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Somesh Bagchi (11.09.1946 – 05.10.2012) was a mathe-

matician of extraordinary breadth and depth. His area of

research was harmonic analysis on Euclidean spaces and on

Lie groups but his mastery extended to many other branches

of mathematics.

Somesh Chandra Bagchi was born in Bangladesh (in what

was East Pakistan) in a town called Gouripur, in the Netrokona

Sub Division of Mymensingh District on 11 September 1946

to Minati and Dinesh Chandra Bagchi. He passed away in

Kolkata on 5 October 2012 at the age of 66, after half a year of

brave and tough battle against lung cancer and its consequent

complications.

Somesh’s family continued to live in East Pakistan, even

after independence and the partition of Bengal into East and

West Bengal, and moved to India (Kolkata, then spelt Calcutta)

only after Somesh completed his matriculation in Mymensingh

Zilla School. In Kolkata, Somesh completed his Pre-University

at Jaipuria College, B.Sc. in Physics from St. Xavier’s College,

M.Stat., and Ph.D. from the Indian Statistical Institute (ISI)

for his dissertation on Vector-Valued Stationary Stochastic

Processes under the supervision of Prof. M. G. Nadkarni.

Somesh married Ratna (daughter of Sabita and Gopal

Majumdar of Raiganj, North Dinajpur) and has a son Ramanuj.

He is survived by his widow and son.

Soon after his Ph.D., he spent the years 1973–75 at the Tata

Institute of Fundamental Research in Mumbai, before joining

the faculty of the Indian Statistical Institute, Kolkata, where

he remained until he retired as a Professor of Mathematics in

2011 at the age of 65. In all these years at the Institute, he took

sabbatical leave only for a year which he spent at the University

of Puget Sound in Tacomo, Washington State, USA.

Although his Bachelor’s degree was in Physics and his

Master’s degree was in Statistics, his passion was Mathe-

matics, which he did and taught with a great deal of

commitment. Even after retiring, he taught at the Vivekananda

University in Belur across the Hooghly river from Kolkata.

Besides teaching regular courses at the ISI, Somesh taught

regularly in various summer schools for researchers or

refresher courses and nurture programs for undergraduates, all

over the country, whether it was organized by the ISI or other

organizations.

Somesh was a fabulous teacher at all levels. He was

inspirational. His own passion for Mathematics was conveyed

to his students. His lectures were lucid and extraordinarily

clear. Scores of students from other institutions, including

doctoral students would drop in to get his help, which he

unhesitatingly gave. Despite his busy teaching schedule in

the ISI and outside, he actively collaborated in research in

harmonic analysis with his colleagues and guided three very

good doctoral dissertations. He was a reluctant publisher of

research papers, even when he had good results. He contributed

to the national efforts for improvement of research and training

in Mathematics as a member of the National Board for Higher

Mathematics, in which capacity he participated in organizing

the International Congress of Mathematicians in Hyderabad in

August 2010. He was a member of the Executive Committee of

the Ramanujan Mathematical Society (2010 – 2012). He never

shirked administrative work and in fact carried out much more

than his fair share of it, both academic and general. He was

the Dean of Studies, Professor-in-Charge of the Theoretical

Statistics and Mathematics Division, and he was even the

Acting Director of the ISI for a brief period. Besides a

great deal of teaching, he participated whole-heartedly in the

admission work of setting up test papers, conducting selection

tests, evaluating tests, and interviewing candidates. He was

also a member of the Works Advisory Committee, Library

Committee, etc. from time to time and carried out these tasks

with promptness, efficiency, and good cheer and zeal.

Somesh was a great and popular story teller. He specialized

in amusing his friends with witty and humorous real stories

conveying the idiosycracies of our colleagues in the academic

world in general and mathematicians in particular. Many a

story used to get repeated on different occasions to different

audiences but he had this uncanny ability to render them in

precisely the same way with exactly the same words every time

he repeated them! He was great company and he enlivened the

great Bengali institution of adda.

Generations of grateful and admiring students, friends and

colleagues spread all over the country and abroad mourn the

loss of Somesh Chandra Bagchi and share the grief with his

family.
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Abstract. Students often have motivational difficulty in accepting the definitions of comparing cardinalities of sets. The key to the

application of the concepts lies in the so called Schröder-Bernstein theorem, the proof of which is often avoided due to its difficulty

level. In this short article, we discuss the remarkable results around this theorem and finally give a very simple proof. On the way, we

also construct a simple proof of uncountability of the set of real numbers, which follows directly from the completeness property.

1. Introduction

To determine the number of elements in a finite set, we count

the elements. If the result is a certain natural number n, then by

such a counting, we have put the set in one-one correspondence

with the set {1, 2, 3, . . . , n}. Thus even if we do not know the

names of different numbers, we still can determine whether

two given finite sets have the same number of elements or not.

Well, we simply try to put them in one-one correspondence; if

we succeed, then they have the same number of elements, else,

they have different number of elements. For arbitrary sets, the

number of elements is called cardinality.

In the sequel, we denote the cardinality of a setA by |A|. For

setsA and B, we writeA−B instead ofA\B, which is the set

of elements of A that are not in B. If f : A → B is any map,

x ∈ A, andX ⊆ A, then we write f (x) for that element inB to

which f associates x, and f (X) denotes the set of all elements

f (x) where x ∈ X. Thus f (A) is the range of f . For any

subset C of B, f −1(C) denotes the set {x ∈ A : f (x) ∈ C}.
If C ∩ f (A) = ∅, then f −1(C) = ∅. When f is one-one and

onto, f −1 : B → A is a map, and f −1(b) = a if and only if

f (a) = b for a ∈ A and b ∈ B.

We agree that if A and B are sets, then |A| = |B| if and

only if there exists a one-one map from one onto the other.

But then how to define the notion of |A| ≤ |B|? Looking at

the definition of |A| = |B|, it is tempting to break it into two

parts, that is,

There exists a one-one map from A to B.

There exists a map from A onto B.

But there is a gap between the existence of a one-one map from

A onto B and the conjunction of the two conditions above.

It is quite possible that even if the above two conditions are

satisfied, there may not exist a map which is both one-one and

onto. It suggests to formulate another alternative of breaking

|A| = |B| into the following two parts:

There exists a one-one map from A to B.

There exists a one-one map from B to A.

Comparing these two formulations, we ask whether the second

parts of them are equivalent or not. That is, whether the

following are equivalent:

There exists a map from A onto B.

There exists a one-one map from B to A.

We see that if there exists a one-one map fromB toA, then we

have a bijection fromB to f (B) ⊆ A. Then f −1 : f (B) → A

is onto A. Now, if A − f (B) is nonempty, then associate

all elements in A − f (B) to a particular element of B. This

extension of the map f −1 is clearly a map from A onto B.

What about the converse? Suppose there exists a map g from

B onto A. Then look at the reverse arrows of this g. For any

a ∈ A, consider the set g−1({a}). Using Axiom of Choice, get

an element xa ∈ g−1({a}). The map that takes a to xa is thus

one-one from A to B. In the absence of the axiom of choice,

it does not seem possible to prove this part.

A natural alternative is to take |A| ≤ |B| when there exists

a one-one map from A onto a subset of B. However, this is

equivalent to having a one-one map from A to B.

2. Uncountabilty

With these considerations, we compare cardinalities of sets as

follows.

Definition 1. Let A and B be sets.

|A| = |B| if there exists a one-one map from A onto B.
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|A| ≤ |B| if there exists a one-one map fromA toB. |A| ≤ |B|
is also written as |B| ≥ |A|.
|A| < |B| if |A| ≤ |B| but |A| 	= |B|. |A| < |B| is also written

as |B| > |A|.

If A ⊆ B, then the identity map I : A → B is one-one.

Hence |A| ≤ |B|. The set E of all even positive numbers has

cardinality less than or equal to that of N. However, |E| = |N|
since the map f : N → E defined by f (n) = 2n is a one-one

and onto map. It is easy to see that for setsA,B,C, if |A| ≤ |B|
and |B| ≤ |C|, then |A| ≤ |C| using composition of maps.

