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1 Coxeter Groups

Definition 1.1 A pair (W,S) is said to be a Coxeter system if

1. W is a group with the generating set S and

2. the relations are m(s, s) = 1 and m(s, t) = m(t, s) where m(s, t) de-
notes the order of st ∀ s, t ∈ S.

Remark 1.1 1. m(s, t) = ∞ is allowed and has the obvious meaning.

2. If (W,S) is a Coxeter system, we also call W a Coxeter group by abuse
of language.

Examples

1. Let sn denote the symmetric group of degree n ≥ 2. If si is the trans-
position (i, i+1) for 1 ≤ i ≤ n−1 and S = {s1, . . . , sn−1}, then (Sn, S)
is a Coxeter system.

2. Let S̃1
n =

{
ϕ : ZZ

Perm→ ZZ : ϕ(a + n) = ϕ(a) + n ∀ a ∈ ZZ
}

.

Then, we have a map

α : S̃1
n → ZZ

ϕ 7→
∑

i mod n

(ϕ(i)− i).

If S̃n = Ker α and S is the subset of n elements induced from the
transpositions (̄i, i + 1) on {1, 2, . . . , n + 1}, 1 ≤ i ≤ n then (S̃n, S) is a
Coxeter system.

The group S̃n is infinite.

3. Suppose J is a complex semi-simple Lie algebra and h, a Cartan sub-
algebra of J . Let Φ denote the system of roots of J with respect to h.
Then, the Weyl group of Φ is a Coxeter group.
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4. In a semi-simple algebraic group over a local field, the affine Weyl group
corresponding to a system of roots is a Coxeter group. This is infinite.

Definition 1.2 Suppose (W,S) is a Coxeter system and w ∈ W . We define
the length of `(w) to be the smallest integer `(w) such that w = s1s2 . . . s`(w), si ∈
S. An expression of w, of length `(w) over S, is called a reduced expression
of w.

Proposition 1.1 ([B]) Suppose (W,S) is a Coxeter system. Then,

(i) `(w) = `(w−1) ∀ w ∈ W .

(ii) |`(w)− `(w′)| ≤ `(ww′−1) ∀ w,w′ ∈ W .

(iii) For w,w′ ∈ W, `(ww′) ≡ `(w) + `(w′) mod 2.

(iv) For s ∈ S and w ∈ W with a reduced expression w = s1 . . . sq, exactly
one of the following holds: (a) `(sw) = `(w)+1 with ss1 . . . sq a reduced
expression of sw, (b) `(sw) = `(w) − 1 and s1s2 . . . si−1si+1 . . . sq is a
reduced expression (for some 1 ≤ i ≤ q) of sw (Exchange property).

(v) For s, t ∈ S and w ∈ W , if `(w) = `(swt) and `(sw) = `(wt), then
sw = wt.

(vi) Suppose M is a monoid and f a function of S into M .

For s, t ∈ S, let m(s, t) denote the order of st; define

a(s, t) =





(f(s)f(t))`, if m(s, t) = 2` < ∞
(f(s)f(t))`f(s), if m(s, t) = 2` + 1 < ∞
1, if m(s, t) = ∞.

If we have a(s, t) for s, t ∈ S, then there exists a function g : W → M
such that g(w) = f(s1) . . . f(sq) for each w ∈ W and each reduced expression
s1 . . . sq of w.

Proof:
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(i) If w = s1 . . . sq is a reduced expression, then w−1 = sp . . . s1 and so
`(w−1) ≤ `(w). On the same count, `(w) ≤ `(w−1).

(ii) Taking reduced expressions for w, w′, it is clear that `(ww′) ≤ `(w) +
`(w′).

Replacing w by ww′−1, we get `(w)− `(w′) ≤ `(ww′−1). Interchanging
w and w′, `(w′)− `(w) ≤ `(w′w−1) = `(ww′−1).

(iii) The map s 7→ −1 on S extends to the homomorphism w 7→ (−1)`(w) of
W into {−1, 1}.

(iv) If `(sw) > `(w), then `(sw) = `(w)+1 as `(w1w2) ≤ `(w1)+`(w2) ∀ w1, w2 ∈
w.

Let `(sw) ≤ `(w).

Since `(sw) ≡ `(w) + 1 mod 2 and |`(w)− `(sw)| ≤ `(s) = 1, we have
`(sw) = `(w)− 1.

We will prove the exchange property in three steps.

Step 1: Let T = {wsw−1|w ∈ W, s ∈ S}. Given a string s̄ =
(s1, . . . , sq), si ∈ S, let Φ(s̄) = (t1, . . . , tq) where ti = s1s2 . . . si−1sisi−1 . . . s2s1.
If s1 . . . sq is a reduced expression, then ti are all distinct.
For, if ti = tj for some i < j, we have s1 . . . si−1sisi−1 . . . s1 = s1 . . . sj−1sjsj−1 . . . s1

so that
1 = si+1 . . . sj−1sjsj−1 . . . si.

If we multiply by s1 . . . si−1 on the left and sisi+1−sq on the right, we get
s1 . . . sq = s1 . . . si−1si+1 . . . sj−1sj+1 . . . sq. This gives a contradiction
because s1 . . . ŝi . . . ŝj . . . sq has lesser length.

Step 2: For any string s̄ = (s1, . . . , sq), define n(s̄, t) = #{i|ti = t}.
Then (−1)n(s̄,t) depends only on the expression s1 . . . sq.

To show this, we consider for s ∈ S, the map Us : {±1}×T → {±1}×T
defined by Us(ε, t) = (ε · (−1)δs,t , sts−1).
The map s 7→ Us extends to a homomorphism of F (s), the free group
on S into Aut({±1} × T ). We check that this goes down to W . For
this, consider any string s̄ = (s1, . . . , sq) and write w = s1 . . . sq and
Us̄ = Us1 . . . Usq . We show, by induction on q that Us̄(ε, t) = (ε ·
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(−1)n(s̄,t), wtw−1). This is clear for q = 0 or 1. For q > 1, write
s′ = (s2, . . . , sq) and w′ = s2 . . . sq. We get

Us̄(ε, t) = Us1(ε · (−1)n(s′,t), w′tw′−1)

= (ε · (−1)
n(s′,t)+δ

s1,w′tw′1 , wtw−1).

But Φ(s̄) = (w′−1s1w
′, Φ(s′)). So n(s̄, t) = n(s′, t)+δw′−1s1w′,t and hence

we have Us̄(ε, t) = (ε · (−1)n(s̄,t), wtw−1). So, to complete this step, it
is enough to show that if s, s′ ∈ S and ss′ has order r, then (UsUs′)

r =
Identity. Consider the string s̄ = (s1, . . . , s2r) where si is s for i odd
and s′ for i even. Then, ti = s1 . . . si−1sisi−1 . . . s1 = (ss′)i−1s ∀ 1 ≤
i ≤ 2r. Thus t1, . . . , tr are distinct and tr+i = ti for 1 ≤ i ≤ r. So,
∀ t ∈ T, n(s̄, t) = 0 or 2. Thus (UsUs′)

r = Us̄ = Identity.

Step 3: To complete the proof of the exchange property, let w =
s1 . . . sq be a reduced expression. Since `(sw) = q − 1, let sw =
s′1 . . . s′q−1. Then w = s1 . . . sq = ss′1 . . . s′q−1 are reduced expressions

for W . Now call the string s̄ = (s1, . . . , sq) and the string s′ =
(s, s′1, . . . , s

′
q). Since s ∈ Φ(s′) and n(s′, s) = 1, therefore n(s̄, s) = odd

and hence s ∈ Φ(s̄) i.e. s = s1 . . . si−1sisi−1 . . . s1 for some 1 ≤ i ≤ q
i.e. ss1 . . . si−1 = s1 . . . si.

(v) Either `(swt) = `(w) < `(wt) = `(sw) or `(swt) = `(w) > `(wt) =
`(sw). Let us first assume `(w) < `(wt).

If w = s1 . . . sq is a reduced expression, then wt = s1 . . . sq is a reduced
expression. Since `(swt) < `(wt), the exchange property implies that
ss1 . . . si−1 = s1 . . . si for some 0 ≤ i ≤ q + 1 where we denote s0 =
s, sq+1 = t.

Therefore if i ≤ q, ss1 . . . si−1si . . . sq = s1 . . . si−1si+1 . . . sq i.e sw =
s1 . . . si−1si+1 . . . sq i.e. `(sw) ≤ q − 1 < `(w), a contradiction.

Thus i = q + 1.

Therefore ss1 . . . sq = s1 . . . sq+1 ⇒ sw = wt.

For the other case when `(w) > `(wt), we use wt instead of w to get
s(wt) = (wt)t ⇒ sw = wt.

(vi) For each w ∈ W , let Dw be the set of tuples (s1, . . . , sq) such that
w = s1s2 . . . sq is a reduced expression and let Fw : Dw → M be
defined by Fw(s1, . . . , sq) = f(s1) . . . f(sq).
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We will show by induction on `(w) that Fw is constant. The cases
`(w) = 0 or 1 are trivial and we suppose that `(w) = q ≥ 2 and
assume the assertion proved for the elements with length < q. Let
s = (s1, . . . , sq) and s′ = (s′1, . . . , sq′) be in Dw.

Firstly we prove Fw(s) = Fw(s′) in the two cases:

(1) s1 = s′1 or sq = sq′ and
(2) there exist u, v ∈ S such that sj = s′k = u and sk = s′j = v for j
odd and k even.
To prove the result in the case (1), we consider

Fw(s1, . . . , sq) = f(s1)Fw′′(s2, . . . , sq) = Fw′(s1, . . . , sq−1)

for w′ = s1s2 . . . sq−1 and w′′ = s2 . . . sq and use the induction hypoth-
esis to get Fw(s) = Fw(s′) if s1 = s′1 or sq = sq′ .

In the case (2) when there are u, v ∈ S such that sj = s′k = u 6= v =
sk = s′j for j odd and k even (the case u = v is obvious). Let s1 . . . sq and
s′1 . . . s′q be reduced expressions. Then, uv has finite order; in fact, if q is

even, s1 . . . sq = (uv)q/2 = (vu)q/2 = s′1 . . . s′q ⇒ (uv)q = 1 and if q is odd,

s1 . . . sq = (uv)
q−1
2 · u = (vu)

q−1
2 · v = s′1 . . . sq′ ⇒ (uv)q = 1. Moreover,

order of uv divides q and since s1 . . . sq is a reduced expression, therefore
q = order of uv. Then it is clear that Fw(s) = a(u, v) = a(v, u) = Fw(s′).
Now, we will show, in general, that Fw(s) = Fw(s′) for any two strings
s = (s1, . . . , sq) and s′ = (s′1, . . . , s

′
q) in Dw. Let, if possible, Fw(s) 6= Fw(s′).

Consider the string t1 = (s′1, s1, . . . , sq−1). Now, w = s′1 . . . sq′ is reduced
⇒ s′1w < w = s1 . . . sq ⇒ s′1w = s1 . . . si−1si+1 . . . sq is a reduced expression
for some 1 ≤ i ≤ q. Thus (s′1, s1, s2, . . . , si−1, si+1, . . . , sq) ∈ Dw and its image
under Fw is equal to Fw(s′) and is also equal to Fw(s) unless i = q. Since
Fw(s) 6= Fw(s′), we must have i = q i.e. (s′1, s1, . . . , sq−1) ∈ Dw i.e. t1 ∈ Dw

and Fw(t1) = Fw(s′) 6= Fw(s).

Recursively, again (taking s and t1 in place of s′ and s respectively), we
get t2 = (s1, s

′
1, s1, . . . , sq−2) ∈ Dw and Fw(t2) = Fw(s) 6= Fw(t1) and so on.

Finally, we get tq−1 and tq to be of the form of case (2) (where we have proved
the result) and such that Fw(tq−1) 6= Fw(tw); this is a contradiction.

Hence, we have Fw(s) = Fw(s′) ∀ s, s′ ∈ Dw.
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2 Hecke Algebras

Definition 2.1 Let (W,S) be a Coxeter system. We define the Hecke algebra
H corresponding to (W,S) to be the free ZZ[q]-module with a basis Tw, for each
w ∈ W . The multiplication is defined by the rules

Tw · Tw′ = Tww′ if `(ww′) = `(w) + `(w′)
and T 2

s = qTe + (q − 1)Ts ∀ s ∈ S

}
. (2.1)

Remark 2.1 1. The fact that there is a unique associative algebra struc-
ture on H, satisfying (2.1), will be verified in Proposition 2.1.

2. The same proposition will also show that the Hecke algebra can be de-
fined purely in terms of generators {Ls}s∈S and the (slightly more gen-
eral) set of relations ([I])

L2
s = qs + q′sLs ∀ s ∈ S

(LsLt)
mst = (LtLs)

mst if O(st) = 2mst < ∞
(LsLt)

mst · Ls = (LtLs)
mst · Lt if O(st) = 2mst + 1 < ∞



(2.2)

where the constants qs, q
′
s satisfy qs = qs0 and q′s = q′s0

whenever s0 ∈ S
is conjugate to s, in W ; the earlier rules (2.1) arise as particular case
on setting qs = q and q′s = q − 1 for all s.

3. If W is the Weyl group of a Tits-system (G,B,N, S) with G finite,
and if K is an algebraically closed field whose characteristic does not
divide the orders of G and W , then it is a Theorem of Tits that HK

∼=
K[W ]. This is shown by proving that if A is an associative algebra
over K[t1, . . . , tr] having finite rank as a free K[t1, . . . , tr]-module and
if the discriminant ∆(t1, . . . , tr) of A relative to a basis of A is not zero,
then for any two specializations (αi), (βi) ∈ Kr of t1, . . . , tr such that
∆(αi) 6= 0 6= ∆(βi), one has A(αi) ' A(βi) as K-algebras.

Thus, if q is specialized to a prime power, we will have H
⊗
ZZ[q]

C ∼= C[W ]. But,

the isomorphism itself may not be definable over ZZ[q], without introducting
q1/2. We will show in §4 that over |Q(q1/2), there is a canonical isomorphism
(Theorem 4.1). That q1/2 is necessary can be seen through examples after
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Theorem 4.1. The representation theory of a Chevalley group G over IFq is
connected with the study of irreducible representations of H

⊗
ZZ[q]

C.

Concrete realization of H as an algebra of double cosets

The Hecke algebra can also be realized as an algebra of double cosets as
follows. Let G be a group and B be a subgroup such that [B : B ∩ σBσ−1]
is finite for all σ in G. Let H = H(G, B) be the free ZZ-module spanned
by the double cosets Tσ = BσB(σ ∈ G). A multiplication is defined in H
as Tσ · Tτ =

∑
µ

mµ
σ,τ · Tµ where mµ

σ,τ is the number of cosets Bx which are

contained in Bσ−1Bµ ∩BτB.

Note that B ∩ x−1Bx\B → B\BxB is a bijection

(B ∩ x−1Bx)y 7→ Bxy

and so #(B ∩ x−1Bx\B) = #(B\BxB) < ∞ ∀ x ∈ G.

Thus each double coset is a finite union of right cosets.

Now, it can be seen that mµ
σ,τ is independent of the choice of the represen-

tatives σ, τ, µ in the double coset and that, for a given σ, τ, the number of
double cosets BµB satisfying mµ

σ,τ 6= 0 is finite. H(G,B) becomes an asso-
ciative algebra with the unit element over ZZ. For example, let IFq be a finite
field and consider G = GLn(IFq), B = upper triangular matrices inside G.
Then, the set of double cosets is in bijection with Sn. (2.1) can be easily
verified. For instance, for s = (12), the set B ∩ sBs−1 = {b ∈ B/b12 = 0}
and since me

s,s is the index of B in BsB = Index of B ∩ sBs−1 in B, we have

me
s,s = q as B =

q−1⋃
a=0

(B ∩ sBs−1)ua, where u is the unipotent matrix whose

only non-zero diagonal entry is u12 = 1.

Let us now show that the Hecke algebra can be defined by generators and
relations as in (2.2).

Proposition 2.1 Let C be the set of conjugacy classes of elements of S and
let {uc, vc, c ∈ C} be indeterminates over ZZ. We write us, vs (for s in c)
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instead of uc, vc. Let V be the free ZZ[uc, vc]-module spanned by W . Then,
there exists an associative multiplication ∗ in V such that

s ∗ w =

{
sw, if `(sw) > `(w), and,
ussw + vsw, if `(sw) < `(w)

}
. (2.3)

Such a multiplication is unique. Also, then (2.3) are the defining relations
for H over ZZ[uc, vc; c ∈ C].

Proof: First note that the existence of a unique associative multiplication
V satisfying (2.3) shows that (2.3) form defining relation for H, by virtue of
Proposition 1 (vi).

Now, the uniqueness of the multiplication is clear from its associativity and
from (2.3) let us show the existence.

Define Ps ∈ End (V ) for s ∈ S by the right hand side of (2.3) and Qs ∈
End (V ) similarly with s on the right instead of the left.

Now, Proposition 1(v) gives

PsQt = QtPs ∀ s, t ∈ S. (2.4)

Let R and J denote the sublagebras of End(V ) generated by {Ps : s ∈ S}
and {Qs; s ∈ S} respectively. Then, the maps

P : R→ V and ψ : L → V

f 7→ f(1) s 7→ g(1)

are bijective. In fact, for any reduced expression w = s1 . . . sn, we have
ϕ(Ps1 . . . Psn) = w from (2.3). Thus ϕ and ψ are surjective. Also, if ϕ(f) = 0,
then f(1) = 0 ⇒ g(f(1)) = 0 ∀ g ∈ L

⇒ f(g(1)) = 0 from f(1) = 0 ⇒ g(f(1)) = 0 ∀ g ∈ L
⇒ f = 0 from the surjectivity of ψ.

Thus, one can define the product v ∗ v′ = ϕ(ϕ−1(v)ϕ−1(v−1)) for v, v′ ∈ V .
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Definition 2.2 Let H be the Hecke algebra corresponding to a Coxeter sys-
tem (W,S), and over ZZ[q, q−1]. We define a map: H → H by

∑
w

pw(q)Tw =
∑

w

pw(q−1)T−1
w−1

for pw(q) ∈ ZZ[q, q−1] and ∀ w ∈ W .

Note that each Tw is invertible for H over ZZ[q, q−1].

Lemma 2.2 − : H → H is a ring involution.

Proof: The only thing to check is that Ts · Ts = T̄s · T̄s for s ∈ S. But

Ts · Ts = q + (q − 1)Ts = q−1 + (q−1 − 1)T−1
s

= (q−1Ts + q−1 − 1)T−1
s = T−1

s T−1
s = T̄s · T̄s.

Definition 2.3 (Standard partial order on any Coxeter system)

For w, w′ ∈ W , we say w ≤ w′ if w is obtained from w′ by dropping some
elements from a reduced expression for w′.

