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The applications of representation theory to number theory

is a subject so vast that it may be said to include the whole

of the Langlands program. We do not discuss the Langlands

program here but only talk briefly about the following three

topics:

(I) The theory of Partitions

(II) Zeta and L-functions over number fields

(III) Kronecker-conjugacy of integer polynomials

1. The Partition Function

(Everyone knows that) Ramanujan made outstanding contri-

butions to the theory of partitions. Ramanujan’s first letter

to Hardy mentions an approximate formula for p(n) and

Rademacher published such an exact formula soon (according

to Selberg, if Hardy had been less of an analyst, Ramanujan’s

approximate formula might have been realized to quickly lead

to an exact formula). Hardy and Ramanujan developed the so-

called circle method and published asymptotic formulae like

p(n) ∼ e2
√
nζ(2)

4
√

3n
.

Here, the crucial thing to note is the exponent 2
√
ζ(2) which

is approximately 2.56.

From a point of view of the actual values of p(n), for small

n, these values are much smaller than the asymptotic values.

Representation theory especially of the symmetric group plays

a role here to provide easy but close lower bounds for p(n).

Let us discuss this first. All relevant background information

on partition theory as well as much more historical and other

material for the interested reader can be found in [1], and [2].

For the basic results on representation theory, one may refer to

[9] or the classic [15]. Let us start with an elementary lemma.

Lemma. Let Inv(G) denote the set of involutions of a finite

group G. Then,∑
χ∈ Irr(G)

ν2(χ) dim(χ) = 1 + |Inv(G)|

where ν2(χ) = 0, 1, or −1 according as to whether the char-

acter χ is not real-valued, or, is real-valued and afforded by

a real representation or, is real-valued but not afforded by a

real representation. This ν2 is the so-called Frobenius-Schur

indicator function.

In fact, for each n, expressing the class function

θn(g) = |{x : xn = g}|

as θn = ∑
χ irr νn(χ)χ obtains

νn(χ) = 〈θn, χ〉 = 1

O(G)

∑
g

χ(gn)

for each irreducible χ . In the special case n = 2, we have

|Inv(G)| + 1 = θ2(1) =
∑
χ irr

ν2(χ)χ(1)

The values 0, 1,−1 of ν2(χ) are obtained by decomposing the

representation space ofχ into its symmetric and antisymmetric

parts.

As ν2(χ) = 〈θ2, χ〉, we have

1 + |Inv(G)| =
∑
χ irr

ν2(χ)χ(1) = 〈θ2, χreg〉

Therefore, from the Cauchy-Schwarz inequality we have

|Inv(G)| <
√
r(G)

√
O(G)

where r(G) is the number of irreducible characters afforded

by real representations. In particular, since r(G) ≤ k(G), the

number of conjugacy classes of G, we have

O(G)

O(CG(g))2
< k(G)

where g is any involution.
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Corollary. e2
√
n

cn
< p(n) for some constant c.

Proof. Apply the lemma to Sn. Now f (n, t) = n!
2t t!(n−2t)! is the

number of involutions of Sn which are products of t disjoint

transpositions. The lemma gives

p(n) = k(Sn) >
|Inv(Sn)|2

n!

=
( ∑[n/2]

t=1 f (n, t)
)2

n!
>

[n/2]∑
t=1

f (n, t)2

n!
.

We can easily see from f (n,t)

f (n,t+1) = 2(t+1)
(n−2t)(n−2t−1) that f (n, t) ≤

f (n, t+1) if and only if (n−2t)2 ≥ n+2. Therefore, the largest

value of f (n, t) for t ≤ n/2 is when t = [(n+2−√
n+ 2)/2].

Using Stirling’s formula we get the assertion of the corollary.

A more careful argument on the above lines shows that one

can take c = e3
√

2π3.

Remarks.

(i) The above proof can be combinatorially viewed via the

Robinson-Schensted algorithm. This algorithm provides a

bijection between Sn and pairs of standard tableaux of the

same shape. In particular, it gives n! = ∑
λ	n a

2
λ where

aλ is the number of tableaux of shape λ 	 n. Under

this correspondence, elements of order ≤ 2 are in corres-

pondence with pairs of tableaux with identical entries.

Hence
∑

λ	n aλ = 1 + |Inv(Sn)|. The arithmetic mean –

quadratic mean inequality for the aλ’s gives the result now.

(ii) This estimate is close to the general size of p(n) because

most irreducible character degrees of Sn are nearly

equal.

As the irreducible (complex) representations of Sn are

parametrized by partitions, let χλ denote the character

corresponding to a partition λ of n. Using the theory of

blocks – especially using the recent generalization ([10]) of

Nakayama’s conjecture connecting combinatorial blocks to

the blocks of modular representation theory – one can prove

the following result on partitions. We do not go into its proof

here.