Let A be a set. A is said to be finite if either A = ∅ or

|A| = n = |{1, 2, . . . , n}|; A is called denumerable if

|A| = |N|; and A is countable if |A| ≤ |N|. All subsets of a

countable set are countable; thus all supersets of uncountable

sets are uncountable. It can be shown by induction that if A is

any infinite set, then |N| ≤ |A|. Every finite set is countable and

all infinite subsets of N are denumerable and thus countable.

All elements of a denumerable set can be enumerated in a non-

ending sequence of distinct elements:

x1, x2, . . . , xn, . . .

The set Z of all integers is denumerable since the map

f : Z → N defined by

f (m) =
⎧⎨⎩−1 − 2m if m < 0

2(1 +m) if m ≥ 0

is a one-one and onto map. The set Q of all rational numbers

is denumerable since it contains Z and the map g : Q → Z

defined by

g

(
p

q

)
=

⎧⎨⎩2p3q if p ∈ N ∪ {0}, q ∈ N

−2p3q if − p ∈ N, q ∈ N

is one-one; assuming that p/q is in reduced form. Wait! Have

we exhibited a map from Q to Z which is one-one and onto?

No! Then how do we conclude that Q is denumerable? By now,

we have only proved that

|Q| ≤ |Z| and |Z| ≤ |Q|.
Does it follow that |Q| = |Z|? Yes, by Schröder-Bernstein

theorem, which says the following:

If there exist a one-map from A to B and a one-one

map from B to A, then there exists a one-one map

from A onto B.

We will prove this result in Section 3. What about the set R

of real numbers? Recall that R is a (the) complete ordered

field containing Q. Along with the usual properties of addition,

multiplication and of the order relation ≤, it satisfies the

following, called the completeness principle:

Every subset of R which is bounded above, has a least

upper bound (lub), and

every subset of R which is bounded below, has a

greatest lower bound (glb).

In fact, existence of lub guarantees the existence of glb and vice

versa. Using this property, we give a proof of uncountability

of R.

Theorem 1. R is uncountable.

Proof. On the contrary, suppose R is countable. Then [0, 1] is

countable since [0, 1] ⊆ R. But [0, 1] is not a finite set since

f : N → [0, 1], defined by f (n) = 1/n, is one-one. Hence

[0, 1] is denumerable. Then, let

x1, x2, . . . , xn, . . .

be an enumeration of [0, 1]. For each n ∈ N, construct a sub-

interval [an, bn] of [0, 1] that does not contain xn, inductively,

as in the following:

Initially, set a0 := 0, b0 := 1.

Suppose, for k ≥ 0, ak, bk have already been chosen.

Choose ak+1, bk+1 as follows:

If ak < xk+1 < bk , then yk := xk+1, else, yk := ak .

ak+1 := yk+ (bk−yk)/3, bk+1 := yk+2(bk−yk)/3.

The construction says that if xk+1 lies in the open interval

(ak, bk), then choose the interval [ak+1, bk+1] as the middle

third of [xk+1, bk]; and if xk+1 ≤ ak or xk+1 ≥ bk , then choose

[ak+1, bk+1] as the middle third of [ak, bk].

We observe that for each n ∈ N, [an, bn] 	= ∅ and xn 	∈
[an, bn]. Moreover,

0 < a1 < a2 · · · < an < · · · < · · · < bn < · · · < b2 < b1 < 1.
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Write a = lub {an : n ∈ N} and b = glb {bn : n ∈ N}. Then,

0 < a ≤ b < 1. Thus [a, b] is a nonempty sub-interval of

[0, 1]. Moreover,

xn 	∈ [an, bn] ⊇ [a, b] for each n ∈ N.

That is, no number in [a, b] is enumerated in the assumed

enumeration, a contradiction. �

It can be shown that each real number has a decimal expan-

sion; see [1]. This representation is not unique since any

number having a finite number of digits after the decimal

point does have exactly another representation having an

infinite number of digits after the decimal point. For example,

0.12 = 0.11999 · · · . We agree to always use the infinite one

whenever a choice exists. The usual proof of uncountability of

the semi-open interval (0, 1] uses the diagonalization method

of Cantor, which we now explain. Suppose, on the contrary,

that (0, 1] is countable. Then we have an enumeration of all

numbers in (0, 1] as

0.a11 a12 a13 · · · a1n · · ·
0.a21 a22 a23 · · · a2n · · ·

...

0.an1 an2 an3 · · · ann · · ·
...

where each aij is a digit ranging from 0 to 9, and in which

a finite decimal ends with 9s rather than 0s. It is of course

immaterial whether we choose ending with 0s or 9s, but

we must resort to one and not the other so that repetitions are

avoided. We then construct a decimal number

0.b1b2b3 · · · bn · · ·

where bi = 0 if aii = 9 else bi = aii + 1. Then this new

decimal number is in (0, 1] but it differs from each in the list

above. Therefore, no enumeration of numbers in (0, 1] can

have all the numbers in (0, 1].

Another proof uses the representation of any real number

as a binary decimal. Once again, we choose to use a binary

decimal number with an infinite number of digits and discard

one with finite number of digits after the decimal point, if such

a choice exists. The uncountability of the closed interval [0, 1]

is accomplished by showing that P(N), the power set of N

and [0, 1] are in one-one correspondence; and then resorting

to Cantor’s theorem that for any set A, |P(A)| > |A|.

To see that |P(N)| ≤ |[0, 1]|, define f : P(N) → [0, 1] as

follows.

Let S ⊆ N. Let n ∈ N. Then f (S) is the decimal

number 0.a1a2 · · · in base 10 such that its nth digit

an = 3 if n ∈ S, and an = 4 if n 	∈ S.

For example, f ({1, 2, 3}) = 0.3334444 · · · . Notice that f is

not an onto map since for no subset A of N, f (A) = 0.1.

Clearly f is one-one. Hence |P(N)| ≤ |[0, 1]|.
For the other inequality, define g : [0, 1] → P(N) by

Let x = 0.b1b2 · · · ∈ [0, 1], where bi ∈ {0, 1}. Then

g(x) = {i ∈ N : bi = 1}.
For example, g(0.10111 · · · ) = {1, 3, 4, 5, . . . }. Again, notice

that g is not an onto map, since there is no binary decimal

a ∈ [0, 1] such that g(a) = {1, 2}. For, according to the

definition of g, the only suitable number a would have been

0.11, which has been discarded in favour of 0.10111 · · · .

Obviously, g is one-one. Hence |[0, 1]| ≤ |P(N)|.
By Schröder-Bernstein theorem, |P(N)| = |[0, 1]|.

It remains to prove Cantor’s theorem.

Theorem 2 (Cantor). For any set A, |A| < |P(A)|.

Proof. LetA be any set. The function f : A → P(A) defined

by f (x) = {x} is a one-one map. Therefore, |A| ≤ |P(A)|.
We next show that no function from A to P(A) can be onto.

On the contrary, suppose that g : A → P(A) is an onto map.

Notice that for any x ∈ A, g(x) ⊆ A. Let B = {x ∈ A :

x 	∈ g(x)}. Since g is an onto map, there exists y ∈ A such

that B = g(y). Then y ∈ B iff y 	∈ g(y) iff y 	∈ B, a

contradiction. �

R and N are not in one-one correspondence. But R and the

open interval (0, 1) are in one-one correspondence, since the

map f : (0, 1) → R defined by

f (x) = tan(−(π/2)+ π x)

is one-one and onto. If you accept Schröder-Bernstein theorem,

then it is trivial to guarantee the existence of a one-one map

from [0, 1] onto R. Can you construct a one-one map from

[0, 1] onto R?

Notice that Cantor’s theorem establishes a hierarchy of

infinities:

|N| < |P(N)| < |P(P(N))| <, . . .
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It raises the question whether there exists a set whose

cardinality is in between those of N and P(N)? Cantor

conjectured that there exists no such set, however he could

not prove it. Later it was shown by Gödel that the truth of

this conjecture is consistent with ZFC, a widely accepted

formalization of set theory by Zermelo and Fraenkel. Cohen

proved that the falsity of this conjecture is also consistent

with ZFC. These two proofs established the independence of

this conjecture from ZFC. Thus, the conjecture is considered

a hypothesis, the continuum hypothesis. The generalized

continuum hypothesis states that if A is any infinite set, then

there does not exist a set B such that |A| < |B| < |P(A)|.
It is not yet known whether there exists a formalization of set

theory in which (generalized) continuum hypothesis becomes

a theorem; see [5].