Theorem 2.3 (Kazhdan-Lusztig) [KL1]

For all w ∈ W , there exists a unique element c′w ∈ H over ZZ[q1/2, q−1/2] such
that
(i) cw′ = cw′ and (ii) cw′ = q−

1
2
`(w)

∑
y≤w

Py,w(q) · Ty

where Py,w(q) ∈ ZZ[q] is

{
of degree ≤ `(w)−`(y)−1

2
if y < w

≡ 1 if y = w.

Before embarking upon the proof, let us see how this theorem is related to
a problem concerning Verma modules - ‘The Kazhdan-Lusztig Conjecture’.
(Now solved independently by Brylinski-Kashiwara [BK] and Bernstein-Beilinson
[BB].)
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Let J be a complex reductive Lie algebra, h ⊆ J a fixed Cartan subalgebra,
and b = h + n a fixed Borel subalgebra containing h, with nil radical h.
Let Ĵ denote the set of equivalence classes of irreducible (possibly infinite
dimensional) J -modules L such that

(i) the center Z(J ) of the enveloping algebra of J acts on L as it does in
the trivial representation; and

(ii) L has a highest weight vector i.e. a vector v 6= 0 killed by n.

Denoting ρ = ρ(n) = 1
2

∑
α∈s

α and W = Weyl group of h in J , one knows

from Harish-Chandra’s theorem on Z(J ) that, for L ∈ Ĵ , the highest weight
vector v is unique upto a scalar multiple and there is a w ∈ W such that v
has weight −(wρ + ρ) for h. This defines a bijection Ĵ ↔ W .

So, for w ∈ W , let Lw denote the unique element of Ĵ of highest weight
−(wρ + ρ) i.e. Mw = U(J ) ⊗b C−(wρ+ρ). It is known that Mw has a finite

composition series and all its irreducible composition factors lie in Ĵ . If we
denote by [Lw] and [Mw], their formal characters, then we have the following
theorem.

Theorem 2.4 [Mw] =
∑
y<w

my,w[Ly] + [Lw] where my,w are integers ≥ 0, the

multiplicities of Ly in Mw. Further, these formulae can be inverted to give
[Lw] =

∑
y<w

My,w[My] + [Mw] where My,w are some integers.

Also, My,w0 a (−1)`(y)−`(w0), where w0 is the largest element (this is Weyl
character formulas). Kazhdan-Lusztig conjecture is an algorithm for com-
puting My,w. It says that My,w = (−1)`(y)−`(w) · Py,w(1). (See Cor. 4.2.1 to
deduce the Weyl character formula from Kazhdan-Lusztig conjecture.)

We will show in Corollary 2.10 that this is equivalent to saying that my,w =
Pww0,yw0(1) where w0 is the unique longest element of w. Later, we will prove
a geometric version of the conjecture in relation to singularities of Schubert
varieties (Theorem 3.4).
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Before proving Theorem 2.3, we will define, for y, w ∈ W, y ≺ w if (a)
y < w, (b) `(y) 6≡ `(w) mod 2 and (c) Py,w (once it is known) has a non-zero

coefficient of q
`(w)−`(y)−1

2 . For y ≺ w, we will write µ(y, w) for this coefficient.

We also define y 7→ w if either y ≺ w or w ≺ y. µ(y, w) is also defined for
y 7→ w if we write µ(y, w) = µ(w, y) if w ≺ y.

Proof of Theorem 2.3 We first note that if we put T̃w = q−
`(w)

2 ·Tw ∀ w ∈ W ,
the statement of the theorem is equivalent to finding for any w ∈ W , a unique

element cw in H such that c̄w = cw and cw =
∑
y≤w

(−1)`(y)+`(w)q
`(w)−`(y)

2 ·Py,w(q)·

T̃y where Py,w is a polynomial is q of degree ≤ `(w)−`(y)−1
2

for y < w and such
that Pw,w ≡ 1. (See Corollary 2.6 for the relation between cw and c′w). We
shall prove the theorem in this formulation.

Let us write T̄y =
∑
x

R
(q)
x,y · q−`(x) · Tx, where Rx,y ∈ ZZ[q, q−1]. We can

inductively compute Rx,y as

Rx,y =





Rsx,sy, if sx < x and sy < y
Rxs,ys, if xs < x and ys < y
(q − 1)Rsx,y + qRsx,sy, if sx > x and sy < y.

It is clear that Rx,y 6= 0 ⇔ x ≤ y and that Rx,y ∈ ZZ[q] is of degree ≤
`(y)− `(x).

Uniqueness The equation c̄w = cw can be written as

∑
x≤w

(−1)`(x)+`(w) · q `(w)
2 · q−`(x)Px,w · Tw

=
∑
y≤w

(−1)`(y)+`(w) · q− `(w)
2 · q`(y)Py,w ·

(∑
x≤y

q−`(x) ·Rx,yTx

)
.

Equivalently, ∀ x ≤ w,

(−1)`(x)+`(w) · q `(w)
2 · q−`(x) · Px,w =

∑
y

x≤y≤w

(−1)`(y)+`(w) · q− `(w)
2 · q`(y)−`(x) ·Rx,y · Py,w
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i.e., (
q

`(w)−`(x)
2 Px,w − q

`(x)−`(w)
2 · Px,w

)
(−1)`(x)+`(w) =

∑
y

x<y≤w

(−1)`(x)+`(y) · q`(y)− `(w)
2
− `(x)

2 ·Rx,yPy,w ∀ x < w.

Thus, if Py,w for all y in x < y ≤ w are known (x < w fixed), then the above
equation cannot have more than one solution for Px,w since no cancellations

can take place on the left-hand side due to the fact that q
`(w)−`(x)

2 · Px,w is a

polynomial in q1/2 without constant terms and q
`(x)−`(w)

2 ·Px,w is a polynomial
in q−1/2 without constant term. Hence, the uniqueness follows by induction
on the length function.

Existence Clearly Ce = Te.

Assume as induction hypothesis, that the existence of cw′ has been already
proved for each w′ of length < `(w).

Write w = sv with s ∈ S such that `(w) = `(v) + 1. Define

cw =
(
q−

1
2 Ts − q

1
2

)
cv −

∑
z≺v

sz<z

µ(z, v)cz. (2.5)

Observe that q−1/2Ts − q1/2 = q−1/2 · Ts − q1/2 so that cw = cw. So, we can

write cw =
∑
y≤w

(−1)`(y)+`(w) · q `(w)
2
−`(y) · Py,wTy, where

Py,w = q1−c · Psy,v + qc · Py,v −
∑

z
y≤z≺v
sz<z

µ(z, v) · q `(v)−`(z)+1
2 · Py,z for y ≤ w, (2.6)

and

c =

{
1, if sy < y
0, if sy > y.

We have also used the connection Px,v = 0 for x 6≤ v.

By induction hypothesis, it is now clear that Py,w is a polynomial in q of

degree ≤ `(v)−`(y)
2

if y < w and that Pw,w ≡ 1.

14



Thus, the proof of the theorem is complete. (Note that the proof gives an
algorithm to compute Py,w’s.)

Corollary (of Proof)

(i) If v ∈ sv, then Tscv = qcv + q1/2csv + q1/2 · ∑
z≺v

sz<z

µ(z, v)cz.

(ii) If v > sv, then Tscv = −cv.

Proof: (i) is just the equation (2.5).

(ii) Replace v by sv in (i) to get

Tscsv = qcsv + q1/2 · cv + q1/2 ·
∑
z≺sv
sz<z

µ(z, sv)cz

⇒ q1/2Tscv = (q + (q − 1)Ts)csv − qTscsv − q1/2 ·
∑
z≺sv
sz<z

µ(z, sv)Tscz

= −q1/2cv by induction.

Corollary 2.5 (i) If sv < v, then c′sc
′
v = (q1/2 + q−1/2)c′v

(ii) If sv > v, then c′sc
′
v = c′sv +

∑
z≺v

sz<z

µ(z, v)c′z.

Proof: Firstly, we note that the connection between c′w is given as c′w =
(−1)`(w) · j(cw) where j is the algebra involution defined by

j(aw(q) · Tw) = (−1)`(w) · q−`(w) · aw(q) · Tw.

(i)
c′sc

′
v = (−1)`(v)+1 · j(cs) · j(v) = (−1)`(v)+1 · jcscv

= (−1)`(v)+1 · j(−(q1/2 + q−1/2)cv)

= q−1/2Ts − q1/2 = (q1/2 + q−1/2)c′v

using (ii) of the previous corollary.
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(ii)

C ′
sC

′
v = (−1)`(w)+1 · j


Csv +

∑
z≺v

sz<z

µ(z, v)Cz




since sv > v and from Cor.2.5(i)

= C ′
sv +

∑
z≺v

sz<z

(−1)`(v)−`(z)+1 · µ(z, v) · C ′
z

= C ′
sv +

∑
z≺v

sz<z

µ(z, v)C ′
z since z ≺ v ⇒ `(v) 6≡ `(z) mod 2.

We give a simpler proof of Theorem 2.3 by Gabber.

Proof (Gabber) As before, the problem is to find ∀ x ∈ W , a unique

element Cx ∈ H such that C̄x = Cx and Cx =
∑
y≤x

π
(q)
y,xT̃y where πy,x(q) ∈

ZZ[q1/2] is without constant term and has degree (as a polynomial in q1/2) ≤
`(x)−`(y)

2
for y < x and πx,x ≡ 1.

Let us write, for convenience T̃y =
∑
x≤y

rx,y · T̃x i.e.

rx,y = q
`(y)−`(x)

2 ·Rx,y for x ≤ y.

We also know that Rx,y ∈ ZZ[q] is of degree `(y)− `(x) for x ≤ y.

Uniqueness (This is completely similar)

The condition Cx = Cx is equivalent to

Cx =
∑
z≤x

∑
y

z≤y≤x

πy,xrz,yT̃z

i.e.
∑
z≤x

πz,x · T̃z =
∑

z
z≤x

∑
y

z≤y≤x

π̄y,xrz,yT̃z

i.e. πz,x =
∑

y
z≤y≤x

π̄y,xrz,y ∀ z ≤ x

i.e. πz,x − π̄z,x =
∑

y
z<y≤x

π̄y,xrz,y ∀ z ≤ x. (2.7)
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Now, if πy,x is known ∀ y such that z < y ≤ x (for a fixed z < x), then
(2.8) gives at the most one solution for πz,x since πz,x and π̄z,x would be in
ZZ[q1/2] and ZZ[q−1/2] respectively and are without constant terms so that no
cancellations can take place on the left hand side of (2.8). Thus, by induction,
the uniqueness follows ∀ πx,w, ∀ y ≤ w in W .

Exsitence: Clearly Ce = T̃e. We will use induction. Call the RHS of (2.8) to
be

∑
i∈ZZ

Ciq
i/2 = ϕ(q), say, which is assumed to be known. Then, if we show

ϕ(q) + ϕ(q) = 0, it is clear that from (2.8) we can define πz,x =
∑
i>0

Ciq
i/2.

Therefore, let us show ϕ + ϕ̄ = 0.

Now ϕ + ϕ̄ =
∑

y
z<y≤x

π̄y,xrz,y +
∑

v
z<v≤x

πv,xrz,v. Writing for πv,x from (2.8) since

z < v ≤ x, we have

πv,x =
∑

y
v≤y≤x

π̄y,x · rv,y.

Therefore

ϕ + ϕ̄ =
∑

y
z<y≤x

π̄y,xrz,y +
∑
y,v

z<v≤y≤x

p̄iy,xr̄z,vrv,y

=
∑

y
z<y≤x

π̄y,xrz,y +
∑

y
z<≤x





π̄y,x ·
∑

v
z<v≤y

rz,vrv,y





=
∑

y
z<y≤x





π̄y,x ·
∑

v
z≤v≤y

rz,v · rv,y





=
∑

y
z<y≤x

π̄y,x · δz,y = 0.

Also, since Rx′,y′ ∈ ZZ[q] is of degree `(y′)− `(x′) for each x′ ≤ y′ in W .

Therefore rx′,y′ =
a∑

i=−a

Ciq
i/2, where a = `(y′) − `(x′) ∀ x′ ≤ y′ in W .

By induction hypothesis, if we assume πy,x =
u∑

i=1

aiq
i/2, where u = `(x) −
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`(y) ∀ y, z < y ≤ x, then from (2.8) we see that πz,x is a polynomial in

q1/2 with degree ≥ 1 and ≤ `(x)− `(z) (since
∑

y
z<y≤x

π̄y,xrz,y =
c∑

i=−c

biq
i/2 with

c = `(x)− `(z)). Hence, the proof is complete.

We have the following which will be used in Theorem 2.9:-

Lemma 2.6 (i) Rx,y = (−1)`(x)+`(y) · q`(x)−`(y)Rx,y.

(ii)
∑

x≤t≤y

(−1)`(t)+`(x) ·Rx,t ·Rt,y = δx,y ∀ x ≤ y.

(iii) If W is finite and w0, its longest element, then Rw0y,w0x = Rx,y.

Proof: Firstly recall that Rx,y are defined by

T̄y = T−1
y−1 =

∑
x≤y

Rx,y · q−`(x) · Tx

and we have the inductive procedure for their computations, as follows:

Rx,y =

{
Rsx,sy if sx < x and sy < y
Rxs,ys if xs < x and ys < y.

}
(2.8)

and

Rx,y = (q − 1)Rsx,y + qRsx,sy if sx > x and sy < y. (2.9)

(i) We assume the result to be time for all y′ with `(y′) ≤ `(y′), and take
s ∈ S such that sy > y. Also, we assume that the result holds for all Ru,sy

with `(x) < `(u) where u ≤ sy.

We will prove the result for Rx,sy.

If sx < x, then the equations (2.9) give Rx,sy = Rsx,y and so

Rx,sy = Rsx,y = (−1)`(sx)+`(y) · q`(sx)−`(y) ·Rsx,y by induction hypothesis

= −(−1)`(x)+`(y) · q`(x)−1−`(y) ·Rx,sy since `sx = `(x)− 1

= (−1)`(x)+`(sy) · q`(x)−`(sy) ·Rx,sy.
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If sx > x, then (2.10) gives Rx,sy = (q − 1)Rsx,sy + qRsx,y so that

Rs,xy = (q−1 − 1)(−1)`(sx)+`(sy) · q`(sx) · q−`(sy) ·Rsx,sy

+q−1(−1)`(sx)+`(y) · q`(sx)−`(y) ·Rsx,y

= (−1)`(sx)+`(y) · q`(x)−`(sy) · {−q(q−1 − 1)Rsx,sy + q−1 · q2 ·Rsx,y}
since sx > x, sy > y

= (−1)`(sx)+`(y) · q`(x)−`(sy) ·Rx,sy.

(ii) Now

Ty =
∑
t≤y

Rt,yq
`(t) · Tt

⇒ Ty = T̄y =
∑
t≤y

Rt,yq
+`(t)

(∑
x≤t

Rx,tq
−`(x)Tx

)

=
∑
x≤y

∑
t

x≤t≤y

Rt,yq
`(t) ·Rx,tq

−`(x)Tx.

Therefore,
∑

t
x≤t≤y

Rt,yq
`(t)Rx,tq

−`(x) = δx,y ∀ x ≤ y.

Therefore, from (i), we will get

∑
t

x≤t≤y

Rt,y · (−1)`(x)+`(t) ·Rx,t = δx,y ∀ x ≤ y.

(iii) Again, we apply induction. Note that w0u < w0v ⇔ u > v. Assume the
result for all Ra,b with `(b) ≤ `(y) and also for all Rx′,ys with `(x′) > `(x)
where x′ ≤ ys.

We will prove the result for Rx,ys.

If xs < x, then

Rx,ys = Rxs,y from (2.9)

= Rw0y,w0xs by induction hypothesis

= Rw0ys,w0x by (2.9).
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If xs > x, then Rx,ys = (q− 1)Rxs,ys + qRxs,y by (2.10) = (q− 1)Rw0ys,w0xs +
qRw0y,w0xs = Rw0ys,w0x.

Theorem 2.7 Assuming W to be finite and w0 to be its longest element, we
have

∑
z

x≤z≤y

(−1)`(x)+`(z) · Px,z · Pw0y,w0z = δx,y ∀ x ≤ y in W .

Proof: Let Mx,y be the left-hand side above.

As induction hypothesis, we assume that x < y and that Mt,s = 0 for all
t < s in W such that `(s)− `(t) < `(y)− `(x).

We start with the identity equation (2.5) in the Proof of Theorem 2.3):

Px,z =
∑

x≤t≤z

(−1)`(x)+`(t) ·Rx,tPt,zq
−`(t)+`(z) ∀ x ≤ z in W.

Substituting this and for Pw0y,w0z in Mx,y, we get

Mx,y =
∑

t,s
x≤t≤s≤y

(−1)`(y)+`(s) · q−`(t)+`(s) ·Rx,tRw0y,w0s ·Mt,s.

By induction hypothesis, the only t, s which contribute to the above sum are
those such that either t = s or t = x and s = y. Thus

Mx,y = q−`(x)+`(y) ·Mx,y +
∑

x≤t≤y

(−1)`(y)+`(t) ·Rx,t ·Rw0y,w0t.

But
∑

t
x≤t≤y

(−1)`(y)+`(t) ·Rx,t ·Rw0y,w0t

= (−1)`(y)−`(x)
∑

t
x≤t≤y

(−1)`(x)+`(t) ·Rx,t ·Rt,y by Lemma 2.9(iii)

= (−1)`(y)−`(x) · δx,y by Lemma 2.9(ii)

= 0.
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Therefore x < y. Thus Mx,y = q−`(x)+`(y) ·Mx,y.

Hence

q
`(x)−`(y)

2 ·Mx,y = q−(
`(x)−`(y)

2
) ·Mx,y. (2.10)

But the bounds on the degree of the polynomials Py,w give that q−(
`(x)−`(y)

2
) ·

Mx,y is a polynomial in q1/2 without constant term since x,z ·Pw0y,w0z = Px,z :

Pz,y is a polynomial in q of degree ≤ `(y)−`(x)−2
2

.

Thus (2.11) is not possible unless it is ≡ 0. Hence, the theorem is proved.

Corollary 2.8 For finite W ,
∑

z
x≤z≤y

(−1)`(x)+`(z) = δx,y ∀ x ≤ y in W .

Proof: Putting q = 0 in Theorem 2.9, we get

∑
z

x≤z≤y

(−1)`(x)+`(z) · P (0)
x,z P (0)

w0y,w0z = δx,y ∀ x ≤ y in W.

But, ∀ x ≤ y in any Coxeter group W,Px,y is a polynomial in q with con-
stant term 1 as seen (by the equation (2.6) in the proof of Theorem 2.3) by
induction.
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3 Intersection Cohomology and Schubert Va-

rieties

Definition 3.1 Let X be a complex algebraic variety of dimension n. Then
X admits a locally finite decomposition into disjoint connected nonsingular
analytic subvarieties {Xα} of varying dimension called strata, which satisfies
a homogeneity condition along the strata: for any two points p and q on a
stratum Xα, there exists a homeomorphism of X to X, preserving all the
strata and taking p to q. If cα denotes the codimension of Xα, then the space
Σ which is the union of all Xα such that cα > 0 contains all singularities of
X.