Theorem. For all d ≤ n, we have p(n) ≥ p([n/d2])d .

If d = [
√
n/2], this gives p(n) ≥ 2[

√
n/2] but one can derive

the stronger consequence:

Corollary. p(n) > e2
√
n

14 .

The proof for n < 190 can be checked by a computer. For

slightly bigger values 190 ≤ n < 760 also, it can be easily

checked thatp(n) > e2
√
n+0.5. Forn ≥ 760, the above theorem

along with induction, gives

p(n) > p([[n/2]/2])2 > e4
√

[[n/2]/2]+1 > e2
√
n+0.5.

We end by quoting the sharper lower bound p(n) > e2.5
√
n

13n

which can be deduced from the following consequence of the

theory of blocks for Sn ([11]).

Theorem. p(n) = ∑n
t=0

∑
4w+t (t+1)=2n

∑w
l=0 p(l)p(w− l).

2. Zeta Functions on Number Fields

The Dedekind zeta function of an algebraic number field is

an invariant which plays an important role in density theo-

rems for ramification of primes like the Frobenius density

theorem and the Chebotarev density theorem. Thus, it may

be natural to expect the Dedekind zeta function to deter-

mine the number field and it comes as a surprise that it does

not! In fact, a simple result from the representation theory of

finite groups provides a method to construct non-isomorphic

number fields with the same zeta function. These simple

methods also provide a footing to discuss and prove special

cases of Dedekind’s conjecture asserting that for number fields

K ⊂ L, the ratio ζL(s)/ζK(s) is an entire function of s.

We discuss this method here following an approach due to

Robert Perlis ([13]).

Dedekind zeta function and Gassmann equivalence

The main aim of this section is to discuss a method to produce

two non-isomorphic number fields with the same Dedekind

zeta function. Let N/Q denote a finite Galois extension and

writeG = Gal(N/Q). IfK andK ′ are intermediate fields, our

goal is to express the equality ζK(s) = ζ ′
K(s) in terms of the

groups G,H := Gal(N/K) and H ′ := Gal(N/K ′).
The Dedekind zeta function of an algebraic number field

K is the function of the complex variable s defined in the

region Re(s) > 1 by the series ζK(s) =
∑

I 1/N(I)s where

I varies over non-zero integral ideals of K and N(I) denotes

the absolute norm (the cardinality of OK/I ). The Dedekind

zeta function has a meromorphic continuation to Re(s) > 1 −
1/[K : Q] and has only a simple pole at the point s = 1.
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The residue at s = 1 contains information about K like the

class number, regulator etc.:

lim
s→1+

(s − 1)ζK(s) = 2r1(2π)r2h(K) Reg(K)

|μ(K)|√|disc(K)| .

For Re(s) > 1, there is an Euler product expansion

ζK(s) =
∏

0 
=P prime

(1 −N(P )−s)−1.

Here, the product is over non-zero prime ideals in the ring of

integers. Let G1(s) = (π)−s/2�(s/2), G2(s) = (2π)1−s�(s)
and let r1, r2 denote, respectively, the numbers of real and

complex places of K . Then, the completed zeta function

ZK(s) = G1(s)
r1G2(s)

r2ζK(s) is analytic in the whole plane

except for simple poles at s = 0, 1 and satisfies the functional

equation

ZK(s) = |DK | 1
2 −sZK(1 − s)

where DK denotes the discriminant of K over Q.

Splitting of primes

For a prime p, we will define the splitting type of p in a

number field E as follows. Let pOE = P
e1
1 · · ·P egg be the

decomposition of a prime p into prime ideals in OE and

fi = [OE/Pi : Z/pZ] be the inertial degree of Pi over p.

We number the fi’s in such a way that fi ≤ fi+1 and call

(f1, f2, . . . , fg) the splitting type of p in E. For every such

tuple A, we have a set

PE(A) := {p ∈ Z : p has splitting type A in E}.

As
∑g

i=1 eifi = [E : Q], PE(A) is empty except for finitely

many A.

We write PE(A)
.= PE′(A) if the two sets differ by at most

a finite number of elements. In particular, we can exclude

ramified primes as there are only finitely many of those in a

number field.

Let us look at a Galois extension N and let K,K ′ be inter-

mediate fields. Consider p ∈ Z which is unramified in N . Let

C be a decomposition group in G = Gal(N/Q) over p in G

i.e., C = GP for some prime P ofN lying above p. Note C is

cyclic (generated by a so-called Frobenius automorphism) as

p is unramified in N .