Another consequence of Cantor’s theorem is that the

collection of all sets is not a set. For, suppose that S is the

set of all sets. Then P(S) ⊆ S. In that case, |P(S)| ≤ |S|,
contradicting Cantor’s theorem. This also shows that we

cannot build a set corresponding to every property. For

otherwise, the property “x is a set” would define the set

of all sets. In fact, as the history goes, this concerns gave

rise to various formalizations of set theory, one of which is

ZFC.

Central to this discussion is comparing cardinalities, which

rests on Schröder-Bernstein Theorem.

3. Cantor-Schröder-Bernstein Theorem

As to the name of this section, Cantor first formulated the

theorem and gave a proof relying on the well ordering

principle; this principle, as we know, is equivalent to the axiom

of choice. Schröder gave a proof without using the axiom of

choice, in which there were gaps. The first published correct

proof without using the axiom of choice was by Bernstein,

though it is said that Dedekind proved it a bit earlier but did not

publish. Zermelo and König have also proved the theorem; see

[2,4]. All these proofs reveal partitions of the sets into a fixed

finite number of parts each, where the individual parts of both

the sets are in one-one correspondence. This is the content of

Banch-Mapping theorem, where the sets are partitioned into

two subsets. We prove this first.

Theorem 3 (Banach Mapping). Let A,B be nonempty sets.

Let f : A → B and g : B → A be functions. Then there

exist subsets A1, A2 of A and subsets B1, B2 of B such

that

A2 = A− A1, B2 = B − B1, f (A1) = B1, g(B2) = A2.

Proof. Consider the collection

C = {D ⊆ A : g(B − f (D)) ⊆ A−D}.

f (∅) = ∅. B−f (∅) = B. g(B−f (∅)) = g(B) ⊆ A = A−∅.

Hence, ∅ ∈ C. That is, C is a nonempty collection. Define

E = ∪D∈CD.

Now,

g(B − f (E)) = g(B − f (∪D∈CD)) = g(B − ∪D∈Cf (D))

= g(∩D∈C(B − f (D)))

⊆ ∩D∈C(g(B − f (D))) ⊆ ∩D∈C(A−D)

= A− ∪D∈CD = A− E.

That is,

g(B − f (E)) ⊆ A− E.

We want to show that g(B−f (E)) = A−E. On the contrary,

supposeg(B−f (E)) 	= A−E. Then there exists an x ∈ A−E
such that x 	∈ g(B−f (E)). The conditions x 	∈ g(B−f (E))
and g(B − f (E)) ⊆ A− E imply that

g(B − f (E)) ⊆ A− (E ∪ {x}).

Since f (E) ⊆ f (E∪{x}),B−f (E∪{x}) ⊆ B−f (E). Then

g(B − f (E ∪ {x})) ⊆ g(B − f (E)) ⊆ A− (E ∪ {x}).

That is, E ∪ {x} ∈ C. As E = ∪D∈CD, E ⊇ E ∪ {x}. That is,

x ∈ E, This contradicts x ∈ A− E.

We conclude that g(B − f (E)) = A− E.

Finally, take E = A1, A − E = A2, B1 = f (E) and

B2 = B − f (E). �

Cantor-Schröder-Bernstein theorem can be derived from

Theorem 2 by defining the map h : A → B with h(x) = f (x)

for x ∈ A1 and h(x) = g−1(x) for x ∈ A2. Notice that

f : A1 → B1 is one-one and onto; so is the map g : B2 → A2.

Therefore, h : A → B is one-one and onto.

The proof of Banach mapping theorem constructs the set

E ⊆ A satisfying

g(B − f (E)) = A− E.
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That is, E = A − g(B − f (E)). It means that if

φ(X) = A − g(B − f (X)) for subsets X of A, then E is a

fixed point of this map φ. But under what condition(s) a map φ

taking subsets of A to subsets of A will have a fixed point?

The proof of Theorem 2 suggests this condition.

Theorem 4 (Knaster Fixed Point). Let P(A) denote the

power set of a nonempty set A. Let a map ψ : P(A) → P(A)
satisfy

X ⊆ Y implies ψ(X) ⊆ ψ(Y ) for X, Y ⊆ A.

Then there exists G ⊆ A such that ψ(G) = G.

Proof. The collection K = {X ⊆ A : X ⊆ ψ(X)} of subsets

of A is nonempty since ∅ ⊆ ψ(∅). Define

G = ∪Y∈KY.

It says that each set in K is a subset of G. Now,

G = ∪Y∈KY ⊆ ∪Y∈Kψ(Y ) = ψ(∪Y∈KY ) = ψ(G).

If G 	= ψ(G), then there exists x ∈ ψ(G) such that x 	∈ G.

Since G ⊆ ψ(G) and x ∈ ψ(G), we see that

G ∪ {x} ⊆ ψ(G) ⊆ ψ(G ∪ {x}).

That is, G ∪ {x} ∈ K. Hence G ∪ {x} ⊆ G. That is, x ∈ G, a

contradiction.

Therefore, ψ(G) = G. �

Generalization has made the things simpler. The proof of

Theorem 3 looks simpler than that of Theorem 2. To derive

Theorem 2 from Theorem 3, all that we do is take a particular

mapψ which satisfies the required condition. For this purpose,

define the map ψ : P(A) → P(A) by

ψ(X) = A− g(B − f (X)) for X ⊆ A.

Now,

X ⊆ Y ⇒ f (X) ⊆ f (Y ) ⇒ B − f (X) ⊇ B − f (Y )

⇒ g(B − f (X)) ⊇ g(B − f (Y ))

⇒ A− g(B − f (X)) ⊆ A− g(B − f (Y )).

That is, X ⊆ Y implies ψ(X) ⊆ ψ(Y ). An application of

Theorem 3 completes the proof of Theorem 2.

In fact, Knaster fixed point theorem holds true in a much

more general setting. SupposeA is a partially ordered set with

a partial order ≤. It is called a complete lattice if every subset

ofA has an infimum and a supremum with respect to the partial

order. We say that a map φ : A → A is order preserving

if φ(x) ≤ φ(y) whenever x ≤ y. Then Knaster-Tarski fixed

point theorem can be stated as follows:

Every order preserving map on a complete lattice has

a fixed point.

Further, the set of all such fixed points of the map is

a complete lattice.

The proof of this result is similar to that of Theorem 3, but is to

be formulated in terms of the generalized notions appropriate

to a complete lattice. Moreover, the converse of Knaster-Tarski

fixed point theorem for lattices holds. It states that a lattice,

i.e., a partially ordered set in which every finite subset has a

minimum and a maximum, is complete if each order preserving

map has a fixed point.

The generalizations have helped in constructing an

independent proof of Cantor-Schröder-Bernstein theorem,

which we give below. Find out in the proof, how the ideas of

fixed point and partition of the sets are in action.

Theorem 5 (Cantor-Schröder-Bernstein). Let A and B be

nonempty sets. Let f : A → B and g : B → A be one-one

functions. Then there exists a function h : A → B, which is

both one-one and onto.

Proof. Define S = (A − g(B)) ∪ ∪n∈N(g ◦ f )n(A − g(B)).

See the figure below. Then S = (A−g(B))∪ (g ◦f )(S) ⊆ A.

Since g(B) ⊆ A and (g ◦ f )(S) ⊆ A, we obtain

A− S = A− ((A− g(B)) ∪ (g ◦ f )(S))
= (A− (A− g(B))− (g ◦ f )(S)
= g(B)− g(f (S)) = g(B − f (S)).

The last equality follows since g is one-one. Hence

g : B − f (S) → A − S is one-one and onto. Also,

f : S → f (S) is one-one and onto. Hence the maph : A → B

defined by

h(x) =
⎧⎨⎩f (x) for x ∈ S
g−1(x) for x ∈ A− S

is both one-one and onto. �

Compare this proof with the classical one in text books on

Set Theory, for example, in [1]. For completeness, prove the

facts contained in the following exercise.
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Exercise. Let f : A → B be a function where A and B are

nonempty sets. Suppose that A1 ⊆ A and A2 ⊆ A.