Example: If G is a connected semi-simple linear algebraic group /C, and
B = G/B is the variety of all Borel subgroups of G, then for w in the Weyl
group W of G, we define the Schubert cell

Bw = {B1 ∈ B|B1 = gBg−1, for some g ∈ BwB}.
The Schubert variety Bw is the closure of Bw in B. It can be verified that
{Bx}x≤w is a stratification of Bw with the given properties.

Remark 3.1 We will attach to Bw, a collection {Hi(Bw)} of sheaves of
vector-spaces on Bw. If Bw is smooth at a point x, then the stalks at x

satisfy Hi
x(Bw) =

{
0, i 6= 0
C, i = 0.

If Bw is singular at x, the stalks Hi
x(Bw) measure the failure of local Poincaré

duality at x.

Definition 3.2 Let X be an algebraic variety /C.

1. A sheaf F of complex vector-spaces on X, is said to be constructible if
X =

⋃
finite

Xi, where Xi are locally closed and F/Xi is locally constant.

(Recall that a sheaf S on X is locally constant if ∀ x ∈ X, ∃ a neigh-
bourhood U such that Sx ← Γ(U, S) → Sy are isomorphisms for each
y ∈ U).
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2. If F̂ denotes a complex of sheaves (of degrees ≥ 0), then F̂ is said to be
constructible iff the homology sheaves are all constructible and are zero
for large degrees. Here the cohomology sheaf Hp(F̂) is defined to be the
sheafification of the presheaf whose space of sections over an open set
U is the p-th homology of the chain complex

· · · → Γ(U,Fp−1) → Γ(U,Fp) → · · ·

3. If P̂ and Q̂ are two complexes of sheaves, a quasi-isomorphism from

P̂ to Q̂ is a diagram of complexes P̂
α← R̂

β→ Q̂ so that α and β
induce isomorphisms H iP̂

∼← H iR̂
∼→ H iQ̂ ∀ i. We note that quasi-

isomorphism is an equivalence relation and quasi-isomorphic sheaves
are interchangeable for all calculations with cohomological functors.

4. Any complex F̂ of sheaves is quasi-isomorphic to a complex Î with
each sheaf injective i.e., we take the canonical injective resolution of
each sheaf and construct the total complex corresponding to the double
complex. The cohomology of the global section complex 0 → Γ(X, I0) →
Γ(X, I1) → . . . is called the hypercohomology of X in F̂ and the hyper-
cohomology groups are denoted by IHi(X, F̂). Similarly, taking sections
with compact support, we can define the hypercohomology groups with
compact support, which are denoted by IHi

c(X, F̂).

5. Let F̂ be a complex of sheaves over X. For x ∈ X, we choose any
neighbourhood ∪ in X and define the local cohomology groups Hi(F̂)x =
IHi(U, F̂/U).

The definition is independent of the set U chosen. Similarly, we define
Hi

c(F̂)x = IHi
c(U, F̂/U).

Theorem 3.1 Suppose X is an irreducible complex algebraic variety of com-
plex dimension n. Then, there is a unique (upto quasi-isomorphism) con-
structible complex F̂ of sheaves (of degrees ≥ 0) such that
(i) codim. {x ∈ X|Hi(F̂)x 6= 0} > i for i = 1, 2, . . .
(ii) codim. {x ∈ X|H2n−i

c (F̂)x 6= 0} > i for i = 1, 2, . . .
(iii) F̂ |open dense subset

∼= C (the constant sheaf).

(A single sheaf S is thought of as the complex S → 0 → 0 → . . .)
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Definition 3.3 F̂ is called the intersection cohomology sheaf of X in C. It
is denoted by IC(X, C).

Remark 3.2 (i) For a non-singular variety, IC(X, C) is quasi-isomorphic
with C.
(ii) The intersection homology of a singular algebraic variety satisfies many
of the special properties of the ordinary homology of a Kähler manifold like
Poincaré duality, Künneth theorem over a field, Lefschetz hyperplane theorem
and Hard Lefschetz theorem which are not satisfied by the usual homology of
the singular variety.

Definition 3.4 For any complex algebraic variety X,Db
c(X) denotes the bounded

constructible derived category of the category of sheaves of |Q-vector spaces on
X i.e. it is the set of bounded complexes of sheaves of |Q-vector spaces on X
which are locally constant on the strata Xα for some stratification of X.

We will talk if objects in the derived category Db
c(X) and complexes of |Q-

sheaves interchangeably. Therefore if Ŝ ∈ Db
c(X), and U ⊆ X, then IHk(U, Ŝ)

denotes the hypercohomology of Ŝ/U .

If p ∈ X, the ‘open disk’ D0
p of points at distance (usual Euclidean distance

with respect to a local analytic embedding of a neighbourhood of p in CN)
less than ε from p is such that, for any Ŝ ∈ Db

c(X), IHk(D0
p, Ŝ) is independent

of the local embedding, provided ε is small enough.

A local system on a space X is locally constant |Q-sheaf on X. We have, more
generally then Theorem 3.1, the following:

Let dim.X = n and U be a non-singular Zariski open dense subvariety and L
be a local system on U . Then, there is an object IC(X,L) in Db

c(X) defined
upto canonial isomorphism in Db

c(X) satisfying:

1. IC(X,L)/U = L[−n]

2. X can be stratified with strata {Xi} with dim Xi = i such that if
p ∈ Xi, then IHi(D0

p, IC(X,L)) 6= 0 ⇒ j > n+i and IHj
c(D0

p, IC(X,L)) 6=
0 ⇒ j < n− i.
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Also, IC(X,L) is independent of U .

Definition 3.5 Let X, Y be complex algebraic varieties. Let f : X → Y .
Let P̂ and Q̂ be complexes of sheaves on X and Y respectively. We define
the pushforward complex f∗(P̂ ) on Y by Γ(U, f∗(P̂ )) = {γ ∈ Γ(f−1(U), P̂ ), γ
has compact support}. Thus, the stalk cohomology

Hi(f∗(P̂ ))y
∼= IHi(f−1(y), P̂).

Also the pullback complex f ∗(Q̂) on X can be defined by

Hi(f ∗(Q̂))x = Hi(Q̂)f(x).

Theorem 3.2 (BBD) I. If f : X → Y is a locally trivial fibration with
non-singular fibres, then

f ∗(IC(Y, C)) = IC(X, C).

II. (The decomposition theorem :) If f : X → Y is a proper projective map
of complex algebraic varieties, then

Rf∗(IC(X, C)) ∼= IC(Y, C)⊕
⊕

Yi 6⊆Y

IC(Yi,Li)[−Ni]

where Yi are proper closed subvarieties of Y and Li are locally constant
sheaves, and Ni are some integers.

(In the above, for a complex of sheaves {Ai}, A[N ] denotes the complex of
sheaves {Bi} where Bi = Ai+N .)

Corollaries:

1. Poincaré duality [GM 2]

Denoting by Loc (Y, n) the direct sum of the Li for those i such that
Y = Yi and n = Ni, Poincaré directly simply says that there is an
isomorphism Loc (Y, n) → Hom (Loc(Y,−n), |Q).
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2. Hard Lefschetz theorem [BBA]

∃ a map ∧ : Loc (Y, n) → Loc(Y, n + 2) for all n, such that for n > 0

∧n : Loc(Y,−n)
∼=→ Loc(Y, n) is an isomorphism.

3. If f : X → Y is a resolution of singularities of Y , then since IC(X) =
|QX , therefore H∗(IC(Y )) is contained in H∗(X).

4. [GM 3] Let X be non-singular and f : X → Y be a proper projective
algebraic map. For any point p ∈ Y , the closed disc Dp ⊆ Y is the set
of points at a distance less than ε from p (where distance is the usual
Euclidean one with respect to some local analytic chart at p; note that
cohomologies of Dp with ‘nice’ complexes of sheaves are independent
of the choice of the local embedding provided ε is sufficiently small).

Call M = f−1(Dp) and B = f−1(S), where S is the boundary of Dp.

For small enough ε,M is a compact manifold with boundary B.

Let K = Ker (H∗(B)
i∗→ H∗(M)).

Now, since B is the boundary of M,K is a maximal (totally) isotropic
subspace for the intersection form on H∗(B). In particular dim K =
1
2
dim H∗(B). We will show the stronger :

Theorem 3.3 If Y is an n-dimensional variety with an isolated sin-
gular point at p, and f : X → Y is a resolution of singularities (so f̄
is a homeomorphism), then

K = Hn(B)⊕Hn+1(B)⊕ . . .⊕H2n−1(B).

Proof: We have only to see which cycles in H∗(S) are boundaries in
H∗(IC(Dp)) because, in Dp the decomposition looks like IC(Y ) and
terms concentrated at p, of which, only IC(Y ) gives contribution to
K.

But now since Dp is topologically a cone with base S and vertex p, any
cycle in S is the boundary of a cone with vertex p. So, a cycle in S
will be a boundary in IC(Dp) provided the cone of the cycle to p is a
chain in IC(B) which is so, by definition, if the dimension of the cycle
is ≥ n. Thus Hn(S) ⊕ . . . ⊕H2n−1(S) ⊆ K. But, the left-handed side
being a maximal isotropic subspace of H∗(S), has to equal K. Hence,
the theorem is proved.
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5. Generalized invariant cycle theorem

Before stating the theorem, let us define some things.

Let, once again, f̄ : B → S be as before.

We will construct a complement to K in H∗(B).

Let {Uϕ} be a stratification of S with strata of odd dimension, such that f̄
is a topological fibration onto each Uϕ. Triangulate S such that each Uϕ is
a union of interiors of simplices. Define R to be the union of all simplices ∆
of the barycentric subdivision of the above triangulation which satisfy

dim(∆ ∩ Uϕ) <
1

2
dim Uϕ ∀ ϕ.

Define J ⊆ H∗(B) to be Im(H∗(f̄−1(R)) → H∗(B)).

For example, if f̄ is a topological fibration and S is a manifold of dimension
2m − 1, then J = Fm−1H∗(B) where Fs denotes the filtration of H∗(B) of
the Leray spectral sequence of f̄ .

Then, we have :

Theorem 3.4 (GM 3) (Generalized invariant cycle theorem :)
J is independent of the choices (Uϕ) and triangulation of S, and is a maximal
isotropic subspace of H∗(B). K is a vector space complement to J in H∗(B).

Proof: The decomposition theorem gives the decomposition

H∗(B) =
⊕

i

H∗(IC(Yi,Li)).

As in the proof the last theorem, we have

K =
⊕

i

Hai
(IC(S ∩ Yi,Li)⊕ . . .⊕H2ai−1(IC(S ∩ Yi,Li))

where ai = dimCYi.
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We claim that

J =
⊕

i

H0(IC(S ∩ Yi,Li))⊕ . . .⊕Hai−1(IC(S ∩ Yi,Li)).

This will clearly prove the theorem.

To prove the claim, taking an open regular neighbourhood R0 of R, we have

J =
⊕

i

Im[H∗(IC(R0 ∩ Yi,Li)) → H∗(IC(S ∩ Yi,Li))].

We will show that ∀ i, the term above, inside the direct sum

= H0(IC(S ∩ Yi,Li))⊕ . . .⊕Hai−1(IC(S ∩ Yi,Li)).

Firstly, since we can find a homeomorphism (using stratified general position)
h : Yi → Yi isotopic to the identity such that h(R ∩ Yi) ∩ R ∩ Yi is empty,
it follows that J is self-annihilating under the intersection pairing. Thus the
containment ⊇ follows.

To show the inclusion ⊆, we note that Yi is a union of strata Uϕ and the
fact ([GM2], §3.4) that we have some basic subsets Rj in Yi(1 ≤ j ≤ 2ai)
such that Hj(IC(Yi,Li)) ∼= Im(Hj(Rj) → Hj(Rj+1)). In fact, in [GM 2],
they analogously construct such a family and show Poincaré duality and the
independence of H(IC(X)) of the stratification. By the construction in [GM
2], §3.4, it is also clear that Rj ⊆ R0 ∩ Yi for 1 ≤ j ≤ ai − 1 (recalling that
∆ ∈ R ⇔ dim(∆ ∩ Uϕ) < 1

2
dim Uϕ).

Thus, for

1 ≤ j ≤ ai − 1, Hj(IC(S ∩ Yi,Li)) = Im(Hj(Rj,Li) → Hj(Rj+1,Li))

⊆ Im(Hj(IC(R0 ∩ Yi,Li)) → Hj(IC(S ∩ Yi,Li))).

Hence the claim is proved.

Example: If Y is a curve, the theorem is just invariant cycle theorem, which

says that the composed map Hi+1(M, B)
ψ→ Hi+1(B)

ϕ∗→ Hi(F ) is a surjection
onto the Kernel of 1 − µ, where ϕ : F ↪→ B is the inclusion of a fiber and
µ : H∗(F ) → H∗(F ) is the monodromy map.
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To see this, we show that the Wang sequence for the fibration f̄ : B → S1

is exact ie. Hi+1(F )
ϕ∗→ Hi+1(B)

ϕ∗→ Hi(F )
1−µ→ Hi(F ) is exact. Once we have

shown this, then the invariant cycle theorem is clear from the theorem since,
by definition, Im ϕ∗ = J∩Hi+1(B) and so, Im ϕ∗ = Im ϕ∗ψ because for any
b ∈ Hi+1(B), writing b = j+k as in the theorem we have k ∈ Ker(Hi+1(B) →
Hi+1(M)) = Im ψ and b− k = j ∈ Im ϕ∗ = Ker ϕ∗.

Now, we will show the exactness of the sequence,

Hi+1(F )
ϕ∗→ Hi+1(B)

ϕ∗→ Hi(F )
1−µ→ Hi(F ).

More generally, we show

Lemma 3.5 If p : B → Sn is a fibration with fiber F . Then . . . → Hq(F ) →
Hq(B) → Hq−n(F ) → Hq−1(F ) → . . . is exact.

Proof: Consider the exact sequence

. . . → Hq(F ) → Hq(B) → Hq−n(F ) → Hq−1(F ) → . . .

We are thinking of Sn as the suspension S(Sn−1) of Sn−1 and the fiber F =
p−1(y0) for some y0 ∈ Sn−1.

Now, denote the upper and lower cones of Sn−1 as E+
n and E−

n respectively.
Since E+

n , E−
n are contractible, we have p |p−1(E+

n ) and p |p−1(E−n ) to be fiber
homotopically equivalent to the respective trivial fibrations i.e ∃ f− : E−

n ×
F → p−1(E−

n ) and g+ : p−1(E+
n ) → E+

n × F such that f− |y0×F is homotopic
to the map (y0, z) 7→ z and g+ |F is homotopic to the map z 7→ (y0, z) where
f− and g+ are homotopy equivalences preserving the fibers.

So, we have a commutative diagram

Hq(B, F )
∼=→ Hq(B, p−1(E+

n ))
∼=← Hq(p

−1(E−
n ), p−1(Sn−1))

(f−)∗←∼= Hq((E
−
n , Sn−1)× F )

∂ ↙ ∂ ↙ ∂ ↙ ∂ ↙

Hq−1(F )

j∗→∼= Hq−1(p
−1(E+

n ))
i∗← Hq−1(p

−1(Sn−1))

(f−)∗←∼= Hq−1(S
n−1 × F ).

29



But (j∗)−1 is the composite isomorphism

Hq−1(p
−1(E+

n ))
(g+)∗∼= Hq−1(E

+
n × F )

(proj)∗∼= Hq−1(F )

as g+|F is homotopic to the map z 7→ (y0, z).

Let µ̄∗ = j−1
∗ i∗(f−)∗; i.e., µ̄ : Sn−1 × F → F is defined by g+f−(y, z) =

(y, µ̄(y, z)); it is called a clutching function for p.

We have the commutative diagram

Hq(B, F )
∼=→ Hq−n(F )

∂ ↓ ∂ ↓

Hq−1(F )

µ̄∗←∼= Hq−1(S
n−1 × F ).

Hence the lemma is proved.

For our case n = 1, we can choose f−, g+ such that µ̄(y,−1) = Identity and
µ̄(y, 1) = µ(y) and so we have µ̄∗∂ = Identity −µ∗.

Definition 3.6 Let G be a connected reductive complex algebraic group. Let
B0 be a (fixed) Borel subgroup.
Let B = set of Borel subgroups; this can be identified with G/B0. The B0-
orbits in B are parametrized by w ∈ Weyl group. For w ∈ W , the B0-
orbit of wB0w

−1 is called a Bruhat cell and is denoted by Bw. These are
smooth, simply connected algebraic varieties; indeed Bw is an affine space of
dimension `(w). One can also write, Bw = {B|B0

w→ B} where B
w→ B′

denotes gBg−1 = B0 = w−1gB′g−1w for some g ∈ G.
The closures Bw are called Schubert varieties (in general, they are singular).
We have

Bw =
⋃
y≤w

By.

Since B0 acts on Bw, we consider B0-equivalent complexes of sheaves on Bw.

If Âw is a B0-equivariant constructible complex of sheaves on Bw for some
w ∈ W and if s ∈ S such that ws > w, we define a new B0-equivariant
constructible complex of sheaves on Bws as Âw ◦ Âs = pr2∗(pr

∗
1(Âw)) where

pr1 = {(B, B′)|B0
≤w→ B

≤s→ B′} → Bw =
⋃
y≤w

By
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and
pr2 = {(B, B′)|B0

≤w→ B
≤s→ B′} → Bws =

⋃
y≤ws

By.

We note that Hi(Âw)By = Hi(Âw)x ∀ x ∈ By and for all y ≤ w, since Âw is
a B0-equivariant complex.
Now, we define a map of B0-equivariant complexes from Bw to the Hecke
algebra H by writing

h(Âw) =
∑
y≤w

{∑
i≥0

qi/2dim Hi(Âw)By

}
Ty.

Lemma 3.6 Let w ∈ W, s ∈ S such that ws > w. Let Âw be a B0-
equivariant constructible complex of sheaves on Bw and Âw ◦ Âs be the cor-
responding complex induced on Bws. Assume that ∀ odd i, Hi(Âw)B = 0 for
every point B in Bw. Then the same is true for Âw ◦ Âs and we have

h(Âw ◦ Âs) = h(Âw) · (Ts + 1).

Proof: Let Ω = {(B,B′)|B0
≤w→ B

≤s→ B′}. Let p1 and p2 denote the projec-
tions Ω → Bw, (B, B′) 7→ B and Ω → Bws, (B, B′) 7→ B1 respectively.

Let B′ ∈ By, y ≤ ws. We want to show that Hi(Âw ◦ Âs)B′ = 0 for all odd i.