Look at one ofK,K ′ (sayK) and let us see how a splitting

type in K reflects group-theoretically in terms of G and its

subgroups H = Gal(N/K) and C = GP .

If A = (f1, f2, . . . , fg) is the splitting of a prime number

p in K , then we claim that there is a bijection between the set

H\G/C of double cosets ofGmodH,C and the set of prime

ideals of K above p. Indeed, this is given by

HσC �→ σP ∩K.

So A is the coset type of G mod H,C. By this, we mean that

the following holds good.

Writing G = ⋃h
i=1HtiC, we have h = g and |HtiC| =

|H |fi .
This is so becauseHtiC corresponds to tiP ∩K (sayPi) and

|HtiC| = |HtiCt−1
i | = |H ||tiCt−1

i |
|H ∩ tiCt−1

i | = |H ||C|
|H ∩ tiCt−1

i |
while |C| = f ′

i fi where f ′
i , fi are, respectively, inertial

degrees of tiP over Pi and Pi over p and |H ∩ tiCt−1
i | = |

decomposition group of tiP over K| = f ′
i .

So, we conclude that p has the same splitting type in K as

well as in K ′ if and only if the coset type of G mod H,C =
coset type of G mod H ′, C.

By the Frobenius density theorem, every cyclic subgroup

C of G occurs as a decomposition group for infinitely many

primes. Hence, we have:

PK(A)
.= PK ′(A) for allA ⇔ coset type ofGmodH,C =

coset type of G mod H ′, C for all C.

Two subgroups of a finite group are said to be Gassmann

equivalent if the permutation representations of the big group

on the two coset spaces are equivalent. Note that by looking

at the corresponding characters, this is equivalent to the state-

ment that each conjugacy class in the big group intersects both

subgroups in the same number of elements. This property was

first studied by F. Gassmann ([8]).

The relation of this notion to double coset type is given

by the:

Lemma. Two subgroups H and H ′ of a finite group G are

Gassmann equivalent if, and only if, the coset type of G mod

H,C = coset type ofG modH ′, C for all cyclic subgroups C

of G.

Proof. Note that each of the conditions implies |H | = |H ′|.
Let C = 〈c〉; c ∈ G. Then

|HgC| = |HgCg−1| = |H ||C|
|H ∩ gCg−1| .

Look at the cardinalities li of the sets {g ∈ G : |HgC| = |H |i}.
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Then, we have

∑
d|i
ld = |{g ∈ G : |HgC| divides |H |i}|

= |{g ∈ G : H ∩ 〈gcg−1〉 ⊇ 〈gcig−1〉}|
= |{g ∈ G : gcig−1 ∈ H }|.

Call the last quantity ki .

Then, by the Möbius inversion formula li = ∑
d|i kdμ(i/d).

So, the ki’s and li’s determine one another. As the same holds

for k′
i and l′i when H is replaced by H ′, it follows that the

double cosets have the same decomposition types for all cyclic

subgroups of G if and only if li = l′i ⇔ ki = k′
i . Lo and

behold, this happens for every cyclic subgroup C if and only

if the subgroups H and H ′ of G are Gassmann-equivalent.

T. Sunada constructed isospectral manifolds which are not

isometric, using this property of Gassmann equivalence. This

is sometimes expressed in the colourful language “one cannot

hear the shape of a drum.” The main theorem in our number-

theoretic context here is:

Theorem. Let K,K ′ be number fields contained in a Galois

extension N over Q. When G = Gal(N/Q), H = Gal(N/K)

and H ′ = Gal(N/K ′), the following are equivalent:

(a) ζK = ζK ′ .

(b) PK(A) = PK ′(A)∀ tuples A.

(c) PK(A)
.= PK ′(A)∀ tuples A.

(d) H = Gal(N/K) and H ′ = Gal(N/K ′) are Gassmann-

equivalent.

Moreover, if the above conditions hold, then the degree

and the discriminants over Q and the numbers of real and

complex places ofK andK ′ coincide. Also, the two fields

determine the same normal closures, the same normal

cores (largest normal sub-extensions) and, the unit groups

of K,K ′ are isomorphic as well.

Note that the equivalence of (c) and (d) is what we esta-

blished above.

Proof of (a) implies (b). LetA(n),A′(n) denote the numbers

of integral ideals of norm n in the rings of integers of K,K ′

respectively. Then

ζK(s) =
∞∑
n=1

A(n)/ns, for Re(s) > 1

ζK ′(s) =
∞∑
n=1

A′(n)/ns, for Re(s) > 1.

Letting s → ∞, we get A(1) = A′(1). Cancel this term

from both zeta functions, multiply by 2s and let s → ∞;

we get A(2) = A′(2). Repeating this argument, we have

A(n) = A′(n) for all n by induction.