1. If A1 ⊆ A2, then f (A1) ⊆ f (A2).

2. f (A1 ∪ A2) = f (A1) ∪ f (A2).

3. f (A1 ∩A2) ⊆ f (A1)∩ f (A2). Equality holds if f is one-

one.

4. f (A1 −A2) ⊇ f (A1)−f (A2). Equality holds if f is one-

one.

5. Formulate and prove (2)–(3) when the operations of union

and intersection are taken over a collection of subsets ofA.
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Introduction

In his famous paper ([SR]), Ramanujan discussed the

properties of certain finite sums – the so-called Ramanujan

sums. Even though Dirichlet and Dedekind had already
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considered these sums in the 1860’s, according to G. H. Hardy,

Ramanujan was the first to appreciate the importance of the

sum and to use it systematically. Ramanujan sums play a key

role in the proof of a famous result due to Vinogradov asserting

that every large odd number is the sum of three primes.
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These sums have numerous other applications in diverse

branches of mathematics as well as in some parts of physics.

So, what are these sums?

For integers n ≥ 1, k ≥ 0, the sum

cn(k) =
∑

(r,n)=1;r≤n
e2ikrπ/n

is called a Ramanujan sum. In other words, it is simply the

sum of the k-th powers of the primitive n-th roots of unity –

‘primitive’ here means that the number is not an m-th root

of unity for any m < n. Note that the primitive n-th roots

of unity are the numbers e2ikrπ/n for all those r ≤ n which

are relatively prime to n. The first remarkable property they

have is that they are integers. Ramanujan showed that several

arithmetic functions (that is, functions defined from the set of

positive integers to the set of complex numbers) have ‘Fourier-

like’ of expansions in terms of the sums; hence, nowadays

these expansions are known as Ramanujan expansions. They

often yield very pretty elementary number-theoretic identities.

Recently, the theory of group representations of the permuta-

tion groups (specifically, the so-called super-character theory

as in [FGK]) has been used to re-prove old identities in a quick

way and also, to discover new identities. Thus, this subject is

very much alive.

1. Properties of Ramanujan Sums

It is convenient to write

�n = {e2irπ/n : (r, n) = 1, 1 ≤ r ≤ n}

Then, the set of all n-th roots of unity {e2ikπ/n : 0 ≤ k < n}
is a union of the disjoint sets �d as d varies over the divisors

of n. This is because an n-th root of unity is a primitive

d-th root of unity for a unique divisor d of n. It is also

convenient to introduce the ‘characteristic’ function δk|n which

has the value 1 when k divides n and the value 0 otherwise.

Before stating some properties of the ck(n)’s, let us recall two

arithmetic functions which are ubiquitous in situations where

elementary number-theoretic counting is involved. The first

one is Euler’s totient function

φ(n) = |{r : 1 ≤ r ≤ n, (r, n) = 1}|.

The other arithmetic function is the Möbius function

defined by

μ(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if n = 1

(−1)k, if n = ∏k
i=1 pi

0, otherwise.

The Möbius function keeps tab when we use the principle of

inclusion-exclusion to do counting. The basic result which can

be easily proved by induction on the number of prime factors,

is the Möbius inversion formula:

If g is an arithmetic function and

f (n) =
∑
d|n
g(d),

then

g(n) =
∑
d|n
f (d)μ(n/d).

With these notations, here are some elementary properties of

the Ramanujan sums.

Properties of ck(n)ck(n)ck(n)

(i) cn(k) = cn(−k) = cn(n− k).

(ii) cn(0) = φ(n) and cn(1) = μ(n).

(iii) cn(ks) = cn(k) if (s, n) = 1. In particular, cn(s) = μ(n)

if (s, n) = 1.

(iv) cn(k) = cn(k
′) if (k, n) = (k′, n). In particular,

cn(k) ≡ cn(k
′) mod n if k ≡ k′ mod n.

(v)
∑n−1

k=0 cn(k) = 0.

(vi)
∑

d|n cd(k) = δn|kn and cn(k) = ∑
d|n dμ(n/d)δd|k =∑

d|(n,k) dμ(n/d); in particular, for prime powers pr ,

we have

cpr (k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pr − pr−1, if pr |k;
−pr−1, if pr−1||k;
0, otherwise.

(vii) cmn(k) = cm(k)cn(k) if (m, n) = 1.

(viii)
∑n

k=1 cm(k)cn(k) = δmnnφ(n).

The property (vi) shows that these sums actually have integer

values.

The proof of (i) follows already from the definition and, so

do the first parts of (ii) and (iii). The second parts of (ii), (iii)

as well as the assertions (iv) and (vii) will follow from (vi).

We shall prove (v) and (vi).
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For (v), we have

n−1∑
k=0

cn(k) =
n−1∑
k=0

∑
ζ∈�n

ζ k =
∑
ζ∈�n

n−1∑
k=0

ζ k = 0

where the last equality is because

n−1∑
k=0

ζ k = 1 − ζ n

1 − ζ
= 0

for each ζ ∈ �n.

For proving (vi), we note that the second statement follows

from the first by the Möbius inversion formula. Let us prove

the first one now. We have∑
d|n
cd(k) =

∑
d|n

∑
ζ∈�d

ζ k =
n−1∑
m=0

e2imkπ/n

because, as we observed, the disjoint union of �d as d varies

over the divisors of n is the set of all n-th roots of unity. Now,

if the above sum
∑n−1

m=0 e
2imkπ/n is multiplied by e2ikπ/n, we

get the same sum which means that it is equal to 0 unless n|k.

When k|n, the sum is clearly equal to n. This proves (vi).

The other parts easily follow from (vi).

Von Sterneck’s Function

The equality cn(k) = ∑
d|n dμ(n/d)δd|k is very useful.1 For

instance, if n is a prime power pr , as we noted above in (vi),

we have

cpr (k) = prδpr |k − pr−1δpr−1|k.

Using this expression in (vii) above, we get

cn(k) =
μ

(
k

(k,n)

)
φ(n)

φ
(

k
(k,n)

) .

The right hand side was studied by R. D. Von Sterneck in 1902

and is known by his name. The equality above itself was known

before Ramanujan and is due to J. C. Kluyver in 1906.

2. Connection with Cyclotomic Polynomials

The cyclotomic polynomials �n(x) = ∏
ζ∈�n(x − ζ ) have

some fascinating properties and have surprising consequences

1Note that even computationally the defining sum for cn(k)
requires approximately n operations whereas the other sum
requires roughly log(n) operations.

(see [BS], where applications such as the infinitude of primes

in arithmetic progressions of the form {1 + an} are proved).

We have:

xn − 1 =
∏
d|n

∏
ζ∈�d

(x − ζ ) =
∏
d|n
�d(x)

and – by Möbius inversion, we deduce

�n(x) =
∏
d|n
(xd − 1)μ(n/d).

Taking the logarithmic derivative, we obtain

�′
n(x)

�n(x)
=

∑
d|n

dxd−1μ(n/d)

xd − 1
.

Multiplying by x(xn − 1), we get a polynomial in x, viz.,

x(xn − 1)
�′
n(x)

�n(x)
=

∑
d|n
dμ(n/d)(xd + x2d + · · · + xn).

Thus, the coefficient of xk in the polynomial on the right is∑
d|(n,k) dμ(n/d), which is simply the Ramanujan sum cn(k).

Hence, we have:

Proposition. For each k < n, the Ramanujan sum cn(k) is

the coefficient of xk−1 in the polynomial (xn − 1)�
′
n(x)

�n(x)
.

3. Ramanujan Expansions of Arithmetic Functions

An arithmetic function f (n) is often stored in terms of the

generating function
∑∞

n=1
f (n)

ns
which is a function of a vari-

able s. Instead of a power series, one uses these type of series –

called Dirichlet series – in this set-up. One reason is that

the product of two such series produces the “convolution” of

the corresponding arithmetic functions f (n), g(n) which is

something that appears naturally in number theory. That is, if

f, g are two arithmetic functions and F(s) = ∑∞
n=1

f (n)

ns
and

G(s) = ∑∞
n=1

g(n)

ns
, then

G(s)F (s) =
∞∑
n=1

∑
d|n f (d)g(n/d)

ns
.