Now, by the definition of Âw ◦ Âs,Hi(Âw ◦ Âs)B′ = IHi
C(p1p

−1
2 (B′), Âw). But

p1p
−1
2 (B′) = {B|B0

≤w→ B
≤s→ B′} ⊆ {B|B ≤s→ B′} ' IP1. Thus p1p

−1
2 (B′) is

either a point or IP1.

If it is a point, then by hypothesis we get Hi(Âw ◦ Âs)B′ = 0 for odd i. If

p1p
−1
2 (B′) is the whole of {B|B ≤s→ B′} ' IP1, we write it as {point} ∪IA1.

If ys > y, then the point will be {B′} and Bys will be IA1 (note that Bys ⊇ By).
Applying long exact sequence for IHi

C associated to a partition of a space into
an open and a closed subspace, we have a short exact sequence

0 → Hi(Âw)B1 → Hi(Âw ◦ Âs)B1 → IHi(IA1, Âw) → 0.

Therefore dimHi(Âw ◦ Âs)B′ = dim Hi(Âw)B′+ dim IHi(IA1, Âw). Projecting
IA1 to a point we will get IHi(IA1, Âw) = Hi−2(Âw)B, where B ∈ Bys. Thus,
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we finally get the formulae:

dimHi(Âw ◦ Âs)B′ =

{
dimHi(Âw)B′ + dimHi−2(Âw)B, if ys > y

dimHi−2(Âw)B′ + dimHi(Âw)B, if ys < y.

In any case, by hypothesis it follows that Hi(Âw ◦ Âs)B′ = 0 for all odd i.
The above formula is just equivalent to saying that

h(Âw ◦ Âs) = h(Âw)(Ts + 1).

Theorem 3.7 (KL 2) (a) Hi(IC(Bw, C))B = 0∀ odd i, B ∈ Bw.

(b) h(IC(Bw, C)) =
∑
y≤w

Py,w(q) · Ty where Py,w are the Kazhdan-Lusztig

polynomials as in Theorem 2.3.

Proof: We apply induction on `(w).
(a) and (b) are clear for w = e. So we assume the results for w and prove
them for ws > w.

(a) Let us denote IC(Bw, C) by Âw. Denoting by Âw ◦ Âs the corresponding
complex on Bws, we have Hi(Âw ◦ Âs)B = 0 for all odd i by the lemma 3.3.

Now, by the decomposition theorem 3.2 (ii),

Âw ◦ Âs = Âws ⊕
⊕
y<ws
ys<y

⊕iny,iÂy[i]. (3.1)

Since the odd cohomologies at a point vanish for the left-hand side, they
continue to do so for the right-hand side and hence Hi(Âws)B being a direct
summand, is zero for all odd i.

Thus, by induction, Hi(IC(Bw, C))B = 0 for all odd i. Hence, we note that
h(IC(Bw, C)) ∈ ∑

y≤w

ZZ[q] · Ty.

Corollary 3.8 Py,w(q) has all coefficients ≥ 0 ∀ y, w ∈ W .
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Corollary 3.9 The equality C ′
w = C ′

w of Theorem 2.3 simply expresses the
fact that local Poincaré duality is satisfied by the Intersection cohomology
sheaves of the Schubert variety Bw.

Conjecture 3.1 For any Coxeter group W , Py,w(q) has all coefficients ≥
0 ∀ y, w ∈ W .
(Goresky has verified for the finite Coxeter group H3, on a computer.)

33



4 Representation of Hecke Algebras

Definition 4.1 Let (W,S) be a Coxeter system. For x ∈ W , let
L(x) = {s ∈ S|sx < x},R(x) = {s ∈ S|xs < x}.

(a) For x, x1 ∈ W ,
x ≤

L
x1 ⇔ ∃ a sequence x = x0, x1, . . . , xn = x1 in W such that (i)

L(xi) 6⊆ L(xi+1) and (ii) either xi ≺ xi+1 or xi+1 ≺ xi, i = 0, . . . , n−1.

(b) x ≤
R

x1 is similarly defined. Note that x ≤
R

x1 ⇔ x−1 ≤
L

x′−1.

(c) x ≤
LR

x1 ⇔ ∃x = x0, x1, . . . , xn = x1 in W such that for each i =

0, 1, . . . , n− 1, (i) either L(xi) 6⊆ L(xi+1) or R(xi) 6⊆ R(xi+1) and (ii)
either xi ≺ xi+1 or xi+1 ≺ xi.

(d) x ∼
L

x1 ⇔ x ≤
L

x1 ≤
L

x. The equivalence classes are called left cells.

We have seen that the Hecke algebra corresponding to the Weyl group of a
Chevalley group G over a finite field, plays an important role in the represen-
tation theory of G. So, it is desirable to construct irreducible representations
of the Hecke algebra with a special basis. The left cells of any Coxeter group
W , which are defined combinatorially can be used to construct representa-
tions of the Hecke algebra H over ZZ[q1/2] via W -graphs.

In general, a W -graph is defined to be a set of vertices X, with a set Y of
edges such that, for each vertex x ∈ X, we are given a subset Ix of S and, for
each ordered pair of vertices y, x such that {y, x} ∈ Y , we are given an integer
µ(y, x) 6= 0. In the case of a left cell, X consists of elements W, Ix = L(x) and
{y, x} ∈ Y iff y 7→ x (recall that this means y < x or x < y and µ(x, y) 6= 0.
Here we are using the polynomials Px,y).

We define (given a W -graph) a representation of H by taking E to be the
free ZZ[q1/2]-module with basis X and defining ∀ s ∈ S,

Ts(x) =





−x, if s ∈ Ix

qx + q1/2 · ∑
y∈X

{y,x}∈Y

s∈Iy

µ(y, x)y, if s 6∈ Ix.




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Usually, for convenience (when, say, the function µ ≡ 1) a W -graph will be
represented by vertices as circles, inside which are described the correspond-
ing subset Ix of S.

These will be used now to show a theorem on the structure of the Hecke
algebra of a Chevalley group over a finite field.

Iwahori conjectured that the Hecke algebra over |Q of a Chevalley group G
over a finite IFq with respect to a Borel subgroup G isomorphic to the group
algebra over |Q of the Weyl group. As remarked in §2, the analogous statement
with |Q replaced by |Q was proved by Tits. Then, Benson and Curtis proved
by case-by-case analysis that Iwahori’s conjecture is true over |Q for G simple
of type 6= E7, E8 and false over |Q for G of type E7, E8.

Using left cells etc., we prove the following theorem for a finite Weyl group
W . Let W be a (finite) Weyl group and consider the Hecke algebra of W
over |Q[q1/2]. Let E be the free |Q[q1/2]-module with basis (`w)w∈W .

We define a left H-module structure on E by

Ts`w =




−`w, if sw < w
q`w + q1/2`sw + q1/2

∑
y≺w
sy<y

µ(y, w)`y, if sw > w

and a left W -module structure on E by

s ∗ `w =




−`w, if sw < w
`w + `sw +

∑
y≺w
sy<y

µ(y, w)`y, if sw > w.

We can similarly define right H-module and right W -module structures.

Theorem 4.1 (a) There is a unique homomorphism of |Q[q1/2]-algebras ϕ :
H → |Q[q1/2][W ] such that, ∀ h ∈ H and w ∈ W,h`w − ϕ(h) ∗ `w is a
linear combination of `y, y <

LR
w.

(b) Given any homomorphism χ of |Q[q1/2] into a field K, the K-homomorphism
ϕχ : H ⊗K → K[W ] is such that its Kernel consists of nilpotents. In
particular, ϕχ is an isomorphism if H ⊗K is semi-simple.

35



Let us mention some combinatorial conjectures now.

Conjecture 4.1 An affine Weyl group has only finitely many left (right)
cells (see §4.8). (Recently R. Bédard has shown that ∃ an infinite Coxeter
group with 3 generators which is not an affine Weyl group and has infinitely
many left (right) cells.)

Conjecture 4.2 For an affine Weyl group, the # of two-sided cells = # of
unipotent conjugacy classes. (For example, this is 4 for B̃2 ad 5 for G̃2.)

Conjecture 4.3 Let (W,S) be any Coxeter system. ∃ a constant ‘a’ de-
pending on W such that

qa/2 · T̃wT̃w′ ∈
∑

x

ZZ[q1/2]Cx ∀ w, w′ ∈ W.

(For example, in case of finite or affine Weyl groups, by §4.4.4, this can be
taken to be the # of the roots of the underlying finite Weyl group.)

Conjecture 4.4 For any x, y, z in an affine Weyl group W , we have Cx,y,z =
Cy,z,x = Cz,x,y (see 4.4.2 for definition).
Note that this conjecture ⇒ conjecture 4.1 (see 4.8 for a proof of this).

¿From now on, in this section we will be proceeding towards a proof of the
Main theorem 4.1.

Lemma 4.2 y ≺ y1,L(y1) 6⊆ L(y) ⇒ y = sy1 and µ(y, y1) = 1 where s ∈
L(y1) − L(y). Similarly, y ≺ y1,R(y1) 6⊆ R(y) ⇒ y = y1s and µ(y, y1) = 1
where s ∈ R(y1)−R(y).

Proof: Assume that s ∈ L(y1)\L(y). Now, since sy1 < y1, we have by
Corollary 2.5 that TsCy1 = −Cy1 . Comparing the coefficients of Tsy on both
sides, we get

(−1)`(sy)+`(y1)(q − 1)q`(y1)/2q−`(sy)Psy,y1 + (−1)`(y)+`(y1) · q `(y1)
2
−`(y) · Py,y′
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= (−1)`(sy)+`(y)+1 · q `(y′)
2
−`(sy) · Psy,y′

i.e., Py,y′ = Psy,y′ .

Therefore if sy 6= y1, then Py,y1 = Psy,y1 has degree ≤ `(y1)−`(sy)−1
2

and

< `(y1)−`(y)−1
2

, which is a contradiction of the fact that µ(y, y1) 6= 0.

Thus sy = y1 and so Py,y1 ≡ 1.

Corollary 4.3 W finite ⇒ Py,w0 ≡ ∀ y ∈ W .

Proposition 4.4 x ≤
L

x′ ⇒R(x) ⊇ R(x′). Hence, x ∼
L

x′ ⇒R(x) = R(x′).

Proof: We can assume without loss of generality that L(x) 6⊆ L(x′) and
either x ≺ x′ or x′ ≺ x.

In the case x′ ≺ x, the lemma 4.2 gives s ∈ L(x)\L(x′) such that x′ = sx
and µ(x, x′) = 1. So, if t ∈ R(x′), then x′t < x′. Therefore `(sxt) < `(sx).
But sx < x ⇒ `(sx) = `(x) − 1. Therefore `(sxt) ≤ `(x) − 2. But `(sxt) =
`(xt) ± 1 = (`(x) ± 1) ± 1. Therefore `(xt) = `(x) − 1 i.e. t ∈ R(x). Thus
R(x′) ⊆ R(x).

In the other case x ≺ x′, if we do have R(x′) 6⊆ R(x), then again by the
same argument we see that L(x) ⊆ L(x′), a contradiction of our assumption.
Thus, in any case R(x′) ⊆ R(x).

Before proceeding further to the proof of Theorem 4.1, we will describe algo-
rithmically the cells in Sn. In the proof of Theorem 4.1 we will see that any
left cell (for any Coxeter group) gives rise to a representation of the Hecke al-
gebra. In the case of Sn, the representation so obtained are irreducible and all
the irreducible representations of the Hecke algebra of Sn, occur in this way.
The left cells in Sn, arise from partitions of n, by the Robinson-Schensted
algorithm. This algorithm gives a one-to-one correspondence between the el-
ements of Sn and pairs (τ, τ ′) of standard Young tableaux of the same shape,
of size n. A left cell in Sn corresponds to a subset (τ, τ ′) with τ ′ fixed and
τ of the same shape as τ ′. A two-sided cell corresponds to a set of pairs
(τ, τ ′) which are of fixed shape. Thus Sn is decomposed into two sided cells
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(one for each partition of n) and each 2-sided cell is a disjoint union of a
number of left cells equal to the dimension of the corresponding irreducible
representation of Sn. This is the prototype of what applies to any Coxeter
group.

We will describe the cells of the symmetric group Sn in a number of ways,
some of which are combinatorial thereby enabling us to compute them more
easily than would be possible by our definition.

(i) Robinson-Schensted algorithm [Kn]

They show (by actual construction), a one-to-one correspondence between
permutations τ of {1, 2, . . . , n} and ordered pairs (P (τ), Q(τ)) of Young
tableaux formed from {1, 2, . . . , n} where P,Q have the same shape. This
correspondence is such that the inverse permutation goes to (Q(τ), P (τ))
so that involutions are parametrized by tableaux formed from {1, 2, . . . , n}.
(Note that, in Sn, each left cell (by our definition) contains a unique involu-
tion.) We will describe this in another way as follows:

Let s, t ∈ S such that O(st) = 3. Let DL(s, t) = {w ∈ W |L(w) ∩ {s, t}
has exactly one element}. If w ∈ DL(s, t), then exactly one of sw, tw is in
DL(s, t); this is denoted by s,tW .

We claim that w ∼
L

w′ =s,t W. We can assume w′ = sw.

If w < w′, then s ∈ L(w′)\L(w) so that w′ ≤
L

w. Also w′ ∈ DL(s, t) and

s ∈ L(w′) ⇒ t 6∈ L(w′), and w ∈ DL(s, t) and s 6∈ L(w) ⇒ t ∈ L(w) so that
L(w) 6⊆ L(w′) and so w ≤

L
w′ Thus w ∼

L
w′.

If w > w′, we can interchange the roles of w and w′ since w = sw′.

(ii) Joseph defined w ≤
L

w′ ⇔ ann Lw ⊇ ann Lw′ , where ann Lw is the

left annihilator of Lw in U(J ). This is also equivalent to our definition.
(This is basically just Harish-Chandra’s theorem that if λ, µ ∈ H∗, then
χλ = χµ ⇒ λ + ρ = (µ + ρ)w for some w ∈ W ).

(iii) Vogan-Jantzen defined w ∼
L

w′ ⇔ (1) R(w) = R(w′), (2) R(ws,t;s′,t′...) =

R(w′
s,t;s′,t′ . . .) if ws,t;s′,t′... etc. make sense.
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Therefore, clearly by Proposition 4.3, w
L∼
w
′
in the sense of Vogan ⇒ w

L∼
w
′

in the sense of our definition.

We will show that the converse implication also holds.

Let y, w ∈ DL(s, t) and y ∼
R

w. Then, it is enough to show that s,ty ∼
R s,t

w.

Let y = y0, . . . , yn = w where yi ↔ yi+1 and R(yi) 6⊆ R(Yi+1) and R(yi+1) 6⊆
R(yi).

Clearly yi ∼
R

y ∀ i, so that by Proposition 4.3, L(yi) = L(y) ∀ i. Since

y ∈ DL(s, t). Therefore yi ∈ DL(s, t) since L(yi) = L(y)∀ i. Thus s,tyi

are well-defined. We can also show that since yi 7→ yi+1, we have s,tyi ↔s,t

yi+1 ∀ i.

Also

R(s,tyi) = R(yi) by (i)

6⊆ R(yi+1) = R(s,tyi+1) and vice versa.

Thus s,ty ∼
R

s,tw. Therefore all the four definitions of cells are equivalent.

¿From now on, we assume that W is a finite or affine Weyl group.

Definition 4.2 Let A = ZZ[q1/2, q−1/2],A+ = ZZ[q1/2].

(i) For z ∈ W,a(z) is defined to be the smallest natural number such that

q
a(z)
2 CxCy ∈ A+ · Cz +

∑

z′ 6=z

A · Cz′ ∀ x, y ∈ W.

We will show in Corollary 4.4.4 that a(z) exists for affine Weyl groups also.

(ii) Let Qx,y be defined as
∑

y
x≤y≤z

(−1)`(x)+`(y)Px,y(q)Qy,z(q) = δx,z. Then, we

have Qy,y ≡ 1 and deg Qy,z ≤ `(z)−`(y)−1
2

for y < z.
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Define

Dx = q−
`(x)
2

∑
y

y≥x

Qy,x(q) · Ty

∈ T̃x + q1/2
∑
y>x

A+ · T̃y.

Therefore T̃x ∈ Dx + q−
1
2 · ∑

y>x

A+ ·Dy.

In the case of affine Weyl groups, the elements Dx can be regarded as belong-
ing to the set Ĥ of formal (possibly infinite) A-linear combinations of the
elements T̃w.

(iii) Let K = |Q(q1/2) and HK denote H
⊗

ZZ[q1/2,q−1/2]

K. Define τ : HK → K

by τ(ΣaxT̃x) = ae. Then, we see that

τ(T̃x · T̃x′) = τ(Cx ·Dx′) = τ(T̃x′ · T̃x) = τ(Cx′ ·Dx)

=

{
0, if x′ 6= x−1

1, if x′ = x−1.

(iv) For x, y, z ∈ W , define Cx,y,z ∈ ZZ by

Cx · Cy − (Cx,y,zq
−a(z)

2 + Higher powers of q)Cz−1 ∈
∑

u6=z−1

A · Cu.

This definition makes sense provided we show that a(z) = a(z−1) ∀ z ∈ W.
To show this, we first note that T̃w 7→ T̃w−1 defines an antiautomorphism of
H.

Therefore, if we choose x, y ∈ W such that

q
a(z0)−1

2 T̃xT̃y =
∑

z

αx,y,zCz with αx,y,z0 6∈ A+,

then we get

q
a(z0)−1

2 T̃y−1T̃x−1 =
∑

z

αx,y,zCz−1 =
∑

z

αx,y,z−1Cz.
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But, the left-hand side is also =
∑
z

αy−1,x−1,z·Cz. Thus αx,y,z−1 = αy−1,x−1,z ∀ z ∈
W . Therefore,

αy−1,x−1,z−1
0
6∈ A.

Thus, by the definition of a(z−1
0 ), we have a(z−1

0 ) > a(z0) − 1. Therefore
a(z−1

0 ) ≥ a(z0). Similarly a(z0) ≥ a(z−1
0 ) and hence,

a(z0) = a(z−1
0 ) ∀ z0 ∈ W.

Theorem 4.5 Let (W,S) be an irreducible affine Weyl group. Let ν be the
number of positive roots. Then, for any x, y, z ∈ W we have

T̃xT̃y =
∑

z

mx,y,zT̃z−1

where mx,y,z is a polynomial in ξ = (q1/2 − q−1/2) with integral coefficients
≥ 0 and of degree ≤ ν.

Corollary 4.6 For any z ∈ W , we have a(z) ∈ γ.

Proof of Corollary: This is clear since T̃w ∈ Cw + q1/2
∑
y<w

A+ · Cy.

Proof of Theorem 4.5 Before starting the proof, we will fix some nota-
tion for the affine Weyl group. Let E be an affine Euclidean space of finite
dimension ` ≥ 1 with a given set F of hyperplanes (In the case of simply
connected almost simple algebraic groups over an algebraically closed field of
characteristic p > 0, E = X(T )⊗IR and the set F consists of the hyperplanes
Hα̌,n = {λ ∈ E|α̌(λ + ρ) = np} where α̌ is a coroot and n ∈ ZZ).