Now, clearly the splitting type of p in K is determined by

the number B(pf ) of prime ideals of K of norm pf . On the

other hand,

B(pf ) = A(pf )−
∑

A(pa1)A(pa2) · · ·A(pat )

where the sum is over t ≥ 2, a1 +· · ·+at = f. Thus the split-

ting types coincide forp inK and inK ′. Hence, (a) implies (b).

(b) implies (c) is a tautology.

(d) implies (a):

Let C be decomposition group of the real place of Q. Since

it has order 1 or 2, it is cyclic. So, the numbers r1, r2 of real

and complex places of K are equal to the number of double

cosetsHtiC of cardinality |H | and of 2|H | respectively. Thus,

(d) implies that the numbers r1, r2 are the same for K and K ′.
From the completed zeta function ZK(s) = G1(s)

r1

G2(s)
r2ζK(s) and its functional equation

ZK(s) = |DK | 1
2 −sZK(1 − s)

we see that

ζK(s)

ζK ′(s)
= |DK/DK ′ | 1

2 −s ζK(1 − s)

ζK ′(1 − s)
.

But, the equivalence of (c) and (d) and the definition of the

Dedekind zeta function as an Euler product when Re(s) > 1

implies that the left hand side above is a finite product. That

is, using (c) we have

ζK(s)

ζK ′(s)
=

∏m
j=1(1 − d−s

j )∏n
j=1(1 − c−sj )

.

By analytic continuation above is valid for all complex s. So the

conclusion would follows from the following easily proved

fact asserting that finite products can not satisfy a general kind

of functional equation:

Let τ(s) = τ1(s)

τ2(s)
where τ1(s) = ∏m

j=1(1 − c−sj ) and

τ2(s) = ∏n
j=1(1 − d−s

j ) with cj , dj real and > 1. Note that

τ1(s), τ2(s) have no poles. Let f (s) be a meromorphic func-

tion whose zeroes and poles do not lie among the zeroes of

Mathematics Newsletter -4- Vol. 25 #3, September & December 2014



either τ1(s) or τ2(s). If τ(s) = f (s)τ (1 − s) for all s, then

τ1(s) = τ2(s) and f (s) = 1 for all s.

Hence we have shown that the four statements are equi-

valent.

Let us now assume they are true and deduce the rest of

the assertions. If any of the above conditions holds then

|H | = |H ′| which implies [K : Q] = [K ′ : Q]. Also, while

proving the equivalence of (d) and (a), we have shown already

that the numbers of real and complex places match for K,K ′.
Also, near the end of that proof, we observed that

ζK(s)

ζK ′(s)
= |DK/DK ′ | 1

2 −s ζK(1 − s)

ζK ′(1 − s)
.

Applying the above assertion on non-existence of a general

functional equation for finite products, in the case of the

function f (s) = |DK/DK ′ | 1
2 −s . We have f (s) to be identi-

cally equal to 1 and so |DK | = |DK ′ |. But the sign

of the discriminant is given by the number of complex

places and, therefore, the discriminants themselves are

equal.

Now, the normal closure of K over Q is the fixed field

of
⋂
σ∈G σHσ

−1. So, h ∈ ⋂
σ∈G σHσ

−1 implies |{ghg−1 :

g ∈ G}| = |{ghg−1 : g ∈ G} ∩H | = |{ghg−1 : g ∈ G} ∩H ′|
so that h ∈ ⋂

σ∈G σH
′σ−1. In other words,

⋂
σ∈G σHσ

−1 ⊆⋂
σ∈G σH

′σ−1. By symmetry, the two intersections are equal

and thus the normal closures of K,K ′ over Q are the

same.

We will show now that the normal cores are the same as

well. Note that the normal core of K over Q is the fixed field

of the subgroup generated by all the conjugates of H in G.

But, if h ∈ H , then the number of its conjugates in H ′ equals

the number in H (which is thus non-zero). In other words,

some conjugate of h is in H ′. This gives that the subgroups

generated by the conjugates ofH and ofH ′ are the same. Thus,

the normal cores are equal.

Finally, the unit group O∗
K is the direct product of a free

group of finite rank r1 + r2 − 1 and the finite cyclic group

generated by the largest root of unity in K . The free parts are

isomorphic as r1, r2 are equal. Now, we observe that K and

K ′ have the same roots of unity. This is because we can adjoin

largest root of unity in K to Q to produce a normal exten-

sion of Q in K ′ as the normal cores are the same. Thus, the

unit groups are isomorphic as well. Hence the theorem is

proved.