One writes this new multiplication (the ‘convolution’) as

(f ∗ g)(n) =
∑
d|n
f (d)g(n/d).

Under this multiplication, the set of all arithmetic functions

forms what is called a “commutative algebra with unit”.

In other words, with the obviously defined addition of
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arithmetic functions, the set of arithmetic functions form a

complex vector space and this multiplication is compatible

with that vector space structure. The unit element is the

arithmetic function δ(n) = δn|1 in the notation we have used

above.

Ramanujan found ‘natural’ expansions of standard arith-

metic functions in terms of the cn(k)’s as infinite series.

“Natural” here is not a precisely defined notion. For instance,

for an arithmetic function f , one may look for a series∑∞
n=1 f̂ (n)cn(r) converging point-wise to f . This kind of

convergence has been established so far only for a restricted

class of arithmetic functions. Later researchers have tried to

produce “exotic” Ramanujan expansions for several arith-

metic functions which include those obtained classically by

Ramanujan. It should be borne in mind that in general such an

expansion may not be unique because one has equalities like∑∞
n=1

cn(k)

n
= 0.

We stick to giving some examples and later discuss

certain classes of functions which have unique Ramanujan

expansions.

Examples.

• Let σr(k) := ∑
d|k d

r for all r ≥ 1. Then

σr(k)

kr
=

∑
d|k

1

dr
=

∞∑
d=1

1

dr+1

∑
n|d
cn(d)

=
∞∑
n=1

cn(k)

nr+1

∞∑
m=1

1

mr+1
= ζ(r + 1)

∞∑
n=1

cn(k)

nr+1

where ζ(s) denotes the sum of the series
∑∞

n=1
1
ns

for any

real s > 1.

• The divisor function d(k) = ∑
d|k 1 has an expansion

d(k) =
∞∑
n=1

−cn(k) log(n)

n

• For anym ≥ 1, a generalization of the Euler totient function

is Jordan’s function

φm(k) = km
∏
p|k
(1 − p−m),

where the product on the right is over all the prime divisors

of k. Note that φ1 is the Euler totient function. Ramanujan

showed for any m ≥ 1 that

φm(k) = km

ζ(m+ 1)

∞∑
n=1

μ(n)cn(k)

φm+1(n)
.

• Let rm(k) = |{(a, b) : a, b ∈ Z, am+bm = k}|, the number

of ways to write k as a sum of two m-th powers. Then,

Ramanujan obtained expressions for r2, r4, r6, r8 and a few

other related arithmetic functions. For r2(k), this is:

r2(k) = π

∞∑
n=1

(−1)n−1

2n− 1
c2n−1(k)

Note the curiosity that a form of the famous prime number

theorem is the assertion that
∑

n
μ(n)

n
= 0 and this is also

equivalent to the assertion that
∑

n≥1
cn(k)

n
= 0 for all k!

Unique Ramanujan Expansions for ‘even’ Functions

Recall that cn((k, n)) = cn(k); thus, for each fixed n, one may

say that the function k �→ cn(k) is “even modulo n”. This is in

analogy with even functions which are ‘even modulo 2’. The

beautiful general theorem which holds good is the following

one.

Theorem. Let n be a fixed positive integer and let f be any

arithmetic function which is even modulo n. Then, there exist

unique numbers ad for each d|n which satisfy

f (k) =
∑
d|n
adcd(k).

In fact, for each d|n, we have

ad = 1

n

∑
e|n
f (n/e)ce(n/d).

This pretty theorem has a tedious though elementary proof but

the theory of super-characters mentioned in the introduction

gives a very quick proof. We do not discuss the proof here but

state some identities which follow quickly in that set-up.

Orthogonality Relations

• ∑
r|n φ(r)cd(n/r)ce(n/r) = nφ(d) or 0 according as to

whether d = e or not.

• ∑
r|n

1
φ(r)

cr (n/d)cr(n/e) = n
φ(d)

or 0 according as to

whether d = e or not.

• If (mu, nv) = 1, then cmn(uv) = cm(u)cn(v).

• ∑
d|n cd(n/d) = √

n or 0 according as to whether n is a

perfect square or not.

• cd(n/e)φ(e) = ce(n/d)φ(d) if d, e are divisors of n.

• ∑
d,e|n cd(n/e)ce(n/d) = nd(n) for divisors d, e of n.
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Mixed Orthogonality Relations

• For divisors d, e of n, we have
∑

r|n cd(n/r)cr(n/e) = n or

0 according as to whether d = e or not.

• For a divisor d of n, we have
∑

r|n cd(n/r)μ(r) = n or 0

according as to whether d = n or not.

A Matrix of Ramanujan Sums

Theorem. For any n > 1, consider the d(n) divisors of n and

fix them in some order. Look at the d(n)×d(n)matrixC whose

(d, e)-th entry is cd(e) for divisors d, e. Then, we have:

The determinant of the above matrix C is nd(n)/2 and the

inverse matrix has (d, e)-th entry 1
n
cn/d(n/e).

Proof. Consider the ‘divisibility’ matrixX of size d(n)×d(n)
whose (d, e)-th entry is 1 if d|e and 0 otherwise. Note that

X−1 has (d, e)-th entry is μ(e/d) if d|e and 0 otherwise. This

simply follows from the equality

∑
d|n
μ(d) =

⎧⎨⎩1, if n = 1

0, if n > 1.

IfD is the diagonal matrix whose (d, d)-th entry is d for each

d|n, then we have

XD(Xt)−1 = C

because (d, e)-th entry of the left hand side is
∑

r|(d,e) rμ(e/r)
which we know to be equal to cd(e). This also shows that the

determinant is as asserted. We may compute C−1 = XtDX−1

and get the result as asserted. �

Note that the equality CC−1 = I expresses the identity∑
r|n cn/r (d)cn/d(r) = n or 0 according as to whether d = n

or not.

Finally, we end this section with the following beautiful

statement which is a consequence of the theory of super-

characters:

Theorem. If n = p
α1
1 . . . pαrr , and the divisors of n are

arranged in any fixed order, then consider, as above, the

d(n) × d(n) matrix A with (d, e)-th entry cd(n/e). Then, det

A = nd(n)/2(−1)
∑r

i=1[(αi+1)/2]d(n)/(αi+1).

4. A Graph-Theoretic Interpretation

Both in graph theory and in group theory, the Cayley graphs

figure prominently ([KS]). IfG is a group generated by a subset

S which is symmetric – that is, S = {s−1 : s ∈ S} – then, one

forms the Cayley graph Cay(G, S)whose vertices are elements

ofG and, elements g, h are connected by an (undirected) edge

gh if and only if gh−1 ∈ S.

Consider the Cayley graph Cay(Zn,Z∗
n) where Z∗

n is the

group of all units in Zn. In other words, this is a graph

whose vertices can be identified with {0, 1, . . . , n−1} and one

connects i and j if and only if i − j is relatively prime to n.

The adjacency matrix of this graph has a very nice form – it is

a circulant matrix. This matrix is⎛⎜⎜⎜⎜⎜⎜⎝
a0 a1 a2 · · · an−1

an−1 a0 a1 · · · an−2

...
...

...
...

...

a1 a2 a3 · · · a0

⎞⎟⎟⎟⎟⎟⎟⎠
where ai = 1 or 0 according as whether i is relatively

prime to n or not. Evidently, the vectors vk = (1, e2ikπ/n,

e4ikπ/n, . . . , e2(n−1)ikπ/n) are linearly independent for

k = 0, 1, . . . , n− 1 and satisfy⎛⎜⎜⎜⎜⎜⎜⎝
a0 a1 a2 · · · an−1

an−1 a0 a1 · · · an−2

...
...

...
...

...

a1 a2 a3 · · · a0

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
1

e2ikπ/n

...

e2(n−1)ikπ/n

⎞⎟⎟⎟⎟⎟⎟⎠

= λk

⎛⎜⎜⎜⎜⎜⎜⎝
1

e2ikπ/n

...

e2(n−1)ikπ/n

⎞⎟⎟⎟⎟⎟⎟⎠
where λk = ∑n−1

m=0 ame
2imkπ/n = ∑

0≤m<n;(m,n)=1 e
2imkπ/n

which is the Ramanujan sum cn(k).