Now each H ∈ F defines an orthogonal reflection % → %σH in E with fixed
point set H. We will take Ω, the group of affine transformations generated
by {σH |H ∈ F}, to be acting on the right on E. We will also regard Ω
as an infinite discrete subgroup of the group of affine motions of E, acting
irreducibly on the space of translations of E, and leaving F stable. Now Ω
acts simply transitively on the set X of connected components (= alcoves)
of E − ⋃

H∈F

H.
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If S denotes the set of Ω-orbits in the set of faces of codimension one of the
alcoves, then S consists of ` + 1 elements which can be represented as the
` + 1 faces of any given alcove. For s ∈ S and A, as alcove, we denote by sA
the alcove ( 6= A) which has with A a common face of type s.

The maps A → sA generate a group W of permutations of X which is a
Coxeter group and we will regard our given affine Weyl group to be (W,S)
as above. A special point v is a 0-dimensional facet of an alcove such that
there are exactly ν hyperplanes (the maximum number possible) in F passing
through v (Note that any hyperplane has exactly ν directions).

A quarter with vertex v is a connected component of E − ⋃
H∈F
v∈H

H.

It has ` walls. For a 0-dimensional facet v of an alcove, we define Wv to be
the stabilizer in W of the set of alcoves A containing v in their closure; Wv

is a standard parabolic subgroup of W and its longest element wv has length
= ν. Note that Wν is generated by ` elements of S. For each special point v,
we choose quarter C+

v with vertex v such that for any two special points, v, v′,
the quarters C+

v , C+
v′ are translates of each other. Let A+

v denote the unique
alcove contained in C+

v and having v in its closure, and put A−
v = wvA

+
v .

For any alcove A, we define a subset L(A) of S as follows:

For s ∈ S, if P is the hyperplane supporting the common face of type s
of A and sA. Then s ∈ L(A) iff A is in the half-space determined by P
which meets C+

v for every special point v of E. We will now define a ‘length
function’ on the set of alcoves. For any H ∈ F , denote by E+

H and E−
H the

two connected components of E − H, where E+
H so that half-space which

meets C+
v for every special point v. Given two alcoves A and B, there are

only finitely many hyperplanes H separating them and we define
d(A,B) =

∑
H(±1), where we count +1 if A ⊂ E−

H , B ⊂ E+
H and −1 if

A ⊂ E+
H , B ⊂ E−

H .

We have d(A,A) = 0 and d(A,B) + d(B,C) + d(C,A) = 0. To see this last
equation, we see that the hyperplanes which contribute to all the three terms,
contribute zero to the sum clearly and if H is a hyperplane which contributes
to d(A,B) but not to d(B, C), then it means that A and B are in different
sides of H whereas B and C are on the same side so that A and C will be
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on different sides of H and clearly the contribution of H to d(C, A) = − its
contribution to d(A,B). Thus, we have

d(A, sA) =

{
1, if s 6∈ L(A)
−1, if s ∈ L(A).

and d(A,B) = d(Bwv, Awv) for any special point v.

A length function δ : X → ZZ is defined by δ(A) − δ(B) = d(B,A). The
existence and uniqueness (up to a constant) of δ are clear from the properties
of d. Finally, let us define a partial order ≤ on X. We write A ≤ B if ∃ a
sequence of alcoves A = A0, . . . , An = B such that δ(Ai) = δ(Ai−1) + 1 and
Ai = Ai−1 · σHi

for some Hi ∈ F, ∀ i = 1, . . . , n.

Note that A < B ⇒ d(A,B) > 0.

Now, consider the free ZZ[q1/2, q−1/2]-module M with basis corresponding to
the alcoves. This can be regarded as a left H-module by defining

TsA =

{
sA , if s 6∈ L(A)
q(sA) + (q − 1)A , if s ∈ L(A).

Since

δ(sA) =

{
δ(A)− 1 if s ∈ L(A)
δ(A) + 1 if s 6∈ L(A),

if we set Ã = q−
δ(A)

2 A, then

T̃sÃ =

{
s̃A , if s 6∈ L(A)

s̃A + (q1/2 − q−1/2)Ã , if s ∈ L(A).

We have fixed all the necessary notations etc. To complete the proof of the
theorem, we need the following three lemmata.

Lemma 1: For any x, y, z in W , mx,y,z is a polynomial in ξ = (q1/2 − q−1/2)
with integral nonnegative coefficients and of degree ≤ min(`(x), `(y), `(z)).

Proof: We will show first, by induction on `(x), that mx,y,z is a polynomial
in ξ = q1/2 − q−1/2 with integral non-negative coefficients, of degree ≤ `(x).

43



Now, T̃sT̃y = T̃sy or (q1/2− q−1/2)T̃y + tildeTsy according as sy > y or sy < y.
Assume the induction hypothesis for some x ∈ W . Let sx > x. Now

T̃sxT̃y = T̃s

∑
z

mx,y,z−1T̃z

=
∑
sz>z

mx,y,z−1T̃sz +
∑
sz<z

((q1/2 − q−1/2)mx,y,z−1T̃z + mx,y,z−1T̃sz.

Therefore, by induction, our claim follows easily.
Similarly, we also have that mx,y,z is a polynomial of degree ≤ `(y). Now, we
have

mx,y,z = τ(T̃xT̃yT̃z) = τ(T̃yT̃zT̃x) = my,z,x.

Hence deg mx,y,z = deg my,z,x ≤ `(z).

Lemma 2: If A is an alcove and w ∈ W , then T̃wÃ =
∑

B Mw,A,BB̃ (finite
sum), where Mw,A,B are polynomials in ξ = q1/2 − q−1/2 with non-negative
integral coefficients, and of degree ≤ ν.

Proof: Again by induction on `(w), it follows that Mw,A,B are polynomials
with non-negative integral coefficients.

Choose a special point v in the closure of A. Write uniquely w = w′ · w1

where w1 ∈ Wv, w
′ has minimal length in w′Wv and `(w) = `(w′) + `(w1).

We write A = w2(A
−
v ), where w2 ∈ Wv since A contains v in its closure and

Wv is the stabilizer in W of the set of alcoves containing v in their closure.
So Ã = T̃w2Ã

−
v and hence

T̃w1Ã = ˜Tw1
˜Tw2Ã

−
v =

∑
w3∈Wv

mw1,w2,w−1
3

T̃w3Ã
−
v

=
∑

w3∈Wv

mw1,w2,w−1
3

w̃3(A−
v ),

where, by Lemma 1, mw1,w2,w−1
3

has degree at the most `(w3) in (q1/2−q−1/2).

For a fixed w ∈ Wv, write c = w3(A
−
v ). Let w′ = sk . . . s1 be a reduced

expression.
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Then, it can easily be verified by induction on k, that

T̃w1 · C̃ = T̃sk
. . . T̃s1(C̃) =

∑
I

(q1/2− q−1/2)pI · ˜sk . . . ŝipI
. . . ŝi2 . . . ŝi1 . . . s1(C),

where the subsets I = {i1 < i2 < . . . < ipI
} of {1, 2, . . . , k} are such that

sit . . . ŝit−1 . . . ŝi2 . . . ŝi1 . . . s1(C) < ŝit . . . ŝit−1 . . . ŝi2 . . . ŝi1 . . . s1(C) ∀ t = 1, 2, . . . , pI .

Therefore if C is the quarter with vertex v and containing C and if J (C) is
the set of all directions i such that, for some hyperplane H with direction
i, we have C ⊂ E−

H , then it can be proved by induction on |J (C)| that
([L7], §4.3) pI ≤ |J (C)|. But for our C, we see that |J (C)| = ν − `(w3)
because di(A

−
v , C) = `(w3) for those directions i such that C ⊂ E+

H for each
hyperplane with direction i. Therefore,

T̃wÃ =
∑
w3,I

mw1,w2,w−1
3

ξpI · ˜sk . . . ŝipI
. . . ŝi1 . . . s1(C).

Therefore Mw,A,B has degree ≤ ν since deg(mw1,w2,w−1
3

ξpI ) ≤ ν.

Lemma 4.7 For y ∈ W , ∃ an alcove A such that T̃yÃ = ỹA.

Proof: Let v be a special point in E and write y = y′ · y1 with y1 ∈ Wv

and y′ of minimal length in y′Wv. Define A to be (y−1
1 wv)A

−
v = y−1

1 A+
v .

Therefore A+
v = y1A. Now, there are `(y1) hyperplanes separating A and A+

v

and each such H gives a contribution +1 to d(A,A+
v ) since A+

v ⊆ E+
H . Thus

d(A,A+
v ) = `(y1) i.e. δ(y1A) = δ(A) + `(y1).

Similarly d(y′A+
v , A+

v ) = −`(y′−1) = −`(y′) i.e. d(A+
v , yA) = `(y′). Therefore

d(A, yA) = `(y1) + `(y′) = `(y). Thus δ(yA) = δ(A) + `(y). Thus T̃yÃ = ỹA.

Completion of proof of Theorem 4.5 : Let x, y ∈ W be given. Select A
corresponding to y as in the above lemma. Therefore

T̃xT̃yÃ = T̃xỹA =
∑
B∈X

Mx,yA,BB̃ =
∑
z∈W

mx,y,z−1 · T̃zÃ

=
∑
z,B

mx,y,z−1 ·Mz,A,B · B̃.
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Thus Mx,yA,B =
∑
z

mx,y,z−1 ·Mz,A,B ∀ B ∈ X. By Lemma 2, Mx,yA,B ∈ ZZ[ξ]

has ≥ 0 coefficients and has degree ≤ ν. Therefore ∀ z, B, mx,y,z−1 ·Mz,A,B ∈
ZZ[ξ] has degree ≤ ν.

Take B = zA; then Mz,A,B 6= 0. Therefore Mz,A,zA(ξ = 0) = 1. Thus mx,y,z−1

has degree ≤ ν ∀ z ∈ W . Thus, the proof of the Theorem is complete.

Theorem 4.8 (a) CsCx =




−(q1/2 + q−1/2)Cx, if sx < x if s ∈ L(x)∑
y↔x
sy<y

µ(y, x)Cy, if sx 6< x i.e. if s 6∈ L(x).

(b) Writing Cw′ , Cw =
∑
y

αw′,w,y(q)Cy and αw′,w′y(q) =
∑

i∈ZZ
Ciq

1/2, we have

(−1)iCi ≥ 0.

(c) T (CxCyDz) = q−
a(z)
2 · Cx,y,z+ Higher powers of q.

(d) Cx,y,z 6= 0 ⇒ z ≤
L

x−1, z−1 ≤
L

y.

Proof: Proof of (b) involves (i) intersection Cohomology (i.e. Theorem 3.4)
(ii) interpreting the multiplication in H via sheaves and (iii) induction, and
we will not give it here.

(a) If sx < x, then clearly the Corollary 2.5 (of proof) to the main theorem
2.3 gives TsCx = −Cx and so CsCx = (q−1/2Ts−q1/2)Cx = −(q−1/2 +q1/2)Cx.

If sx > x, the same Corollary gives

CsCx = Csx +
∑
y≺x

sy<y

µ(y, x)Cy.

Now, if x ≺ y and s ∈ L(y)\L(x), then the lemma 4.2 gives y = sx and
µ(x, y) = 1.

Thus, for sx > x, we can write

CsCx =
∑
y↔x

s∈L(y)

µ(y, x)Cy.
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(c) Writing CxCy =
∑
r

αr(q) · Cr we have τ(CxCyDz) = αz−1
(q) since

τ(CrDz) =

{
0, r 6= z−1

1, r = z−1.

But, by definition of Cx,y,z,

αz−1(q) = q−
a(z)
2 · Cx,y,z + Higher powers of q.

(d) Now Cx,y,z 6= 0 ⇒ τ(CxCyDz) 6= 0 by (c). Therefore CyDz 6= 0 and
similarly DzCx 6= 0 because τ(CrDs) = τ(DrCr). Write Cy · Dz =

∑
t

αt ·
Dt, αz0 6= 0 for some z0. Then τ(Cz−1

0
· Cy · Dz) = αz0 6= 0. Now write

Cz−1
0

Cy =
∑
u

βu · Cu. Then we have τ(Cz−1
0
· Cy ·Dz) = βz−1 .

βz−1 = αz0 6= 0.

Recall that h ·Cx ∈
∑
u≤

L
x

A ·Cu ∀ h ∈ H, from Corollary 2.5. (The basis {Cu}

is defined precisely for this reason.)

Thus, taking h = Cz−1
0

, we have z−1 ≤
L

y. Similarly, we will have z ≤
L

x−1

from the fact that Dz · Cx 6= 0.

Proposition 4.9 Let x, y, z, z′ ∈ W such that z′ ↔ z. Let s ∈ R(z′)−R(z).
(1) If qi/2 · τ(CxCyDz) has a non-zero constant term, then ∃ x′ such that
qi/2 · τ(Cx′CyDz′) has a non-zero constant term.

(2) a(z′) ≥ a(z).

(3) Cx,y,z 6= 0 ⇒R(y) = L(z),L(x) = R(z).

Proof: (1) Now τ(CxCyDz) 6= 0 i.e τ(CyDzCx) 6= 0 i.e. DzCx 6= 0. Therefore
z ≤

L
x−1 from the proof of (d) in theorem 4.5.

Thus, R(z) ⊇ R(z−1) by Proposition 4.4. Now, by hypothesis, s 6∈ R(z) and
so s 6∈ R(x−1). Therefore sx > x.
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Writing CxCy =
∑
w

αwCw, we have

CsCxCy = αz−1CsCz−1 +
∑

w 6=z−1

αwCsCw

∈ (αz−1 · µ(z′−1, z−1) + δ)Cz′−1 +
∑

w′ 6=z′−1

A · Cw′

by (a) of Theorem 4.5 where δ denotes the coefficient of Cz′−1 in
∑

w 6=z−1

αwCsCw

and is equal to −αz′−1(q1/2+q−1/2)+
∑

w 6=z−1,z′−1

sw>w

αw ·µ(z′−1, w). Writing β′−1
z for

αz−1 · µ(z′−1, z−1) + δ and ai, bi, di for the coefficients of q−i/2 in αz−1 , βz′−1 , δ
respectively, we have bi = ai ·µ(z′−1, z−1)+di. But (−1)iai, (−1)idi ≥ 0 by (b)
of Theorem 4.5. By hypothesis ai 6= 0 and µ(z′−1, z−1) 6= 0. So (−1)ibi > 0.
Thus bi 6= 0.

Also, (CsCx)Cy =
∑

x′↔x
sx′<x′

µ(x′, x)Cx′Cy by (a) of Theorem 4.5 so that

∑

x′↔x
sx′<x′

µ(x′, x) · τ(Cx′CyDz′) = βz′−1 (4.1)

since CsCxCy ∈ βz′−1 · Cz′−1 +
∑

w′ 6=z′−1

A · Cw′ .

Comparing coefficients of q−i/2 on both sides of (4.2) we have some x′ such
that the constant term of qi/2 · τ(Cx′CyDz′) 6= 0.

(2) For i = a(z)−1, ∃ some x, y in W such that qi/2 ·τ(CxCyDz) 6∈ A+, by the

definition of a(z). Therefore ∃ j > 0 such that q
i+j
2 · τ(CxCyDz) has non-zero

constant term. Therefore, by (1) above, ∃ x′ such that q
i+j
2 · τ(Cx′CyDz′) has

non-zero constant term. Thus i = a(z)− 1 < a(z′).

(3) Cx,y,z 6= 0 ⇒ R(z) ⊇ L(x),L(z) ⊇ R(y) by (d) of Theorem 4.5 and
Proposition 4.3. Assume that

t ∈ L(z)−R(y). (4.2)
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Writing CxCy =
∑
w

αwCw, we have

CxCyCt = αz−1Cz−1Ct +
∑

w 6=z−1

αw · CwCt

∈ βz−1 · Cz−1 +
∑

w′ 6=z−1

A · Cw′

where βz−1 = −αz−1(q1/2 + q−1/2) + δ, from the equation (4.B), δ being the
coefficient of Cz−1 from the sum

∑
w 6=z−1

αwCwCt.

Denoting by mi, ni, pi the coefficients of q−i/2 in βz−1 , αz−1 , δ resp., we get
mi = −ni−1 − ni+1 + pi. Taking i = a(z) + 1, we have ma(z)+1 6= 0 since
na(z)+2 = 0 and since (−1)a(z) · na(z) > 0, (−1)a(z)+1 · pa(z)+1 ≥ 0. Thus, the

coefficient of q
−a(z)−1

2 in τ(CxCyDz) is 6= 0 and so q
+a(z)

2 · τ(CxCyDz) 6∈ A+,
which is a contradiction of the definition of a(z).

Thus L(z) = R(y). Similarly R(z) = L(x).

Corollary 4.10 (i) If z′ ≤
L

z, then a(z′) ≥ a(z). Thus, a is a constant

function on two-sided cells.

(ii) If z′ ↔ z,L(z′) 6⊆ L(z),R(z′) 6⊆ R(z), then a(z′) > a(z).

In particular, by (i), z and z′ are in different two-sided cells.

Proof: (i) It is clear that it is enough to assume z′ ↔ z and either L(z′) 6⊆
L(z) or R(z′) 6⊆ R(z). In either case, (2) of the Proposition 4.6 gives a(z′) ≥
a(z).

(ii) We know by (i) that a(z′) ≥ a(z). Assume a(z′) = a(z). Now, ∃ x, y such

that Cx,y,z 6= 0 ⇒ q
−a(z)

2 · τ(CxCyDz) has non-zero constant term. Therefore

by (1) of Proposition 4.9, ∃ x′ such that q−
a(z)
2 · τ(Cx′CyDz′) has non-zero

constant term.
Since a(z) = a(z′), the above statement gives Cx′,y,z′ 6= 0. By (3) of Propo-
sition 4.9, we have R(y) = L(z) = L(z′). This is a contradiction of the
assumption that L(z′) 6⊆ L(z). Therefore, a(z′) > a(z).
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Remark 4.1 The Corollary carries over to affine Weyl groups if we consider
the elements Dy to be in the ‘completion’ Ĥ of formal (possibly infinite) A-
linear combinations of the T̃w. No problem will arise since we do not have
products like DyDz etc.

Proof of Theorem 4.1 Recall that we defined E to be the free |Q[q1/2]-
module with a basis (ew)w∈W . E is a left H-module under the action

Tsew =




−ew, if s ∈ L(w)
qew + q1/2esw + q1/2 · ∑

y≺w
sy<y

µ(y, w)ey, if s 6∈ L(w)

i.e.

Tsew =




−ew, if s ∈ L(w)
qew + q1/2 · ∑

y↔w

s∈L(y)

µ(y, w)ey, if s 6∈ L(w)

by Lemma 4.2.