A class of examples

Here is an infinite family of examples of fields which are arith-

metically equivalent but are not isomorphic.

LetH andH ′ be two non-isomorphic abstract groups having

the same number of elements of each order – let us say then that

the pair H,H ′ satisfies the condition (∗). There are infinitely

many such pairs. For example, ifH is an abelian group of type

(p, p, p) andH ′ is the semi direct product of an abelian group

〈a, b〉 of type (p, p) and a cyclic group 〈c〉 of order p with

cac−1 = a and cbc−1 = ab for some odd prime p, thenH,H ′

satisfies (∗).
When H,H ′ is a pair satisfying (∗), then both H and H ′

can be embedded in Sn via their left regular representations,

where n is their common order. Note thatH is not conjugate to

H ′ because they are not isomorphic. However, let us note that

they are Gassmann-equivalent using the following lemma:

Lemma. Elements h, h′ ∈ H ∪ H ′ of the same order are

conjugate in Sn.

Proof. As an element of Sn, each element ofH acts by multi-

plying the elements of H on the left and is then the product

of n/i disjoint cycles of length i where O(h) = i. The same

holds for h′. So, h and h′ have same cycle structure and are

thus necessarily conjugate in Sn.

Now, to show thatH,H ′ are Gassmann-equivalent, we need

to show that |{gcg−1 : g ∈ G}∩H | = |{gcg−1 : g ∈ G}∩H ′|.
If both intersections are empty then equality trivially holds.

So, let h ∈ {gcg−1 : g ∈ G} ∩ H . By condition (∗), there is

some h′ ∈ H ′ of the same order as that of h; so h and h′ are

conjugate in Sn and so h′ ∈ {gcg−1 : g ∈ G} ∩H ′. Thus,

{gcg−1 : g ∈ G} ∩H = {h ∈ H : O(h) = O(c)}
and

{gcg−1 : g ∈ G} ∩H ′ = {h′ ∈ H ′ : O(h′) = O(c)}
which gives by condition (∗) that H,H ′ are Gassmann-

equivalent.

Finally, (by Hilbert’s irreducibility theorem for instance),

there exists a Galois extension N of Q such that Gal(N/Q) =
Sn. Hence, the fixed fields K and K ′ of H and H ′ are non-

isomorphic but have the same zeta function.

An interesting group-theoretic result of Bart De Smit &

H. W. Lenstra Jr. from 2000 ([3]) implies the following

beautiful number-theoretic theorem:
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Call a natural numbern special ifpqr|n for (not necessarily

distinct) primesp, q, r such thatp|q(q−1). LetK be a number

field of degree n which is solvable by radicals. Suppose n is

not special. Then, K is determined up to isomorphism by its

Dedekind zeta function.

Conversely, for each special n, there are two solvable, non-

isomorphic number fields of degree n which have the same

Dedekind zeta function.

A key result used in the above theorem is:

Let (n, φ(n)) = 1 and let X is a set of size n on which a

finite, solvable groupG acts transitively. SupposeG also acts

on another finite set Y such that |Xg| = |Y g| for all g ∈ G

whose order is divisible only by primes dividing n. Then, X

and Y are isomorphic as G-sets.

3. Value Sets of Integer Polynomials

We briefly discuss the relation of permutation representa-

tions with value sets of integer polynomials. It turns out that

the concrete number-theoretic problem of deciding when two

integer polynomials take the same values modulo almost all

primes, is equivalent to a group-theoretic problem. Let us start

with a related problem.

Can we have irreducible integer polynomials which are

reducible modulo every positive integer?

More precisely, what is the relation between Galois groups

of integer polynomials and the reducibility modulo primes of

the polynomials?

IfK is the splitting field of a monic irreducible polynomial

f of degree n over Z, then look at any prime p which does

not divide the disrciminant of f . If f is irreducible modulo

p, then the corresponding Gal(K/Q) contains an element of

order n (a decomposition group is of order n). In other words,

if Gal(K/Q) does not contain an element of order n, then f

must be reducible modulo p.

In prime degrees, one cannot have monic irreducible integer

polynomials which are reducible modulo all but finitely many

primes. This is seen by an application of the Chebotarev

(or even the) Frobenius density theorem in the following

sense:

A cyclic subgroup of Gal(K/Q) can be realized as a decom-

position group over infinitely many primes.

Therefore, if f is monic irreducible of prime degree q over

integers, there are infinitely many primes p so that f mod

p has splitting field with Galois group cyclic of degree q.

In other words, f mod p is irreducible for infinitely many

primes.

Interestingly, it turns out that for every composite degree n

one may find monic irreducible integer polynomials of degree

n which are reducible modulo any natural number.