Therefore, we have shown:

Proposition. The eigenvalues of the Cayley graph

Cay(Zn,Z∗
n) are the integers cn(k) for 0 ≤ k ≤ n− 1.

5. Counting Generators in Cyclic Groups

In discussing heuristics on the Artin primitive root conjecture,

one naturally looks at a positive integer a and needs to keep

track of the index of the subgroup generated by a in Z∗
p for
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various primes p (see [PM]). In this context, the following

characteristic function plays a role and, once again, Ramanujan

sums help in evaluating these functions. More precisely, we

have:

Lemma. LetG be a cyclic group of order n and g ∈ G. Then,

for each divisor d of n,

∑
h|d
ch(O(G)/O(g)) =

⎧⎨⎩d, if d divides O(G)/O(g)

0, otherwise.

Proof. We have already seen that∑
h|d
ch(k) =

∑
h|d
ch((k, d)).

We have also noted earlier that when k|d, we have

∑
h|d
ch(k) =

⎧⎨⎩d, if k = d

0, otherwise.

Putting k = O(G)/O(g), we have the assertion. �

6. Counting Cyclic Orbifolds

In this section, we discuss an interesting way to use Ramanujan

sums to count the number of actions of a finite cyclic group as

orientation-preserving automorphisms on a Riemann surface

(see [VAL]). Such actions of a finite group G on a Riemann

surface S of genus g correspond to epimorphisms of the

fundamental group of the corresponding orbifold ontoG. The

fundamental group π1� of an orbifold � can be described

by 2g + r generators x1, y1, . . . , xg, yg, z1, z2, . . . , zr and

relations

z1z2 . . . zr

g∏
i=1

xiyix
−1
i y−1

i = 1, z
mi
i = 1 ∀ i ≤ r,

for certain positive integers 1 < mi ≤ |G|.
To count epimorphisms from this group to a cyclic group

Zk , one needs to simply look at the corresponding presentation

of the finitely generated abelian group π1�/[π1�,π1�]. It is

easy to prove that the number of order-preserving epimor-

phisms (that is, those epimorphisms which have torsion-free

kernels) from π1�(g,m1, . . . , mr) to Zk is:

m2gφ2g(k/m)
1

M

M∑
s=1

cm1(s)cm2(s) . . . cmr (s),

where m = LCM of m1, . . . , mr divides M and, the above

expression is independent of the choice of M (!).

Interestingly, the expression 1
M

∑M
s=1 cm1(s)cm2(s) . . . cmr (s)

on the right hand side above also counts the number of

solutions to the congruence

x1 + x2 + · · · + xr ≡ 0 mod M,

with GCD(xi,M) = M/mi , where M is a multiple of

the mi’s.

7. A Curious Application

Let n > 1 be odd. Fix ζ ∈ �n a primitive n-th root of

unity. Writing the product
∏(n−1)/2
i=1 (ζ i + ζ−i ) = ∑n

k=1Mkζ
k ,

the number Mk counts the number of ways k can be written

modulo n as ±1 ± 2 · · · ± (n− 1)/2. Also, for any divisor d

of n,

(n−1)/2∏
i=1

(ζ di + ζ−di) =
n∑
k=1

Mkζ
dk =

∑
e|n

∑
(k,n)=n/e

Mkζ
dk

=
∑
e|n
ce(d)Mn/e (♥)

The left hand side can be evaluated independently to be

±2(d−1)/2 where the sign is described as follows.

For any positive integer m, define
(

2
m

)
to be 1 or −1

according as to whether the product
∏
a
αp
p is 1, and where αp

is 1 or −1 according as to whether 2 is a square modulo p or

not and
∏
p p

αp = m.

Then, in (♥), the left hand side turns out to be 2(d−1)/2
(

2
n/d

)
.

The equations (♥) give a system of d(n) linear equations,

one for each divisor d of n. As we know how to invert the

matrix of Ramanujan sums, we have the following beautiful

result:

Theorem. Let n > 1 be odd. Consider, for each k ≤ n, the

number

Mk =
∣∣∣∣∣
{
(ε1, . . . , εd(n)) : εi = ±1,

(n−1)/2∑
i=1

iεi ≡ k mod n

}∣∣∣∣∣ .

Then, we have Mk = 1
n

∑
d|n cd(k)2

( n
d
−1)/2

(
2
d

)
.
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This section of the Newsletter contains problems contributed

by the mathematical community. These problems range

from mathematical brain-teasers through instructive exercises

to challenging mathematical problems. Contributions are

welcome from everyone, students, teachers, scientists and

other maths enthusiasts. We are open to problems of all

types. We only ask that they be reasonably original, and

not more advanced than the MSc level. A cash prize of

Rs. 500 will be given to those whose contributions are

selected for publication. Please send solutions along with the

problems. The solutions will be published in the next issue.

Please send your contribution to problems@imsc.res.in

with the word “problems” somewhere in the subject

line. Please also send solutions to these problems (with

the word “solutions” somewhere in the subject line).

Selected solutions will be featured in the next issue of this

Newsletter.

1. D. Surya Ramanna, Harish-Chandra Research

Institute, Allahabad. Find all solutions to the equation

xy = yx in the positive integers.

2. Thomas Moore, Bridgewater State University. Squares

sn = n2 and triangular numbers tn = n(n+1)
2 are well

known. The Jacobsthal numbers jn = 2n−(−1)n

3 for n ≥ 1

are somewhat less well-known. Find a second degree poly-

nomial with integer coefficients f (x), such that, whenever

the input sn, tn, or jn, n ≥ 1, the output is a triangular

number.

[PM] P. Moree, Artin primitive root conjecture – A survey,

Integers, 12A (2012) 1–100, #A13.

[SR] S. Ramanujan, On certain trigonometrical sums

and their applications in the theory of numbers,

Trans. Cambridge Philos. Soc., 22 no. 13 (1918)

259–276.

[VAL] V. A. Liskovets, A multivariate arithmetic function of

combinatorial and topological significance, Integers,

10 (2010) 155–177, #A12.

3. Kamalaskhya Mahatab, IMSc and Kannappan

Sampath, ISI Bangalore. Let f (x) be a monic polynomial

in Z[x] with a factorization

f (x) =
m∏
i=1

fi(x),

with f1, . . . , fm are monic polynomials having no common

factors. Let g(x) ∈ Z[x] be such that the remainder of g(x)

upon division by fi(xn) is a polynomial in xn for each i.

Show that the residue of g(x) upon division by f (x) is a

polynomial in xn.

4. Rahul Dattatraya Kitture, Bhaskaracharya

Pratishthana, Pune.

(1) Prove that a groupG can be written as a (set-theoretic)

union of proper subgroups if and only if G is not

cyclic.

(2) Use (1) to prove that if G is a non-abelian group, then

G/Z(G) is not cyclic (here Z(G) denotes the centre

of G).

5. K. N. Raghavan, IMSc. Let n be a positive integer. Define

dn to be (n+ 1)(n− 1) if n is odd, and to be (n+ 2)(n− 2)

if n is even; define en to be 4 or 0 accordingly as n is

divisible by 3 or not. Show that the number of ways in

which n can be written as a sum of three positive integers is

(dn+en)/12. (Can you write down an analogous expression

for the number of ways of writing n as a sum of four positive

integers?)
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6. K. N. Raghavan, IMSc. Let n be a positive integer,

n ≥ 2. On the real two dimensional plane, consider the

following two linear transformations: s is the reflection in

the x-axis; and r rotation counter-clockwise by the angle

2π/n.

sx = x rx = x cos 2π/n+ y sin 2π/n

sy = −y ry = −x sin 2π/n+ y cos 2π/n

Define a polynomial f (x, y) to be invariant if f (rx, ry) =
f (sx, sy) = f (x, y). For example, the polynomial

f0(x, y) = x2 + y2 is invariant. (Geometrically, the two

transformations s and r being respectively a reflection

and a rotation, they preserve the inner product, which

explains the invariance of f0(x, y).) Show that there exists

a homogeneous invariant polynomial f1(x, y) of degree n

such that, together with f0(x, y), it generates the ring of

polynomial invariants (that is, any invariant polynomial

is a polynomial with real coefficients in f0 and f1). For

example, for the values 2 and 3 ofn, we could takef1 respec-

tively to be x2 − y2 and x3 − 3xy2. Find an explicit closed

formula for such an f1 in terms of n. Show moreover that

the expression as a polynomial in f0 and f1 of any invariant

polynomial is unique.