Similarly, we have a right H-module structure on E. E is also a left W -
module under the action

s ∗ ew =




−ew, if s ∈ L(w)
ew +

∑
y↔w

s∈L(y)

µ(y, w)ey, if s 6∈ L(w).

The proof of the theorem would be much simpler if the left H-action and
the right W -action commute on E but this does not happen. So, given any
two-sided cell X ⊂ W , consider the |Q[q1/2]-submodule EX of E spanned by
{ew|w ≤

LR
X}.

Define E ′
X to be the submodule spanned by {ew|w ≤

LR
X}. Then EX/E ′

X is

a H-module.
Let gr(E) =

⊕
X

2−sided cell

EX/E ′
X . Hence gr(E) is naturally a left H-module

structure and a right W -module.

We, firstly, claim that the left H-module structure and the right W -module
structure commute on gr(E). (This is true for affine Weyl groups also as the
proof uses only Corollary 4.10).
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Note that gr(E) has dimension = dim.E; infact it has a canonical basis {ew},
the images of {ew}.
Let s, t ∈ S and w ∈ W . Then

(Tsew) ∗ t− Ts(ew ∗ t) =





0, unless s 6∈ L(w), t 6∈ L(w)
(q1/2 − 1)2

∑
y↔w
sy<y
yt<y

µ(y, w)ey, if s 6∈ L(w), t 6∈ L(w).

But the terms in the summand satisfy the conditions of Corollary 4.10 (ii)
and so satisfy y <

LR
w.

Thus (Tsew) ∗ t− Ts(ew ∗ t) = 0 in gr(E).

Now, let EndW gr(E) be the algebra of |Qq[1/2]-endomorphisms of gr(E)
which commute with the right W -action. By what we have proved above, we
have canonical homomorphisms α : H → EndW gr(E) and β : |Q[q1/2][W ] →
EndW gr(E).

We claim that β is an isomorphism.

It is enough to show that for any homomorphism χ of |Q[q1/2] into any field
K, the homomorphism β̄ : K[w] → EndW gr(E) ⊗ K is an isomorphism.

Now β̄ is the composite K[W ]
β′→ EndW ⊗ K

β′′→ EndW gr(E) ⊗ K where
EndW E ⊗K denotes those endomorphisms of E ⊗K which commute with
the right W -action. Now β′ is an isomorphism since the (W,w)-bimodule
E ⊗K is the two-sided regular representation of W (see Corollary 2.5). But
β′′ is an isomorphism since all K[W ]-modules are semi-simple. Thus β is an
isomorphism and (a) follows on taking ϕ = β−1α.

For (b), consider a homomorphism χ of |Q[q1/2] into a field K. Let h ∈ Kerϕχ.

Define ĥ to be the endomorphism of E⊗K which is multiplication by h. Since
h ∈ Kerϕχ, therefore ĥ is the zero endomorphism of gr(E ⊗K) and so ĥ is
a nilpotent endomorphism of E ⊗K.

Case (i): If χ(q) 6= 0, then E ⊗ K is the left regular representation of H
(see Corollary 2.5) and hence h 7→ ĥ from H ⊗ K → End(E ⊗ K) is an
isomorphism (and thus injective) and so h is nilpotent.

Case (ii): If χ(q) = 0, we consider the filtration of H ⊗K by the two-sided
ideals Ji =

∑
`(w)≥i

KTw. Then, clearly (as χ(q) = 0) the associated graded
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⊕
i

Ji/Ji+1 is isomorphic as a left H-module to gr(E⊗K). Thus ĥ is zero on

⊕Ji/Ji+1 i.e hJi ⊆ Ji+1 and so h is nilpotent.

Remark 4.2 (i) An elementary proof of Corollary 4.10 to arbitrary Coxeter
groups, is desired.

(ii) We give below an example which shows clearly that q1/2 is necessary for
the Theorem 4.1 to hold i.e we show that for the Coxeter group H3, there
are irreducible representations of the Hecke algebra which have characters
involving q1/2.

H3 has generators s1, s2, s3 and relations s2
1 = s2

2 = s2
3 = (s1s2)

3 = (s2s3)
5 =

(s1s3)
5 = 1. Consider the Hecke algebra H of H3 over the field |Q(q1/2).

H has 10 irreducible representations which can be obtained from left cells as
follows:

The left cells of H3 give rise to the following W -graphs (each vertex x is
represented by a circle and the set Ix ⊆ S is given inside the circle; here the
µ-function is ≡ 1).

1,2,3

a b 1 2 3 2

3

1

, , c 1,3 2 3 2 1

, f 2,3 1,3 1,2 1,2 1,3

2,3

1,2

2 1,3 1,2 1,3 1,2e

d 1,2 1,3 2 3

1,2 1,3 2 3

, g

As defined in the beginning of §4, these W -graphs give rise to seven represen-
tations of H of dimensions 1, 6, 5, 8, 5, 6, 1 respectively. The representations
(a), (c), (e) and (g) are irreducible. The representations (b) and (f) split over
|Q(q1/2,

√
5) into two three-dimensional irreducible non-equivalent represen-
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tations. For example, in (b), the representation spaces has basis elements

x′1
x1 x2 x3 x′2

x′3

corresponding to the vertices of (b) and the two subspaces Vα = 〈x1 +
αx′1, x2 + αx′2, αx3 + x′3〉 where α2 = α + 1, are H-stable. We will discuss
(d) in details as it is the most interesting case. The representation space has
basis elements

x12 x13 x2 x3

x′12 x′13 x′2 x′3
corresponding to the vertices of the W -graph (d).

We claim that the two subspaces Vε = 〈x12 + εx′12
, x13 + εx′13

, x2 + εX ′
2, X3 +

εX ′
3〉, ε = ±1 are H-stable irreducible 4-dimensional representations and that

the element Tw0 acts on Vε as multiplication by ±q15/2 where w0 is the longest
element of H3.

In fact, w0 turns out to be (s3s2s1)
5.

Also, 〈x12 +x′12
, x13 +x′13

, x2+x′2, x3+x′3〉 is H-stable and, infact, the matrices

Ts1 , Ts2 , Ts3 with respect to this ordered basis are




−1 0 q1/2 0
0 −1 q1/2 q1/2

0 0 q 0
0 0 0 q


,




−1 q1/2 0 0
0 q 0 0
0 q1/2 −1 q1/2

0 0 0 q


 and




q 0 0 0
q1/2 −1 q1/2 0
0 0 q 0
0 0 q1/2 −1


 respectively.

Then Ts3s2s1 =




q −q3/2 q2 − q3/2 q2

q1/2 −q −q q2 + q3/2

0 −q3/2 0 q2 + q5/2

0 −q 0 q3/2


,

T(s3s2s1)2 =




0 −q7/2 q3 −q7/2 + q9/2

0 −q3 q5/2 −q3

−q2 q5/2 − q3 − q7/2 q5/2 −q3 + q4

−q3/2 q2 − q5/2 q2 −q5/2


,
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T(s3s2s1)4 =




−q6 −q13/2 − q7 −q6 + q13/2 q13/2

0 0 −q11/2 q6 + q13/2

−q11/2 q6 −q11/2 q6

0 0 −q5 q11/2


 and Tw0 = −q15/2Id.

Thus, the character of Tw0 genuinely involves q1/2.

Let us consider the conjecture of finiteness of the number of left (right) cells
in the case of a finite set S of generators of the Coxeter system (W,S).

Let Ŵ denote the set of equivalence classes of irreducible representations of
W . Then, there is a map (not necessarily one-one) from Ŵ to the set of
two-sided cells.
Let V be an irreducible |Q[W ]-module and C be the corresponding two-sided
cell. Let K = |Q(q1/2), EC =

⊕
w∈C

Kew. Then EC is a left HK-module under

the action Ts · ew =





−ew, if sw < w
qew +

√
q

∑
y↔w
sy<y

y∈C

µ(y, w)ey, if sw > w.

EC is also a right W -module under the action

ew ∗ s =





−ew, if ws < w
ew +

∑
y↔w
ys<Y

y∈C

µ(y, w)ey, if ws > w.

Consider V (q) = (EC⊗|QV )W which is a left H-module by virtue of the action
of H on EC, and is irreducible.
Thus V → V (q) defines a bijection between irreducible representations of W
and those of H.
Now, each irreducible representation of W has a canonical direct sum de-
composition as follows:

Let C =
⋃
i

Γi where Γi are right cells. Then, corresponding EC =
⊕
i

EΓi
.

If each EΓi
is itself a right W -module, then the following conjecture will be

true since (EΓi

⊗
|Q

V )W is meaningful.

Conjecture: V (q) =
⊗
i

(EΓi

⊗
|Q

V )W .
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In most of the cases (EΓi

⊗
|Q

V )W will turn out to be one-dimensional spaces.

So, to show that each EΓi
is a right W -module, we must show :

Conjectured lemma 4.8.1

y ≤
R

y′ and y ∼
LR

y′ ⇒ y ∼
R

y′.

More generally, it is enough to show the stronger :

Conjectured lemma 4.8.2

y ≤
R

y′ and a(y) = a(y′) ⇒ y ∼
R

y′.

Assuming this lemma, we can write Ea =
⊕
w

a(w)=a

Kew =
⊕
i

EΓi
. Then Ea

would be a left as well as a right W -module. In the case of an affine Weyl
group W , Ea can be regarded as a module over the translations in the affine
Weyl group and will be a subquotient of the group ring of this translation
part, and hence will be finitely generated. Thus, the conjecture of finiteness
of the # of right (left) cells would be true.

We now prove the conjectured lemma in the case of finite W . (Of course, the
‘finiteness of cells’ itself is a trivial problem here.) For this we first prove the

Lemma 4.11 Cx,y,z = Cy,z,x = Cz,x,y.

Proof: If c = Cx,y,z 6= 0, then q
a(z)
2 · τ(T̃yDzDx) has constant term = C.

Also, c 6= 0 ⇒ z ≤
L

x−1 ⇒ a(x) = a(x−1) ≤ a(z) by Proposition 4.9 (2).

Now q
a(z)
2 · τ(T̃y ·Dz ·Dx) ∈ q

a(z)
2 · τ(T̃yT̃z ·Dx)+ q

a(z)+1
2 · ∑

z′ 6=z

A+ · τ(T̃yT̃z′ ·Dx)

writing for Dx in terms of the basis {T̃w}. But the left-hand side and the first
term on the right-hand side have constant term = C and so the last term
has constant term = 0. But then, by the definition of a(x), a(z) + 1 < a(x)
i.e a(z) ≤ a(x). Thus a(x) = a(z).

Therefore Cx,y,z = Cy,z,x. Cyclically hence Cx,y,z = Cy,z,x = Cz,x,y.
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Corollary 4.12 Cx,y,z 6= 0 ⇒ x ∼
L

y−1, y ∼
L

z−1, z ∼
L

x−1.

Proof of conjectural lemma 4.8.2 for finite W

We can assume without loss of generality that z ↔ z′ and R(z′) 6⊆ R(z).

Now, ∃ x, y such that Cx,y,z 6= 0 i.e. such that q
a(z)
2 · τ(CxCyDz) has non-

zero constant term. Therefore by (1) of Proposition 4.9, ∃ x′ such that

q
a(z)
2 ·τ(Cx′CyDz′) has a non-zero constant term. Thus Cx′,y,z′ 6= 0. Therefore

by Corollary 4.12, y−1 ∼
R

z′ and y−1 ∼
R

z. Thus z ∼
R

z′.

Remark 4.3 Note that Lemma 4.8.2 would be true for affine Weyl groups
if conjecture 4.4 is true.

5 Representation Theory and Intersection Co-

homology

Intersection cohomology theory plays an important role in representation
theory. We have already seen its role in the first aspect mentioned below.
We will discuss briefly the following aspects:

1. Multiplicities of Verma modules (⇔ problem about singularities of Schu-
bert variety).

2. Character formula (conjectural) for finite-dimensional irreducible rational
representations of a semi-simple algebraic group/k = k̄ of char.p.

3. Multiplicities of weights in finite-dimensional irreducible representations
of a semi-simple algebraic group/C.

4. Representations of Weyl groups.

5. Representations of real Lie groups.

6. Representations of Chevalley groups over finite fields.

7. Representations of p-adic groups (Conjecture).
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8. Representations of Kać-Moody Lie Algebras (Conjecture).

5.1 Conjectural character formula in positive charac-
teristic

Let G be a simply-connected, almost simple algebraic group defined over IFp.
We wish to state a modular analogue of the conjecture of §2 stated for Verma
modules in char. 0.

Let T be a maximal torus and B a Borel subgroup containing it. Let W
denote the Weyl group. Let X(T ) be the character group of T and Q, the
subgroup generated by the roots. Let Waff be the group of affine transfor-
mation of X(T )-generated by W and by translations by elements in pQ.

Then Waff is an infinite Coxeter group: its standard set of generators con-
sists of those of W , together with the reflection in the hyperplane {ϕ ∈
X(T )|α̌0(ϕ) = p}, where α̌0 is the highest coroot.

If ρ is the element of X(T ) defined by the condition that it takes the value
1 on each simple coroot, then an element w of Waff is said to be dominant
if −wρ− ρ is dominant.

Equivalently, w ∈ Waff is dominant ⇔ w = w′w0 with `(w) = `(w′) + `(w0)
and w0 = longest element of W . For each dominant w ∈ Waff , let Lw denote
the irreducible representation of G, of finite dimension over IFp, with highest
weight −wρ−ρ. Let Vw be the Weyl representation of G over IFp obtained by
reducing modulo p the irreducible representation with highest weight −wρ−ρ
of the corresponding complex group. Vw is well-defined in the Grothendieck
group.

In fact, one has Weyl character formula for character of Vw as:
ch Vw =

∑
x∈W

(−1)`(x) · e−xw(ρ)−ρ · ∏
α>0

(1 − e−α)−1 where {eλ} is a base of

ZZ[X(T )] corresponding to {λ} in X(T ).

Then, as stated in [L2]:

Conjecture 5.1 Let w ∈ Waff be dominant and satisfy the Jantzen condi-
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tion α̌0(−wρ) ≤ p(p− h + 2), where h is the Coxeter number. Then

ch Lw =
∑

y∈Waff
y dominant

y≤w

(−1)`(w)−`(y) · Py,w(1) · ch Vy. (5.1)

Kato [K1] shows that this conjecture is consistent with the Steinberg tensor
product theorem and that, on using results of Jantzen [J], it follows that this
modular conjecture contains as a special case the conjecture in §2 of Kazhdan
and Lusztig on Verma modules in char. 0. Also, from (5.1) one can deduce
the character formula for any irreducible finite dimensional representation of
G over IFp, by making use of results of Jantzen and Steinberg. The evidence
for this character formula is very strong. Lusztig has verified it in the cases
where G is of type A2, B2 or G2. (Jantzen computed ch Lw in these cases).

5.2 Weight multiplicities for complex semisimple groups

Let J be a complex simple Lie algebra, b ⊆ J a Borel subalgebra, h ⊆ b a
Cartan subalgebra, W the Weyl group and Q ⊆ h∗ the subgroup generated
by the roots. If P ⊆ h∗ is the subgroup consisting of those elements which
take integral values on any coroot, then Q has finite index in P . W̃aff ⊆ set
of affine transformations of h∗, is the semidirect product of W and P .

Waff is the affine Weyl group which is generated by W and Q. For λ ∈ P ,
we denote by pλ the same element regarded in W̃aff Thus pλ+λ′ = pλ · pλ′ for
λ, λ′ ∈ P .

Though W̃aff is not a Coxeter group, it has a well-defined partial order
and a well-defined length function induced from those of Waff . In fact,
W̃aff = ΩnWaff where Ω = Normaliser of Saff in W̃aff , Saff being the set
of simple reflections of Waff .

So, we define the length function on W̃aff as

`(δw) = `(wδ) = `(w) ∀ w ∈ Waff , δ ∈ Ω.

The partial order on Waff is extended to one on W̃aff by defining

δw ≤ δ′w′ ⇔ δ ≤ δ′ , w ≤ w′,
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for δ, δ′ ∈ Ω and w,w′ ∈ Waff . By virtue of these definitions, the statement
and proof of Theorem 2.3 carry over to W̃aff .

If P++ denotes the set of dominant weights in P , then P++ parametrizes the
double cosets W\W̃aff/W as λ ↔ WpλW .

We note that for λ, λ′ ∈ P++, λ ≤ λ′ ⇔ mλ ≤ mλ′ in W̃aff , where mλ is
the longest element in WpλW . Let us denote, as usual, for λ ∈ h∗, by Mλ

the Verma module for J with highest weight λ and Lλ its unique irreducible
quotient. Then, if λ ∈ P++, the J -module Lλ is finite-dimensional. With
respect to the action of h, it decomposes into a direct sum Lλ =

⊕
µ

+Lλ,µ of

weight spaces parametrized by µ ∈ P .

If dµ,λ = dim Lλ,µ, then it depends only on the µ-orbit of W and thus it is
enough to find dµ,λ for µ ∈ P++. It is known that dµ,λ = 0 unless µ ≤ λ.

It is proved in [L1] that

dµ,λ = Pmµ,mλ
(1). (5.2)

Here, of course, Pmµ,mλ
is defined in terms of the Hecke algebra H̃ of W̃aff .

In fact Pδy,δw = Py,w ∀ y, w ∈ Waff and δ ∈ Ω. For type A, (5.2) is proved in
[L3] where it is also shown that Pmµ,mλ

(q) are the Green-Foulkes polynomials.

In fact, in [L1] a much stronger version of (5.2) is proved where Pmµ,mλ
(q) is

interpreted as a q-analogue of the multiplicity dµ,λ. These will be written in
the following fashion.

Consider the elements

kλ =
1

|w| ·
∑

w∈WpλW

w,

for λ ∈ P++ and

jλ =

(∑
w∈W

(−1)`(w) · w−1

)
· pλ ·

(∑
w∈W

w

)
,

for λ ∈ P++ + ρ of the group algebra |Q[W̃aff ]. Then kλ(λ ∈ P++) form a
ZZ-basis for the subgroup

K1 = {x ∈ 1

|W | · ZZ[W̃aff ] :

(∑
w∈W

w

)
x = x

(∑
w∈W

w

)
= |W | · x} ⊆ |Q[W̃aff ]
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and jλ(λ ∈ P++ + ρ) form a ZZ-basis for the subgroup

J1 =

{
y ∈ ZZ[W̃aff ]

∣∣∣∣∣

(∑
w∈W

(−1)`(w) · w−1

)
y = y

(∑
w∈W

w

)
= |W | · y

}
.

It follows that K1 is a subring of |Q[W̃aff ] with unit element 1
|W | ·

∑
w∈W

w and

that J1 ·K1 ⊆ J1 and that the map k 7→ jρ ·k of K1 to J1 is an isomorphism
of right K1-modules.

Then, for λ ∈ P++ and C ′1
λ =

∑
µ∈P++

dµ,λ · kµ ∈ K1, Weyl character formula

says that C ′1
λ is the unique element in K1 satisfying jρC

′1
λ = jλ+ρ.