However, we shall return now to the other aspect of integer

polynomials which we started the section with. This is also

analyzed using similar ideas. Towards that, we state the

following lemma which can be proved using the Frobenius

density theorem:

Lemma. (Frobenius). Let h ∈ Z[X] be monic, and assume

that h(X) ≡ 0 mod p, has a solution in Z for almost all non-

zero primes p. Then every element of the Galois group of h(X)

over Q fixes at least one root of h.

Conversely, let h be monic and assume that every element

of the Galois group of h(X) over Q fixes at least one root of h.

Then h(X) ≡ 0 (mod p) has a solution in Z for every non-zero

prime p.

To prove this lemma, let us recall the following weaker

version of the Frobenius density theorem:

The set of primes p modulo which a monic integral,

irreducible polynomial f has a given decomposition type

n1, n2, . . . , nr , has density equal to N/O(Gal(f )) where

N = |{σ ∈ Gal(f ) : σ has a cycle pattern n1, n2, . . . , nr}|.
Look at the first part. Assume that h is irreducible of degree

> 1, if possible. The Frobenius Density Theorem shows that

every σ has a cycle pattern of the form 1, n2, . . . This means

that every element of Gal(h) fixes a root, say β. Since h is

irreducible, the group Gal(h) acts transitively on the roots of

h. Thus, this group would be the union of the conjugates of its

subgroupH consisting of those elements which fix the root β.

But a finite group cannot be the union of conjugates of a proper

subgroup; this implies H is the whole group. Hence Gal(h)

fixes each root of h and is therefore trivial. So we get h to be

a linear polynomial, a contradiction.

The converse is proved as follows.

Let L be a splitting field of h(X) over Q. Let OL be the

ring of integers in L, and let P be a prime ideal of OL lying

over p. The roots of h lie in OL by the assumption about

h. Let D and I be the decomposition and inertia group of

P respectively. Then D/I is cyclic, and maps isomorphi-

cally to the Galois group of the extension of residue fields.
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Let d ∈ D such that the coset dI generates D/I . By the

assumption, d fixes a root z of h. Thus dI fixes the image of z

inOL/P . As dI generates the full Galois group of the residue

field extensions, there is an integer b which is congruent to z

modulo P . This gives h(b) ∈ P ∩ Z = pZ, and the assertion

follows.

Kronecker-conjugacy

We describe in outline some deep work of M. Fried

([4], [5], [6]) and later work by Peter Müller ([12]) relating to

value sets of integer polynomials.

For f ∈ Z[X] and, p prime, consider the value set

Valp(f ) = {f (a) mod p; a ∈ Z}.

Call f, g ∈ Z[X] to be Kronecker-conjugate if Valp(f ) =
Valp(g) for all but finitely many primes p. In order to state a

group-theoretic criterion for Kronecker-conjugacy, we need to

fix some notations.

Given f, g ∈ Z[X] which are non-constant, consider a

Galois extension K of the field Q(t) of rational functions in

a variable t such that K contains a root x of f (x) = t and a

root y of g(y) = t . Let G denote Gal(K/Q(t)) and let U,V

denote the stabilizers of x, y respectively.

Fried’s Theorem.

Given f, g ∈ Z[X] which are non-constant, consider

t, K,G, x, y, U, V as above. Then, f, g are Kronecker-

conjugate if and only if⋃
g∈G

gUg−1 =
⋃
g∈G

gVg−1.

Idea of Proof.

Suppose that f, g are Kronecker-conjugate. Write f =
uXn + · · · be of degree n. As Kronecker-conjugacy is

preserved when we replace f (X) and g(X) by un−1f (X/u)

and un−1g(X) respectively, we may assume that f is

monic. Now, for any integer a, the hypothesis gives that

f (X) ≡ g(a) (modp)has a root for almost all non-zero primes

p. Hilbert’s irreducibility theorem tells us that the Galois

groups Gal(f (X) − g(y) over K(y) and Gal(f (X) − g(a))

over K are isomorphic as permutation groups for infinitely

many a. Recall that g(y) = t . Thus every element of the

Galois group Gal(f (X) − t) over K(y) fixes at least one

root. This Galois group is just the induced action of V on

the roots of f (X) − t (but V need not act faithfully). Hence

every element in V fixes a root. But these roots are the

conjugates of x whose stabilizer is U . So every element of

V lies in some conjugate of U . By symmetry, the result

follows.

Conjecture. Over a field of characteristic 0, two polynomials

f and g are Kronecker-conjugate if and only if, U and V are

Gassmann equivalent; that is, the permutation representations

IndGU1 and IndGV 1 are equivalent.