7. K. N. Ragahavan, IMSc. A prime number p is called a

Fermat prime if it is of the form 22k + 1 for some integer k.

Prove or disprove the following: for any Fermat prime p

with k ≥ 1, the multiplicative group of units modulo p is

generated by 3.

Solutions to Problems from the June Issue

1. Abhishek Khetan, IIT Kharagpur. Let I2s = {1,
2, . . . , 2s}. Let F be a collection of non-empty subsets

of I2n such that any two members of F have at least one

element in common. Show that |F | ≤ (2s−1
s−1

)
.

First Solution. Define a function φ from F to the power

set of I2s by φ(A) = I2s\A. Since any two members of

F have at least one element in common, φ(A) /∈ F . Thus

|F ∪ φ(F )| = 2|F | ≤ (2s
s

)
. Therefore |F | ≤ 1

2

(2s
2

) =(2s−1
s−1

)
.

Second Solution. Partition F into two subsets:

F1 = {A ∈ F | 2s ∈ A}, F2 = {A ∈ F | 2s /∈ A},

and finally let F ∗
2 = {B ∪ {2s} | B ∈ J2}. If A ∈ F ∗

2 ∩F1,

then I2s − A ∈ F2, while A ∈ F1, so the disjoint

sets A and I2s − A would both be in F , contradicting

the hypothesis. It follows that F ∗
2 is disjoint from F1.

Now each element of F ∗
2 ∪ F1 contains 2s. Therefore,

|F ∗
2 | + |F1| ≤ (2s−1

s−1

)
. The result now follows from the fact

that |F2| = |F ∗
2 |.

2. Tom Moore, Bridgewater State University. Prove that the

Diophantine equations

x3 + y3 = z2, x4 + y4 = z3, x5 + y5 = z4

each have infinitely many positive integer solutions

(x, y, z).

Solution. We found the following solutions for respective

n values:

n = 3 : x = y = 2k+1 and z = 23k+2

n = 4 : x = y = 23k+2 and z = 24k+3

n = 5 : x = y = 24k+3 and z = 25k+4,

and these suggested a general solution, for any positive

integer n ≥ 3, namely

x = y = 2(n−1)k+(n−2) and z = 2nk+(n−1).

Checking the equation, we find that

xn + yn = 2 × 2n((n−1)k+(n−2))

= 2n(n−1)k+n(n−2)+1

= 2(n−1)(nk+(n−1))

= zn−1.

Solution received. Hari Kishan of D. N. College, Meerut

has suggested x = y = 2n−2un−1 and z = 2n−1un as

solutions for xn + yn = zn−1. For x3 + y3 = z2, he has

also suggested x = u4 + 8uv3, y = −4u3v + 4v4, and

z = u6 − 20u3v3 − 8v6 as solutions.

3. S. Kesavan, IMSc. Let I ⊂ R be an interval and let

f : I → R be a continuous function which is not mono-

tonic. Then, given any ε > 0, show that there exist points

x(ε) and y(ε) in I such that

x(ε) 	= y(ε), |x(ε)− y(ε)| < ε; and

f (x(ε)) = f (y(ε)).
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Solution. Since f is not monotonic, there exist distinct

points x0 < y0 in I such that f (x0) = f (y0). Let

T = y0 − x0. Now consider

g(x) = f (x + T/2)− f (x)

defined on [x0, x0 +T/2]. Then either g(x0) = 0 (in which

case g(x0 + T/2) = 0 as well) or g(x0) = −g(x0 + T/2).

In the latter case, by the intermediate value theorem, we get

a point x ′ such that g(x ′) = 0 with x0 < x ′ < x0 + T/2.

In either case we get a pair of points x1 and y1 such that

y1−x1 = T/2 and f (x1) = f (y1). Iterating this procedure,

we see that for any positive integer n ≥ 2, there exist points

xn and yn − xn = T/2n such that f (xn) = f (yn). This

completes the proof.

Solution received. M. Suresh Kumar of NIT Surathkal

sent in a correct solution to this problem.

4. K. N. Raghavan, IMSc. Given m distinct n-tuples of

integers p1, . . . , pm, and m integers α1, . . . , αm, show that

there exists a polynomial f in n variables (with rational

coefficients) such that f (p1) = α1, . . . , f (pm) = αm and

f takes integral values at all integer n-tuples.

Solution. We may assumeα1 = 1,α2 = · · · = αm = 0, for,

if f1, . . . , fm are polynomials that take integer values on

integern-tuples and satisfyfj (pk) = δjk (Kronecker delta),

then we need only set f = α1f1 + · · · + αmfm.

We may assume p1 to be the origin (0, . . . , 0), for,

if g is a polynomial such that g(0, · · · , 0) = 1 and

g(p2 −p1) = · · · = g(pm−p1) = 0, then we need only set

f (X) = g(X−p1). Now chooseN large enough to exceed

moduli of all co-ordinates of p2, . . . , pm. Set

f :=
n∏
i=1

(
Xi +N

N

)(−Xi +N

N

)
Here

(
A

N

)
denotes the binomial coefficient, to be inter-

preted as

A(A− 1) . . . (A−N + 1)

N !
for any A.

The polynomial
(
X+N
N

)
takes integer values at integers,

vanishes at −N,−(N−1), . . . ,−1, and is 1 at 0; and
(
X+N
N

)
takes integer values at integers, vanishes at 1, 2, . . . , N , and

is 1 at 0. Since each of the pj has a non-zero co-ordinate in

the range [N,N ], we see that f (pj ) = 0.

5. B. Sury, ISI Bangalore. If n is a natural number greater

than 1 such that all its powers n, n2, n3, n4, . . . have an odd

number of digits, then n is a power of 100.

Solution. Clearly, powers of 100 have the asserted property

and we need only prove the converse. If n has the mentioned

property, then

102k ≤ n < 102k+1

for some k ≥ 0. Now

104k ≤ n2 < 104k+2,

which actually means that

104k ≤ n2 < 104k+1,

because n2 has an odd number of digits. Similarly,

102dk ≤ n2d−1
< 102d+1.

Thus 102k ≤ n < 102k+1/2d−1
for all d which gives

n = 102k .

6. B. Sury, ISI Bangalore. Find all pairs of primes p, q,

whose sum is a power of their difference.

Solution. Let p + q = (p − q)r where p > q are primes.

If l is a prime dividing p−q, then p+q ≡ 2q ≡ 0 mod l

(the last because p + q = (p − q)r ). So, l = 2, or l = q.

If l = q, then p = l = q, a contradiction.

Therefore l = 2, and p, q are odd primes. So p−q = 2k

for some k ≥ 1. Hence p+q = 2k+2q = (p−q)r = 2kr .

So q = 2kr−1 − 2k−1 = 2k−1(2k(r−1) − 1). As q is an odd

prime, this gives k− 1 = 0, which gives q = 2r−1 − 1 and

p = q + 2 = 2r−1 + 1. The fact that q is prime implies

that r − 1 is prime. If r − 1 = 2, we get the solution r = 3,

q = 3 and p = 5; that is

5 + 3 = (5 − 3)3. (∗)

If r − 1 is an odd prime, then p = 2r−1 + 1 is a multiple of

2 + 1, and is bigger than 3, and hence is not a prime. So (*)

gives the unique solution.

Solution received. Aditi Phadke of Nowrosjee Wadia

college sent in a correct solution to this problem by a

different method.

7. Amritanshu Prasad, IMSc. Show that the probability that

a monic polynomial of degree n in with coefficients in a
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finite field of order q is square-free is 1−q−1 for all integers

n > 1.

Solution. Since there are qn monic polynomials of degree

n, we need to show that for n > 1, there are qn − qn−1

square-free monic polynomials.