The q-analogues of the elements jλ, kλ are the elements Jλ, Kλ of H̃ defined
as Kλ = 1P

w∈W0

q`(w)

∑
w∈WpλW

Tw, λ ∈ P++ and

Jλ =

(∑
wıW

(−q)`(w) · T−1
w

)
q−`(nλ)/2Tnλ

(∑
w∈W

Tw

)
, λ ∈ P++ + ρ

where W0 denotes the stabilizer of 0 in W and nλ is the shortest element in
WpλW .

Note that Kλ, Jλ etc. reduce to kλ, jλ on putting q = 1. It is, then, shown
for any λ ∈ P++, there is a unique element C ′

λ ∈ H̃ ⊗ |Q(q1/2) such that

Jρ · C ′
λ = Jλ+ρ and Jλ+ρ = Jλ+ρ (5.3)

and it is of the form C ′
λ = q−`(pλ)/2 · ∑

µ∈P++

µ≤λ

dµ,λ(q)Kµ where dµ,λ(q) are in ZZ[q]

with deg. dµ,λ(q) < `(pλ)−`(pµ)

2
if µ < λ and dλ,λ(q) ≡ 1.

Thus, it is finally shown that for µ ≤ λ in P++,

dµ,λ(q) = Pmµ,mλ
(q). (5.4)

Using (5.4), a q-analogue of the Kostant partition function is defined.

In fact, if µ ≤ λ in P and τ ∈ P satisfies 〈τ, α̌s〉 > 0 ∀ s ∈ S, the polynomial
Pmµ+τ ,mλ,τ

is independent of τ i.e. depends only on λ− µ. Here S is the set
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of reflections of W and α̌s ∈ h are the corresponding simple coroots. Thus,
there is a well-defined function

P̂ = {k ∈ Q|k ≥ 0} → ZZ[q−1]

which, by (5.4), is such that for any µ ≤ λ in P with λ− µ = k, satisfies

P̂ (k) = q−〈k,ρ〉dµ+τ,λ+τ (q) for any τ ∈ P such that 〈τ, α̌s〉 > 0 ∀ s ∈ S.(5.5)

From (5.3) P̂ (k) are seen to satisfy a recurrence relation and it is shown that

P̂ (k) =
∑

n1,...,nν≥0

n1α1+...+nναν=k

q−(n1+...+nν) (5.6)

where {α1, . . . , αν} is the set of all positive roots. For q = 1, this is the usual
Kostant partition function.

It is conjectured here that for µ ≤ λ in P++, we have

q−〈λ−µ,ρ̌〉 · dµ,λ(q) =
∑
w∈W

(−1)`(w) · P̂ (w(λ + ρ)− (µ + ρ)).

This was shown to be true by Kato in [K2].

So, we have actually a formula for Py,w as µ ≤ λ in P++ :

Pmµ,mλ
(q) = q〈λ−µ,2ρ̌〉 ∑

w∈W

(−1)`(w)P̂ (w(λ + ρ)− (µ + ρ)). (5.7)

The right-hand side of (5.7) with the special case µ = 0, appears in the
work (unpublished) of D. Peterson, regarding the F -module structure of the
(graded) co-ordinate ring of the nilpotent variety of J .

In fact, if A is the co-ordinate ring of the nilpotent variety of J , then A =⊕
i≥0

Ai, each Ai being a finite-dimensional representation of J . So, given

λ ∈ P++, Kostant defines [Lλ : Ai] to be the generalized exponents of F and
defines the polynomial Fλ(q) = [Lλ : Ai]q

i.
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(For Lλ = adjoint representation of J , Fλ(q) =
rkJ∑
i=1

qei−1, where ei are the

exponents of J .)

It can be seen by Frobenius reciprocity that Fλ(1) = d0,λ. Peterson showed
that

Fλ(q) = q〈λ,2ρ̌〉 ∑
w∈W

(−1)`(w) · P̂ (w(λ + ρ)− ρ).

Thus, we have

Fλ(q) = Pm0,mλ
(q). (5.8)

5.3 Representations of real Lie groups

Note that the idea of the statement of Theorem 3.7 was to use the parametriz-
ing set W of Ĵ to define subvarieties Bw of B, the set of Borel subgroups,
whose geometry was related to the multiplicities My,w of Theorem 2.4. There
are ways to try to do this for real groups. One, is to use the orbits of the
real group G on B (see §2.3]) but this has the disadvantage that the cells
produced are only components of (real) algebraic varieties. We will follow
another way.

The proper setting is Harish-Chandra’s category of reductive groups. We fix
a reductive algebraic group GC defined over R and assume that G has finite
index in the set of real points of GC. Then G is a connected real semisimple
linear Lie group. Let K be Gθ

C
, where θ is a Cartan involution on G, let B

denote the flag manifold of G. K acts on B and has finitely many orbits.
(Unlike the complex case, the orbits here are not simply connected.) If x ∈ B,
we write Kx for the isotropy group.

A K-equivariant local system on the orbit K ·x is specified by a representation
of Kx/(Kx)0 on the stalk at x. Thus, one-dimensional stalks play a central
role. We define D to be the set of all pairs (θ,L), with θ an orbit of K on B,
and L an 1-dim. K-equivalent local system on θ. For (θ,L) ∈ D, we write

`((θ,L)) = Length of (θ,L)
d
= dim θ.

Example 5.1 ([LV]) Consider GC×GC with the involution θ(x, y) = (y, x).
Then, the fixed point set K is the diagonal subgroup of GC×GC and its orbits
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on B × B are in one-to-one correspondence with the Weyl group W of GC.
Thus, in this case D may be identified with W and the problem that we will
consider will turn out, in the case of this example, to be equivalent to the first
aspect which we have already discussed in §3.

Example 5.2 ([LV]) Suppose GIR = SL(2, IR), and

θ(g) =

(
1 0
0 −1

)
g

(
1 0
0 −1

)
on GC.

Then K = Gθ
C

= the torus

{(
t

t−1

)
/t ∈ C∗

}
.

The flag manifold B ∼= IP′ = C ∪ {∞}. K acts by

(
t

t−1

)
· y = t2y, t ∈

C∗, y ∈ C∪{∞}. K has 3 orbits {0}, {∞}, and C∗; the isotropy groups being
K, K and {±I} respectively. Thus, the set D has four elements: three of
them the pairs with the orbit and constant sheaves on them, and a Möbius
band coming from the double cover of C∗.

Then, one has the

Proposition 5.1 ([V1]) The set of infinitesimal equivalence classes of irre-
ducible admissible representations of G, having same infinitesimal character
as the unit representation, is in a natural 1-1 correspondence with the set D.

Let us fix a representation (irreducible, finite-dimensional) F of G. Let
(θ,L) ∈ D. Let X̄(θ,L) denote the irreducible (J , K)-module corresponding
to (θ,L) (i.e. the Harish-Chandra module with character defined by F ).

Theorem 5.2 ([V1]) (a) X̄(θ,L) has a finite composition series, and all
of its irreducible subquotients are in Ĝ, the set of infinitesimal equivalence
classes of irreducible admissible representations of G, on which the centre of
U(F) acts as it does in the trivial representation.

(b) X̄(θ,L) has a unique irreducible subrepresentation X̃(θ,L).

(c) X̃(θ,L) exhaust Ĝ.

Let Θ̄(θ,L) and t̃heta(θ,L) denote the characters of X̄(θ,L) and X̃(θ,L)
respectively, in the Grothendieck group of (J , K)-modules of finite length.
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Writing Θ̄(θ,L) =
∑

(θ′,L′)∈D
α(θ,L),(θ′,L′)Θ̃(θ′,L′), we have the :

Theorem 5.3 ([V1]) The above formulae can be inverted to give

Θ̃(θ,L) =
∑

(θ′,L′)∈D
β(θ,L),(θ′,L′)Θ̄(θ′,L′)

for unique integers β(θ,L),(θ′,L′).

Example 5.3 ([V1]) Let us take the case of SL(2, IR) as in example 5.2.
The four irreducible (J , K)-modules (i.e. the four elements of Ĝ) corre-
sponding to the four elements of D are Xd(1), Xd(−1), X̄c(1)(0) and X̄c(1)(1),
where Xd(±1) are discrete series representations, X̄c(1)(0) is the trivial rep-
resentation, and X̄c(1)(1) is the irreducible principal series representation
(this corresponds to the ‘Mobius band’ in D).

In §3, we studied the Hecke algebra and constructed the polynomials Py,w

etc. We try to copy the construction in our case by taking (in place of the
Hecke algebra H of the Weyl group of G), the H-module M which is a free
ZZ[q1/2, q−1/2]-module with basis D and the H-module structure defined as
follows:-

For s ∈ S, the set of simple reflections, we have a natural projection πs :
B → Ps = variety of parabolic subgroups of G of type s.
Then L2

x = π−1
s (πs(x)) ∼= P1(x ∈ B) is the line of type s through x. Suppose

(θ, γ) ∈ D. Fix x ∈ θ. Let us denote θ̂ =
⋃
y∈θ

Ls
y. Then,

1. If Ls
x ⊆ θ, define Tsγ = q1/2,

2. If Ls
x ∩ θ = {x} and θ̂− θ is a single K-orbit, then define Tsγ = γ̂|θ̂− θ

where γ̂ is the unique locally constant extensions of γ to θ̂.

3. If Ls
x ∩ θ = Ls

x-{point}, then (it being necessarily true that θ̂ − θ is a
single K-orbit) define Tsγ = (q1/2 − 1)γ + q1/2(γ̂|θ̂ − θ),

4. If Ls
x ∩ θ = {x, y}, then it follows that θ̂ − θ is a single K-orbit, and γ

has two distinct extensions γ̂i to θ̂ and so, we define Tsγ = γ + (γ̂1 +
γ̂2)|(θ̂ − θ),
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5. If Ls
x ∩ θ = Ls

x - {two points in one K-orbit} and γ extends to θ̂, then
writing γ′ = γ̂|θ̂− θ and γ̂2 for the other extension of γ′ to θ̂, we define
Tsγ = (q1/2 − 1)γ − γ̂2|θ + (q1/2 − 1)γ′,

6. If Ls
x ∩ θ = {x}, and θ̂ − θ is the union of two orbits θ′ and θ′′ labelled

so that dim θ = dim θ′′ = dim θ′ − 1, we define Tsγ = γ̂|θ′ + γ̂|θ′′,
7. If Ls

x∩θ = Ls
x - {two points in two K-orbits} and γ extends to θ̂, calling

the orbits θ′, θ′′, we define Tsγ = (q1/2 − 1)γ + (q1/2 − 1)(γ̂/θ′ + γ̂/θ′′),
and finally

8. If Ls
x ∩ θ = Ls

x - {two points} and, γ does not extend to θ̂, we define
Tsγ = −γ.

That the endomorphisms Ts make M a module for H can be checked (cf.
Prop. 5.5 of [LV]).

The function `(θ, γ) = dim θ on D plays the role of the length function on
W in the complex case. The Bruhat-ordering on D is the smallest order such
that:

If (θ′, δ′) ∈ D and δ appears in Tsδ
′ with a non-zero coefficients, and `(δ) +

`(δ′) + 1; and if γ and γ′ have the same relationship (with the same s) and
if γ′ ≤ δ′, then we require that γ ≤ δ and δ′ ≤ δ. This does reduce to the
Bruhat order in Example 5.1.

We can also define an anti-linear (with respect to q1/2 7→ q−1/2) automor-
phism of M compatible with the Hecke algebra action and the Bruhat order-
ing. (This is done using Verdier duality). In fact :

Theorem 5.4 ([LV]) There is a unique ZZ-linear map D : M→M, subject
to the following conditions:
(a) D(q1/2m) = q−1/2D(m) ∀ m ∈ M,
(b) D((Ts + 1)m) = q−1/2(Ts + 1)D(m) ∀ m ∈ M, s ∈ S and

(c) If δ ∈ D, then D(δ) = q−
`(δ)
2 ·

[
δ +

∑
γ<δ

Rγ,δ(q) · γ
]

.

The Rγ,δ are actually polynomials in q1/2 of degree atmost `(δ)− `(γ).
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Then, the analogue of Theorem 2.3 is true (cf Theorem 1.11 of [LV]). Once
the Rγ,δ are known, Pγ,δ may be computed exactly as for the Hecke algebra
case.

Let (θ,L) ∈ D. One can construct the Deligne-Goresky-Macpherson inter-
section cohomology complex of sheaves IC(θ̄,L) on θ̄ as an extension of L to
θ̄. It can be characterized as the unique K-equivariant constructible complex
F̂ of sheaves on θ̄ satisfying the following:
(i) F̂ is self-dual,
(ii) F̂ i = 0 for i < 0, where F̂ i are the cohomology sheaves of F̂ ,
(iii) F̂ 0|θ ∼= L, and
(iv) if i > 0, then supp(F̂ i) has codimension ≥ i + 1 in θ̄.

Let us write L̃ instead of IC(θ̄,L) for simplicity. We regard its cohomology
sheaves L̃i to be defined on all of B by extending it by zero outside of θ̄.
Given (θ,L) and (θ′,L′) in D, we write [L : L̃′i] for the multiplicity of L in
the Jordan-Holder series for L̃′i. These are measures of the singularity of θ̄.

The main theorem proved in [LV] is

Theorem 5.5 Let (θ, γ), (θ′, δ) ∈ D. Then,
(a) δ̃i = 0 for odd i, and
(b) Pγ,δ(q) =

∑
i

[γ : δ̃2i] · qi.

Also, [V2] shows

Theorem 5.6 For γ, δ as before, the integers βγ,δ are given by

βγ,δ = (−1)`(δ)−`(γ) · Pγ,δ(1).

5.4 Luszting’s conjecture for p-adic groups

G is a simply connected, almost simple group /|Qp. I is an Iwahori subgroup.
Then, there is a bijection I\G/I ↔ Waff , the affine Weyl group. Let F (G/I)
be the set of locally constant functions on G which are I-invariant. Then
EndIF (G/I) = Double coset algebra of G with respect to I = Hecke algebra
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H of Waff with coefficients in C.
Borel-Matsumoto proved :

Theorem 5.7 There exists a one-one correspondence between the set of ir-
reducible admissible representations V of G such that V I 6= 0 and the set of
irreducible finite-dimensional representations of H.

Thus, it is useful to construct some irreducible representations of H and we
endeavour to do so.

Therefore let E =
⊕

w∈Waff

Cew, E≥i =
⊕
w

a(w)≥i

Cew, Ei = E≥i/E≥i+1. These are

left H-modules as well as right W -modules.

Note that though these two structures do not commute on E or E≥i, they
do commute on Ei just as in the proof of Theorem 4.1 since Corollary 4.10
carries through to affine Weyl groups.

Thus, if V is an irreducible right C[Waff ]-module, then (Ei
⊗
C

V )Waff
is an

irreducible left H-module.

We claim that there is a canonical choice for i such that (Ei
⊗
C

V )Waff
6= 0.

For this, we consider 0 → E≥i/E≥i+1 = Ei → E/E≥i+1 → E/E≥i → 0. We
have then

(Ei
⊗

C

V )Waff
→ (E/E≥i+1

⊗

C

V )Waff

αi→ (E/E≥i
⊗

C

V )Waff
→ 0.

Now, by lemma 4.7, E≥i = 0 for large i and hence ∃ a unique n such that
αi 6= 0 is an isomorphism for i > n and αi = 0 for i < n. For the choice
i = n, we clearly have (En

⊗
C

V )Waff
6= 0.

We call this n to be av.

Thus if V̂ = (Eav
⊗
C

V )Waff
, then V̂ → V → 0 as W -modules.

(In the case of finite Weyl groups, V̂ ∼= V i.e. we get a representation of H
with the same dimension as that of the given representation of W .)
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We have the

Conjecture 5.2 (Lusztig)

(i) The H-module V̂ has a unique irreducible quotient Ṽ . All other compo-
sition factors are of the form Ṽ ′ with aV ′ < aV .

(ii) V → Ṽ is a bijection between irreducible representations of Waff and
irreducible representations of H.

A.V. Zelevinskii [Z] obtained all the irreducible representations of the Hecke
algebra in the case of GLn. In fact he obtained a classification of irreducible
complex representations of the groups GLn(|Qp). These are parametrized
by collections ‘a’ of ‘segments’ in the set of cuspidal representations. With
each collection‘a’ of ‘segments’, there is associated the induced module πa

and the irreducible module 〈a〉 that is the only irreducible submodule of
πa. Particular cases of πa are the representations of the principal series. At
present, the computation of the multiplicity mb,a with which the irreducible
representation 〈b〉 occurs in the Jordan-Hölder series of the module pia is an
open problem. He formulates the p-adic analogue of the Kazhdan-Lusztig
hypothesis for this set-up as follows:

The role of G/B is taken by the variety E = E(V ) of linear operators of
degree 1 acting on a fixed graded finite-dimensional vector space V over the
field |Qp, The automorphism group Aut V of V , preserving the gradation, acts
naturally on E, and its orbits on E are the analogues of the Schubert cells.
They are parametrized by the collections of segments in ZZ. If Xa denotes the
orbit in E corresponding to a collection ‘a’ of segments in ZZ, then the study
of Xa is connected with that of the irreducible representations of GLn(|Qp)
as seen from Langlands reciprocity.

He then formulates the

Conjecture 5.3 (Conjectural Hypothesis) All sheaves Hi(X̄b) are equal
to 0 for odd i, and

mb,a =
∑

i

dim H2i(X̄b)Xa .
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In the above, of course, the intersection cohomology sheaves etc. are the
usual ones (i.e over C); also one takes V over C, in the conjecture. He verifies
the hypothesis in some cases when mb,a are known (for eg. the determinant
varieties - the varieties of rank not exceeding a preassigned value). In these
cases, he computes the sheavesHi(X̄b) starting from the explicit construction
of the resolution of singularities of X̄b. He also shows that, in general, mb,a 6=
0 ⇔ Xa ⊆ X̄b. (This would follow from the hypothesis above, once it is
shown.)

5.5 Representations of Weyl groups

Springer shows in ‘good’ characteristic (i.e. large characteristic - he worked
over Lie Algebras and used the non-degeneracy of the Killing form) a con-
nection between the Étale cohomology of Bu, the variety of Borel subgroups
containing a unipotent u and representations of Weyl group by showing one
between Representations of Weyl group and Unipotent conjugacy classes.
(Note that Luzstig showed that in all cases the # of unipotent conjugacy
classes is finite.) He did not use any Intersection homology techniques in
Schubert varieties. We give an alternative approach which works over any
characteristic. We have an important

Lemma 5.8 (Gorseky-Macpherson) [GM2] Suppose f : X ′ → X be a ‘small’
map which is birational and generically one-one where X ′ is an irreducible
non-singular variety and X is a singular variety.

