; it keeps the set A of roots
invariant and dimG, = dim G,V o € A,w € W.

W is called the ‘Weyl group’ of G(A).

Let G(A) be a Kaé-Moody Lie algebra.
We consider the category © whose objects are G(A)-modules M satisfying:

(a) M is H-semisimple with finite-dimensional weight spaces and
(b) 3 finitely many elements py,...,ux € H* such that any weight of M
belongs to some D(f;).

The morphism of © are G(A)-module homomorphisms. The Verma modules
are highest modules in © defined as M (\) ~ U(G(A))/I, where A € H* and
I is the left ideal of U(G(A)) generated by {h — A(h)|h € H} and N;.

They have the following properties which are easily verifiable:

(a) If vy is the image of 1 in U(G(A))/I\, then Ny -vy = 0 and h - vy =
Ah) -0\ YV h € H,

(b) M(X) is a free U(N_)-module of rank 1 with {v,} as a basis;
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(c) The I'-gradation of U (NV_) induces a weight space decomposition of M (\):

M) = @ M(A)r_, dimM (M), = P(v), the partition function of G(A)
velt

at v,

(d) For any G(A)-module M containing a vector v of highest weight A such
that Ny - v = 0, there exists a unique G(A)-module homomorphism. ¢ :
M(X\) — M such that p(vy) = v,

(e) M(A) has a unique irreducible quotient L(\) and
(f) Any irreducible module L in © is isomorphic to L(\) for a unique A € H*.
We recall the notion of formal characters in this setup.

Let A be the set of all functions f : H* — 7 such that f vanishes outside
a finite union of D()\;)’s. Then A is a ring under pointwise addition and

convolution * given by (f*g)(A\) = >. f(u)-g(d), A € H*.
nto=X

We will call a family {f;};c; in A summable iff
(i) 3 pa, - .., p. € H* such that each f; vanishes outside D(p1)U. ..U D(ug),

(ii) for any A € H*, f;(A) = 0 for all but finitely many i € I.
Thus, the function f =) f; will be a well-defined function in A. The formal

iel
character ch M of M in O is defined as the element of A such that

ch M(\) = dim My ¥V \ € H".

We have :

Proposition 5.15 ([DGK]) Given M € ©, there exists a unique set {ax}rcu+
of non-negative integers such that the family {ay - ch L(\)}xen+ is summable
with sum = ch M. Moreover, ay # 0 iff L(A\) ~ a subquotient of M. We
write ay = [M : L(N)].

Kaé¢ and Kazhdan [KK] showed :

Theorem 5.16 Let \,u € H*. Then L(p) occurs in M(X) iff the ordered
pair {\, u} satisfies the condition:
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There exists a sequence (31, ..., Pr of positive roots and a sequnce ny, ..., N
of positive integers such that

(i) N\ — = Zk:nlﬁz and

i=1
(ZZ) 2()\ +p— nlﬁl — ... — njflﬁjfl,ﬁj) = nj(ﬁj,ﬁj) V1 < j < k where
p € H* is an element satisfying p(h;) = 3a; ¥ 1 <i < n.

To make a meaningful conjecture about [M) : L(u)] we have to consider a
‘good’ subcategory ©9 of © which has a decomposition into a direct sum of
subcategories ©F,, where the objects of ©f are modules for which the highest
weights of all ireeducible subquotients, translated by p, lie on the same orbit
Q of the Weyl group W. This is the same decomposition as in the theory of
characters in the finite-dimensional case. This has helped in describing the
components of the Verma modules in terms of the Weyl group.

For a complex number ¢ we write ¢ > 0 if either Re(c) > 0 or else Re(c) =0
and I'm(c) > 0. We write ¢ < 0 if ¢ 2 0.

Let C' be the set of elements A € H* which satisfy:
(A\,a;) >0fori=1,...,n and
(A, @) # 0 for o € A such that (o, «) = 0.

Set K = |J w(C). Then, we have
weW

Proposition 5.17 (i) {W;s1,...,s,} is a Cozeter system.
(i1) Every orbit of W in K contains a unique element of C'.
(111) W is finite & K = H* & dim G(A) < 0.

(i) If \ € C and w € W, then A —w\ = Zciai,ci >0, and

(2

A = wA < w € the group generated by {s;|(a;, \) = 0}.

If we set K9=—p+ K,C9 = —p+ C, we can define a subcategory ©7 of ©
whose objects are those M € © whose components have their highest weights
in K9.

The main point is
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Lemma 5.18 Let A € K9 and L(u) occur in M(X). Then 3 0 € W such
that o(A+ p) = p+ p. In particular, p € K9.

Corollary 5.19
ANeE KY9= M(\) € ©9.

One can show that for \g € C9 which is integral and such that (Ao + p, ) #
0V aeAT, and for x <y in W, [M(x(Xo + p) — p) : L(y(Xo + p) — p)] is
independent of Ao and can conjecture that this is = Py, (1).
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