It should be noted that such a result is not purely group-

theoretic because there are examples of abstract finite groupsG

and subgroups U,V such that
⋃
g∈G gUg

−1 = ⋃
g∈G gVg

−1

but U,V are not Gassmann equivalent.

4. Dedekind’s entirety conjecture

Dedekind conjectured that for number fields K ⊂ L, the ratio

ζL(s)/ζK(s) is an entire function of s. The Dedekind conjec-

ture remains open in general. Actually, there is a more general

conjecture due to Artin which we describe first. A proof of

the Brauer-Aramata theorem appears in the classical text by

J.-P. Serre [15] but we mention here a proof of Foote

and Kumar Murty. The interested reader can also look

at [14].

Let L/K be a Galois extension of number fields and let G

denote the Galois group. For any prime ideal P of OK , look

at the factorization POL = P
e1
1 · · ·P egg . Now, the decompo-

sition groups DPi = {σ ∈ G : σ(Pi) = Pi} are mutually

conjugate and the inertia subgroups IPi = {σ ∈ G : σ(x) ≡
x mod Pi ∀ x ∈ OL} are the kernels of the natural surjections

from DPi to Gal ((OL/Pi)/OK/P )).

One also denotes by FrP , the Frobenius at P – this is a

conjugacy class in G.

Artin associated to any finite-dimensional representation

ρ : G → GL(V ), an L-function defined as

L(s, ρ;L/K) =
∏
P

det (1 − ρ(FrP )NK/Q(P )
−s |V IPi )−1.

Here V IPi is the subspace fixed by IPi for any i and the defini-

tion makes sense as FrP is a conjugacy class.

This Artin L-function has the following properties.
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Properties:

(I) L(s, ρ;L/K) depends only on the character χρ and one

often writes L(s, χ;L/K) for characters χ .

(II) If χ1 ⊕ χ2 = χ , then L(s, χ;L/K) = L(s, χ1;L/K)
L(s, χ2;L/K).

(III) If H is a subgroup of G, then L(s, IndGH(χ);L/K) =
L(s, χ;L/LH).

(IV) L(s, 1;L/K) = ζK(s).

(V) L(s, χreg;L/K) = ζL(s).

(VI) (Artin-Takagi factorization)

ζL(s) = ∏
χ∈Ĝ L(s, χ;L/K)χ(1).

Artin’s Conjecture:

L(s, χ;L/K) extends to an entire function for any irreducible

nontrivial character χ of G.

What Artin’s reciprocity law means:

Artin’s reciprocity law implies that Artin’s conjecture holds

for one-dimensional characters. More precisely:

If L/K is a Galois extension of number fields, and if χ is

a monomial character of Gal(L/K) (that is, is induced from

a one-dimensional character of some subgroup) and does not

contain the trivial character, then L(s, χ;L/K) extends to an

entire function of s.

Artin’s conjecture implies Dedekind’s entirety conjecture

for ζL(s)/ζK(s) in the case of Galois extensions L/K . How-

ever, without using Artin’s conjecture, one can prove the

above case of Dedekind conjecture – this is due to Brauer &

Aramata.

Theorem. (Brauer). LetG be any finite group and χ an irre-

ducible character of it. Then, there exist nilpotent subgroups

H1, . . . , Hr and one-dimensional characters ψi on Hi and

integers ni such that χ = ∑r
i=1 ni IndGHi (ψi).

In fact, combined with Artin’s reciprocity law, this theorem

immediately implies the following one:

Theorem. (Brauer). Let L/K be a Galois extension of

number fields. Let G denote the Galois group and let

χ be an irreducible character of G. Then L(s, χ;L/K)
admits a meromorphic continuation to the whole

plane.

Indeed, one need only observe that

L(s, χ;L/K) =
r∏
i=1

L(s, IndGHi (ψi);L/K)ni

=
r∏
i=1

L(s, ψi;L/LHi )ni .

Heilbronn character

The behaviour of an Artin L-function at any point s0 can

be studied through the so-called Heilbronn character, a

certain virtual character of G = Gal(L/K). If n(G, χ) :=
Ords=s0L(s, χ;L/K), is the order of (zero/pole of)

L(s, χ;L/K) at s0 the Heilbronn character is:

�G(g) =
∑
χ

n(G, χ)χ(g).

The sum is over all irreducible characters of G. Notice that if

Artin’s conjecture is true, then this is an actual character when

s0 = 1. The following result was proved by Heilbronn:

Lemma. For a subgroup H , the restriction of�G to H is the

Heilbronn character �H of Gal(L/LH).