(By definition, ‘small’ means that ∀ i,

Codim {x ∈ X/dim f−1(x) = i} > 2i,

so that the fibres will have dimension ≤ 1
2
dim x.) Then, IC(X) = Rf∗(C).

Let X = G, a semi-simple, connected algebraic group over k = k̄. Let
X ′ = G̃ = {(g,B)|g ∈ B}.

Both X and X ′ are non-singular and the first projection X ′ p1→ X satisfies
the conditions of the lemma.
In fact, p−1

1 (g) = Bg = set of Borels containing g has dimension≤ 1
2
{dim CG(g)− rank G}.
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In fact, the equality holds in ‘good’ characteristic [St 1], [Sp 2]. Therefore
by the lemma 5.8,

(p1)∗(C) = IC(G,L), where L is a local system on G.

Since there is a canonical action of W on L, there is a canonical extension
to IC(G,L) also.

Thus, we have

Hi(IC(G,L))g = H i(Bg), the ordinary cohomology ∀ g ∈ G. (5.9)

5.6 Representations of Chevalley groups over finite fields

Let G be a connected reductive algebraic group /IFq. Let F : G → G be the
Frobenius map. We can imbed G in GLn(IFq) in such a way that F = π|G,
where π : (xij 7→ (xq

ij
). If T is a maximal turns/IFq ⊆ B, a Borel subgroup

/IFq, U = radical of B and W is the Weyl group, we define a decomposition
of B = G/B as B =

⋃
w∈W

Xw, where Xw = {gB ∈ B : g−1f(g) ∈ BwB}
is a locally closed subvariety which is smooth of dimension `(w). X̄w are
locally isomorphic to the Schubert varieties B̄w. G(IFq) = GF acts on Xw

by conjugation. Define X̃w = {g(U ∩ w ∪ w−1) ∈ B : g−1 · F (g) ∈ wU} ⊆
G/(U ∩ wUw−1).

Then Tw := {t ∈ T : F (t) = w−1tw} acts on X̃w by right multiplication and
has no fixed points.
We have X̃w/Tw = Xw i.e. X̃w → Xw is a finite étale covering.
If θ : Tw → |̄Q

∗
` , the IHi

c(X̃w, |̄Q`)θ is a finite-dimensional vector-space over |̄Q`

on which GF acts. (Here IHi
c(X̃w, |̄Q`)θ is the subspace of H i

c(x̃w, |̄Q`) on which
IFq acts by the character θ).

Then, RTw,θ =
∑
i

(−1)iH i
c(X̃w, |̄Q`)θ is called a virtual representation of G(IFq).

It is known that

Theorem 5.9 (1) ±RTw,θ is irreducible for ‘almost all’ θ.

(2) Any irreducible representation of G(IFq) appears with non-zero coeffi-
cients in some RTw,θ.
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A proof may be found in Lusztig’s book on character sheaves.

Assume from now on that G is split /IFq. Then, ∃ a maximal torus T/IFq such
that F (t) = tq ∀ t ∈ T . Call Rw = RTw,1. If ρ is a unipotent representation
of G(IFq), then :

Proposition 5.10 (i) dim ρ = 1
|W |

∑
w∈W

〈ρ,Rw〉dim Rw

(ii) 〈ρ,Rw〉 = Tr(s, ρ) for some semiregular semisimple element in Tw.

Suppose E is a irreducible representation of W .
Define RE = 1

|W |
∑

w∈W

Tr(w, E)Rw ∈ (Grothendieck group of GF ) ⊗|Q.

Two such E and E ′ are said to be in the same family (we say E ∼ E ′)
if ∃ a unipotent representation ρ of GF such that 〈ρ,RE〉 6= 0 6= 〈ρ,RE′〉.
Similarly, we can define a family of unipotent representations of GF . Then,
we will have a bijection

U ↔ {Rep(W )}
where U denotes the set of families of unipotent representations of G(IFq)
and the association is ρ ↔ E iff 〈ρ,RE〉 6= 0.

In the case of GLn, the equivalence relations are trivial i.e. each family
contains exactly one element.

We will show that the above two sets are also in bijection with the set of
two-sided cells in W .

For this, first write

W =
∐
C

2−sided cell

C.

Here any [C] is regarded as a W -module by regarding it as the quotient⊕
C′⊆C

[C ′]/ ⊕
C′ 6=C

[C ′] of two-sided ideals.

Then, we have |Q[W ] =
⊕
C

[C]. But, we can also write |Q[W ] (since it is a

semi-simple algebra) as a sum |Q[W ] =
⊕
E

IE of two-sided simple ideals.
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Thus,
⊕
C′⊆C

[C ′] and
⊕
C′ 6⊆C

[C ′] are also subdirect sums of this form.

So, for any two-sided cell C, [C] ∼= ⊕
E

IE. If we define two representations

E and E ′ of W to be equivalent, if IE and IE′ occur in the same two-sided
cell, then it can be checked that this is the same equivalence relation defined
before i.e. we have bijections

U ↔ {Rep(W )} ↔ 2− sided cells.

With help of this identification, one can show :

Theorem 5.11

R̄w =
∑

i

(−1)iIHi(X̄w, |Q`) =
∑
y≤w

Py,w(1)

(∑
i

(−1)iIHi(Xy, |Q`)

)
.

In fact, we can obtain IHi(X̄w, |Q`) as an explicit linear combination of R̄y, y ≤
w.

Suppose, now E is an irreducible representation of W . Then, we have aE as
in §5.4 i.e. aE = a(w) ∀ w ∈ C where E appears in the two-sided cell C.

Then, if E(q) denotes the corresponding representation of H as in §4.8, we
have ∀ x ∈ W ,

Tr(T̃x, E(q)) = Cx,Eq−
aE
2 + higher powers of q1/2 where Cx,E ∈ ZZ.

If F is the family of representations of W corresponding to a 2-sided cell C,
then ∃ a left cell L ⊆ C satisfying the property that the matrix (Cx,E) x∈L

E∈F
is

the character table of a finite group ΓC.

(In the above matrix, we delete rows or columns which are identically zero.)

Then, the main theorem is :

Theorem 5.12 There is a bijection

U ↔ tCM(ΓC
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where M(Γ) := {(x, σ)|x ∈ Γ upto conjugacy and σ is an irreducible repre-
sentation of CΓ(x)}.

The main lemma which makes everything work is

Lemma 5.13 ∀ x ∈ W , if αx := (−1)`(x)
∑
E

Cx,EE, then

Rαx = (−1)`(x)
∑
E

Cx,ERE is an actual representation of G(IFq).

The proof uses intersection cohomology.

It should be remarked that each unipotent representation of G(IFq) occurs
in some Rαx and if we know all the Rαx and their inner-products, we can
recover all unipotent representations.

Let us see through some examples as to which x ∈ W give non-zero αx.

(i) In Sn, each left cell contains a unique x such that αx 6= 0; this will turn
out to be the unique involution in the left cell.

(ii) In Bn, Cn, Dn we have αx 6= 0 ⇔ x is an involution.

Also, each left cell contains some involution; the number of involutions in
a left cell is a power of 2 (this fact can be proved a priori only using rep-
resentation theory techniques which, in turn, use intersection cohomology
techniques!).

(iii) In exceptional groups, there are non-involutions x with αx 6= 0. Finally,
we have the

Conjecture 5.4
αx 6= 0 ⇔ x ∼

L
x−1.

5.7 Conjectural representation theory of Kac-Moody
algebras

We will be following [DGK].
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Definition 5.1 Let A = (aij)n×n be a matrix over C. We can associate a
Lie algebra G(A) over C which is uniquely defined upto an isomorphism by:

(i) G(A) contains an Abelian diagonalizable subalgebra H such that G(A) =⊕
α∈H∗

Gα, where

Gα = {x ∈ G(A) : [h, x] = α(h)x ∀ h ∈ H}
and G0 = H,

(ii) there exists a linearly independent set of linear functions α1, · · · , αn ∈ H∗

and elements e1, . . . , en, f1, . . . , fn in G(A) such that

1. Gαi
= Cei, G−αi

= Cfi(1 ≤ i ≤ n),

2. [ei, fj] = 0 for i 6= j,

3. {e1, . . . , en, f1, . . . , fn] ∪H generates G(A) as a Lie algebra,

4. the elements hi = [ei, fi](1 ≤ i ≤ n) are linearly independent,

5. αj(hi) = aij(1 ≤ i, j ≤ n),

6. if h ∈ H is such that αi(h) = 0 ∀ 1 ≤ i ≤ n, then h ∈
n∑

i=1

Chi, and

7. any ideal of G(A) which intersects H trivially is zero.

G(A), H and A are called a contragradiant Lie algebra, a Cartan subalgebra
of G(A) and the Cartan matrix of G(A) respectively.

Denoting by Γ, the lattice in H∗ generated by {α1, . . . , αn} and by Γ+ the
set {Σkiαi ∈ Γ|ki ≥ 0, 1 ≤ i ≤ n}, we define, for λ ∈ H∗,

D(λ) = λ− Γ+ = {λ− ν|ν ∈ Γ+}.
For λ, µ ∈ H∗, we say λ ≥ µ if µ ∈ D(λ). Thus, we can define posi-
tive and negative roots etc. in the obvious manner. Also, we write N+ =∑
α∈∆+

Gα, N− =
∑

α∈∆−
G−α. The Cartan matrix A is said to be symmetrizable

iff there exists a non-degenerate matrix D = diag.(d1, . . . , dn) such that D ·A
is symmetric. We, then have the following:
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Theorem 5.14 If A is symmetrizable, then ∃ a non-degenerate C-valued
symmetric bilinear form ( , ) on G(A) such that:
(i) ( , ) is G(A)-invariant,
(ii) the restrictions of ( , ) to H and to Gα ⊕ G−α(α ∈ ∆+) are non-
degenerate,
(iii) (Gα, Gβ) = 0 if α + β 6= 0,
(iv) ∀ α ∈ ∆+, one has [eα, e−α] = (eα, e−α) · hα for any eα ∈ Gα, e−α ∈ G−α

where hα = Σkidihi if α = Σkiαi, and
(v) (hi, hj) = d−1

j aij = d−1
i aji

∀ i, j.

If A = (aij) is symmetrizable and such that (1) aii = 2, (2) aij are non-
positive integers for i 6= j and (3) aij = 0 ⇒ aji = 0, then the associated Lie
algebra G(A) is called a Kać-Moody Lie algebra.

In the above discussion, we choose (as we can) the di to be positive rational
numbers. We define si on H∗ by si(λ) = λ − λ(hi)αi ∀ λ ∈ H∗. Let W be
the group generated by these reflections {si}n

i=1; it keeps the set ∆ of roots
invariant and dimGα = dim Gw(α)∀ α ∈ ∆, w ∈ W .
W is called the ‘Weyl group’ of G(A).

Let G(A) be a Kać-Moody Lie algebra.

We consider the category Θ whose objects are G(A)-modules M satisfying:

(a) M is H-semisimple with finite-dimensional weight spaces and
(b) ∃ finitely many elements µ1, . . . , µk ∈ H∗ such that any weight of M
belongs to some D(µi).

The morphism of Θ are G(A)-module homomorphisms. The Verma modules
are highest modules in Θ defined as M(λ) ' U(G(A))/Iλ where λ ∈ H∗ and
Iλ is the left ideal of U(G(A)) generated by {h− λ(h)|h ∈ H} and N+.

They have the following properties which are easily verifiable:

(a) If vλ is the image of 1 in U(G(A))/Iλ, then N+ · vλ = 0 and h · vλ =
λ(h) · vλ ∀ h ∈ H,

(b) M(λ) is a free U(N−)-module of rank 1 with {vλ} as a basis;
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(c) The Γ-gradation of U(N−) induces a weight space decomposition of M(λ):
M(λ) =

⊕
ν∈Γ+

M(λ)λ−ν , dimM(λ)λ−ν = P (ν), the partition function of G(A)

at ν,

(d) For any G(A)-module M containing a vector v of highest weight λ such
that N+ · v = 0, there exists a unique G(A)-module homomorphism. ϕ :
M(λ) → M such that ϕ(vλ) = v,

(e) M(λ) has a unique irreducible quotient L(λ) and

(f) Any irreducible module L in Θ is isomorphic to L(λ) for a unique λ ∈ H∗.

We recall the notion of formal characters in this setup.

Let A be the set of all functions f : H∗ → ZZ such that f vanishes outside
a finite union of D(λi)’s. Then A is a ring under pointwise addition and
convolution ∗ given by (f ∗ g)(λ) =

∑
µ+δ=λ

f(µ) · g(δ), λ ∈ H∗.

We will call a family {fi}i∈I in A summable iff
(i) ∃ µ1, . . . , µk ∈ H∗ such that each fi vanishes outside D(µ1)∪ . . .∪D(µk),

(ii) for any λ ∈ H∗, fi(λ) = 0 for all but finitely many i ∈ I.

Thus, the function f =
∑
i∈I

fi will be a well-defined function in A. The formal

character ch M of M in Θ is defined as the element of A such that

ch M(λ) = dim Mλ ∀ λ ∈ H∗.

We have :

Proposition 5.15 ([DGK]) Given M ∈ Θ, there exists a unique set {aλ}λ∈H∗

of non-negative integers such that the family {aλ · ch L(λ)}λ∈H∗ is summable
with sum = ch M . Moreover, aλ 6= 0 iff L(λ) ' a subquotient of M . We
write aλ = [M : L(λ)].

Kać and Kazhdan [KK] showed :

Theorem 5.16 Let λ, µ ∈ H∗. Then L(µ) occurs in M(λ) iff the ordered
pair {λ, µ} satisfies the condition:
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There exists a sequence β1, . . . , βk of positive roots and a sequnce n1, . . . , nk

of positive integers such that

(i) λ− µ =
k∑

i=1

niβi and

(ii) 2(λ + ρ − n1β1 − . . . − nj−1βj−1, βj) = nj(βj, βj) ∀ 1 ≤ j ≤ k where
ρ ∈ H∗ is an element satisfying ρ(hi) = 1

2
aii ∀ 1 ≤ i ≤ n.

To make a meaningful conjecture about [Mλ : L(µ)] we have to consider a
‘good’ subcategory Θg of Θ which has a decomposition into a direct sum of
subcategories Θg

Ω, where the objects of Θg
Ω are modules for which the highest

weights of all ireeducible subquotients, translated by ρ, lie on the same orbit
Ω of the Weyl group W . This is the same decomposition as in the theory of
characters in the finite-dimensional case. This has helped in describing the
components of the Verma modules in terms of the Weyl group.

For a complex number c we write c ≥ 0 if either Re(c) > 0 or else Re(c) = 0
and Im(c) ≥ 0. We write c < 0 if c 6≥ 0.

Let C be the set of elements λ ∈ H∗ which satisfy:
(λ, αi) ≥ 0 for i = 1, . . . , n and
(λ, α) 6= 0 for α ∈ ∆+ such that (α, α) = 0.
Set K =

⋃
w∈W

w(C). Then, we have

Proposition 5.17 (i) {W ; s1, . . . , sn} is a Coxeter system.

(ii) Every orbit of W in K contains a unique element of C.

(iii) W is finite ⇔ K = H∗ ⇔ dim G(A) < ∞.

(iv) If λ ∈ C and w ∈ W , then λ− wλ =
∑
i

ciαi, ci ≥ 0, and

λ = wλ ↔ w ∈ the group generated by {si|(αi, λ) = 0}.

If we set Kg = −ρ + K,Cg = −ρ + C, we can define a subcategory Θg of Θ
whose objects are those M ∈ Θ whose components have their highest weights
in Kg.

The main point is
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Lemma 5.18 Let λ ∈ Kg and L(µ) occur in M(λ). Then ∃ σ ∈ W such
that σ(λ + ρ) = µ + ρ. In particular, µ ∈ Kg.

Corollary 5.19
λ ∈ Kg ⇒ M(λ) ∈ Θg.

One can show that for λ0 ∈ Cg which is integral and such that (λ0 + ρ, α) 6=
0 ∀ α ∈ ∆+, and for x ≤ y in W , [M(x(λ0 + ρ) − ρ) : L(y(λ0 + ρ) − ρ)] is
independent of λ0 and can conjecture that this is = Px,y(1).

78



References

[BB] A. Beilinson and J. Bernstein: Localisation des g-modules, C.R.
Acad. Sci Paris No. 292 (1981), 15-18.

[BBA] A.A. Beilinson and I.N. Bernstein: Appendix to ‘La Conjecture
de Weil II’ of P. Deligue: p-adic modules of weight fill motions,
preprint, Moscow 81.

[BBD] A. Beilinson, J. Bernstein and P. Deligne: Analyse it topologué sur
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[L2] G. Lusztig: Some problems in the representation theory of finite
chevalley groups, Proc. Symp. Pure Math. Vol. 37, 313-317, A.M.S
1980.

[L3] G. Lusztig: Green polynomials and singularities of unipotent
classes, Adv. in Math. 42 (1981), 169-178.

[L4] G. Lusztig: Representations of finite Chavalley groups, CBMS, Re-
gional conference series in Mathematics, A.M.S. 1978.

[L5] G.Lusztig: On a theorem of Benson and Curtis, Journal of Algebra
71(490-498) 1981.

[L6] G. Lusztig: On the finiteness of the number of unipotent classes,
Invent. Math. 34 (1976), 201-213.

[L7] G. Lusztig: Huke algebras and Iantzen’s Genesic decomposition
patterns, Adv. in Math., Vol. 37 (1980).

80



[LV] G. Lusztig and D.A. Vogan, Jr.: Singularities of closures of k-orbits
on flag manifolds, Invent. Math. 71(2), 1983, 365-379.

[M] Robert Macpherson: Global questions in the Topology of singular
spaces (International congress of Math., Warsaw, 1983).

[R] R.W. Richardson: Conjugacy classes in Lie algebras and algebraic
groups, Ann. of Math. 86 (1967), 1-15.

[Sh] Goro Shimura: Introduction to the arithmetic theory of automor-
phic functions, Iwanani Shoten, Publishers and Princeton Univ.
Press 1971.

[Sp1] Tonny A. Springer: Quelques applications de la cohomologie d1

intersection, Sem.Bourbaki 589, Fevrier 1982.

[Sp2] T.A Springer: Trigonometric sums, Green functions of finite groups
and representations of Weyl groups, Invent. Math. 36 (1976).

[St1] Robert Steinberg: Conjugacy classes in algebraic groups, Lecture
Notes in Math. 366, Springer-Verlag 1974.

[St2] Robert Steinberg: On the desingularization of the Unipotent vari-
ety, Invent. Math. 36 (1976), 209.

[V1] David A. Vogan, Jr. : Representations of real reductive Lie gorups,
Progress in Mathematics Vol. 15, Birkhänser 1981.

[V2] David A. Vogan, Jr.: Irreducible characters of semi-simple Lie
groups III, Invent. Math. 71 (1983).

[Z] A.V. Zelevinskii: p-adic analog of the Kazhdan-Lusztig hypothesis,
Func. Anal. 15, 1981.

81