Proof. By the orthogonality of characters,

�G|H =
∑
χ∈Ĝ

n(G, χ)

⎛
⎝∑
ψ∈Ĥ

〈χ |H,ψ〉Hψ
⎞
⎠

=
∑
ψ∈Ĥ

⎛
⎝∑
χ∈Ĝ

n(G, χ)〈χ, IndGHψ〉G
⎞
⎠ψ

where the second equality follows from the Frobenius

reciprocity theorem. Using the basic properties of the Artin

L-function, we have

n(H,ψ) = Ords=s0L(s, ψ;L/LH)

= Ords=s0L(s, IndGHψ;L/K)

= Ords=s0
∏
χ

L(s, χ;L/K)〈χ, IndGHψ〉

=
∑
χ

n(G, χ)〈χ, IndGHψ〉G

which proves the lemma.

The following beautiful inequality was derived by R. Foote

and V. Kumar Murty ([7]), and this has several consequences.
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Lemma. (Foote-Kumar Murty).∑
χ∈Ĝ

n(G, χ)2 ≤ (Ords=s0ζL(s))
2.

Proof. Now 1
O(G)

∑
g∈G |�G(g)|2 = 〈�G,�G〉G =∑

χ∈Ĝ n(G, χ)
2.

We apply Heilbronn’s lemma to the cyclic subgroups ofG.

We get

�G(g) = �〈g〉(g) =
∑
ψ∈〈̂g〉

n(〈g〉, ψ)ψ(g).

As the Artin reciprocity theorem implies that the Artin

L-function is entire for one-dimensional characters, each

n(〈g〉, ψ) ≥ 0. So |�G(g)| ≤ ∑
ψ∈〈̂g〉 n(〈g〉, ψ).

Finally, the Artin-Takagi factorization shows that

Ords=s0ζL(s) =
∑
ψ∈〈̂g〉

n(〈g〉, ψ)

for each element g ∈ G. Hence,

|�G(g)|2 ≤ (Ords=s0ζL(s))
2 ∀ g ∈ G.

Corollary. (Brauer-Aramata Theorem). For any Galois

extension L/K of number fields, the function ζL(s)/ζK(s) is

entire.

Proof. Apply the Foote-Murty lemma and note that

ζK(s) = L(s, 1;L/K) where 1 is the trivial character

of G.

Other variations have been obtained by M. Ram Murty and

collaborators.

One such is:

Let G = Gal(L/K) with L/K , a solvable extension of

number fields. Then

∑
1
=χ∈Ĝ

n(G, χ)2 ≤
(

Ords=s0
ζL(s)

ζK(s)

)2

A group-theoretic lemma which they prove in this direction is:

Let G be a nontrivial finite, solvable group and H , a sub-

group. Consider the derived series {G(i)} ofG. Then, for all i,

IndGH1H = IndHG(i)1HG(i) +
∑
j

IndGHj θj

where θj ’s are 1-dimensional characters of some subgroups

Hj which depend on H and i.

Using this lemma, A. Raghuram and M. Ram Murty prove:

Let G = Gal(L/K) with L/K , a solvable extension of

number fields. Write Lab denote the fixed field under [G,G]

and C denote the set of different 1-dimensional characters

of G. Then

∑
1
=χ∈C

n(G, χ)2 ≤
(

Ords=s0
ζL(s)

ζLab (s)

)2

We end with a few smatterings of statements which occur in

the Langlands program. First, we make a small observation to

the effect that Artin’s entirety conjecture needs to be proved

only when the base is Q. More precisely:

Artin cojecture enough to prove over Q:

Proposition. If all nontrivial irreducible characters χ of

G := Gal(E/Q) are so thatL(s, χ,E/Q) extends to an entire

function, then Artin’s conjecture holds good.

Proof. Let L/K be a Galois extension of number fields. Let

E be the Galois closure over Q and let G = Gal(E/Q). Then

H = Gal(L/K) is a subquotient ofG. Let τ be any irreducible

character ofH and lift it to a character of Gal(E/K). Denote by

θ the character ofG induced from it. By Frobenius reciprocity

law, θ does not contain the trivial character. In this case, by the

property (II) we recalled earlier, L(s, θ, E/Q) is entire. But,

the property (III) shows that L(s, θ, E/Q) = L(s, τ, L/K).

We end with the statement of one of the Langlands conjec-

tures known as:

The Langlands reciprocity conjecture.

Let (V , ρ) be an n-dimensional irreducible representation of

a Galois group Gal(L/K) of number fields. Then, there is a

cuspidal automorphic representation π ofGLn(AK) such that

L(s, ρ, L/K) is the L-function attached to π by Langlands.

We have not defined cuspidal automorphic representations

or the corresponding L-function of Langlands but just remark

that the latter L-functions are known to be entire!
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