By the unique factorization theorem for polynomials over

a field, every monic polynomial can be uniquely written

as the product of a monic square and a monic square-free

polynomial. Therefore if cn(q) is the number of square-free

polynomials of degree n then

qn =
�n/2�∑
r=0

q2rcn−2r (q),

whence

cn(q) = qn −
�n/2�∑
r=1

q2rcn−2r (q). (†)

We now proceed inductively: we have the base cases

c0(q) = 1, c1(q) = q (since all monic polynomials of

degree 0 and 1 are square-free). Using (†) we find that

c2(q) = q2 − q and c3(q) = q3 − q2.

We now proceed by induction. If n is even, (†) gives

cn(q) = qn − cn−2(q)q − cn−4(q)q
2

− · · · − c2(q)q
�n/2�−1 − c0(q)q

�n/2�.

If we assume the result to be true for all m < n, then the

above identity becomes

cn(q) = qn − (qn−2 − qn−3)q − (qn−4 − qn−5)q2

− · · · − (q2 − q)q�n/2�−1 − q�n/2�,

which telescopes to qn − qn−1. A similar proof works for

odd n.

Indo-French Centre for Applied
Mathematics (IFCAM)

Indian Institute of Science, Bangalore

Visitors Programme

The Indo-French Centre for Applied Mathematics (IFCAM)

has been jointly set up by the Indian and French Governments

at the Indian Institute of Science, Bangalore as an international

joint research unit. IFCAM is designed as a platform for

cooperation in mathematical sciences with the primary focus

being the area of applied mathematics.

IFCAM has funds to support visits of Indian researchers,

particularly from Universities and Colleges, working in

applied mathematics (interpreted broadly to include mathe-

matical aspects of engineering, physics, biology etc). Visitors

can be hosted either at IFCAM, Indian Institute of Science,

Bangalore or at a neighboring research institution (subject to

consent of the institution). Visits can range from 1 month to

3 months and should aim to initiate or continue a research

collaboration with a faculty member at the host institute.

Interested researchers should apply online through the website

given below. All visits should be completed by March 31,

2014. Selected visitors would be paid TA/DA for the duration

of the visit. Further details on all of the above along with the

application form can be obtained from:

http://www.math.iisc.ernet.in/∼ifcam/

visitors.html

Director:

Indo-French Centre for Applied Mathematics

Department of Mathematics, Indian Institute of Science

Bangalore 560 012, India

Tel: +91-80-2360 0365 | Fax: +91-80-2360 0365

E-mail: ifcam@math.iisc.ernet.in |
http://www.math.iisc.ernet.in/∼ifcam/

International Symposium on
Complex Analysis and Conformal

Geometry (ISCACG 2013)

28–30 December, 2013

Organizing Institution: Indian Institute of Technology

Indore.

Aim: This symposium is mainly aimed at young researchers

from all over the country who are interested in research

in the following areas of Complex Analysis of current

relevance: univalent harmonic mappings, hyperbolic geometry

and functions spaces. It will put special emphasis on exposure

Mathematics Newsletter -40- Vol. 24 #2, September 2013



of Ph.D. students and post-doctoral fellows from India to the

latest trends. In particular, young Indian research scholars will

be able to learn about the recent developments in the above

areas, new avenues in current research, and their connections

to related fields. It also aims to bring ideas and inspiration

to their ongoing research work, and to foster conversations

between them and the senior researchers participating in the

programme.

Further information on the symposium will be available shortly

at www.iiti.ac.in/∼iscacg2013

Contact Address:

Dr. Swadesh Kumar Sahoo

Convener, ISCACG 2013

Assistant Professor

Indian Institute of Technology Indore

M-Block, IET-DAVV Campus

Khandwa Road, Indore 452 017

Call for Applications BMS
Dirichlet Postdoctoral Fellowship

The Berlin Mathematical School (BMS) invites applications

for the Dirichlet Postdoctoral Fellowship starting in the fall

of 2014. This two-year position is open to promising

young mathematicians holding a PhD who want to pursue

their own research in any of the fields of mathematics

represented in Berlin. The competitive full-year salary includes

health insurance. Fellows are expected to teach one course

per semester, typically in English and at the graduate

level.

Completed applications are due by 1 December 2013, and

should be submitted online at the BMS website:

http://www.math-berlin.de/about-bms/

dirichlet-fellowship

Applications from all well-qualified individuals, especially

women, are highly encouraged. The Berlin Mathematical

School (BMS) is a joint graduate school of the mathematics

departments of the three major Berlin universities: Freie

Universität (FU), Humboldt-Universität (HU) and Technische

Universität (TU). The BMS has been funded under the German

“Excellence Initiative” since October 2006.

Contact:

Phone: +49 30 314 78651

E-mail: office@math-berlin.de

Web: http://www.math-berlin.de

Details of Workshop/Conferences in India

For details regarding Advanced Training in Mathematics Schools

Visit: http://www.atmschools.org/

Name: IWM2013-Teachers Training Programme

Date: December 23–28, 2013

Location: Department of Mathematics, Mumbai University

Visit: https://sites.google.com/site/iwm2013ttp/

Name: International Conference on Recent Advances in Statistics and Their Applications

Date: December 26–28, 2013

Location: Dr. BabasahebAmbedkarMarathwada University, Aurangabad

Visit: http://www.bamu.ac.in/icrastat2013/

Name: International Conference on Mathematics and Computing – 2013

Date: December 26–29, 2013
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Location: Haldia Institute of Technology, Haldia, West Bengal

Visit: http://hithaldia.in/icmc2013/

Name: 22nd National and 11th ISHMT ASME Heat and Mass transfer Conference

Date: December 28–31, 2013

Location: IIT Kharagpur, Kharagpur

Visit: http://ishmt2013iitkgp.in/

Name: 42nd Annual Conference of OMS & International Conference on Industrial Mathematics and Scientific Computing

Date: January 4–5, 2014

Location: KIIT University, Bhubaneswar, Odisha.

Visit: http://icimsc2014.org/

Name: 8th International conference on matrix analytic methods in stochastic models

Date: January 6–10, 2014

Location: National Institute of Technology Calicut (NITC), Kerala

Visit: http://mam8.nitc.ac.in/

Name: International Conference on Recent Advances in Mathematics (ICRAM 2014)

Date: January 20–23, 2014

Location: Rashtrasant Tukodoji Maharaj Nagpur University, Nagpur

Visit: http://icram2014.com/

For more details and updates regarding workshop/conferences in India please

Visit: http://www.conference-service.com/conferences/in/

Details of Workshop/Conferences in Abroad

For details regarding ICTP (International Centre for Theoretical Physics)

Visit: http://www.ictp.it/

Name: 3rd Annual International Conference on Computational Mathematics, Computational Geometry & Statistics

(CMCGS 2014)

Date: February 3–4, 2014

Location: Hotel Fort Canning, 11 Canning Walk, Singapore, Singapore 17881.

Visit: http://www.mathsstat.org/

Name: Introductory Workshop: Model Theory, Arithmetic Geometry and Number Theory

Date: February 3–7, 2014

Location: Mathematical Sciences Research Institute, Berkeley, California.

Visit: http://www.msri.org/workshops/688

Name: ICERM Semester Program on “Network Science and Graph Algorithms”

Date: February 3–May 9, 2014
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Location: ICERM, Providence, Rhode Island

Visit: http://icerm.brown.edu/sp-s14

Name: Function Theory on Infinite Dimensional Spaces XIII

Date: February 4–7, 2014

Location: ICMAT, Campus de Cantoblanco, Madrid, Spain

Visit: http://www.icmat.es/congresos/2014/ftida/

Name: Connections for Women: Model Theory and its interactions with number theory and arithmetic geometry

Date: February 10–11, 2014

Location: Mathematical Sciences Research Institute, Berkeley, California

Visit: http://www.msri.org/web/msri/scientific/workshops/all-workshops/show/-/event/Wm9548

Name: ICERM Workshop: Semidefinite Programming and Graph Algorithms

Date: February 10–14, 2014

Location: ICERM, Providence, Rhode Island.

Visit: http://icerm.brown.edu/sp-s14-w1

Name: Translating Cancer Data and Models to Clinical Practice

Date: February 10–14, 2014

Location: Institute for Pure and Applied Mathematics (IPAM), UCLA, Los Angeles, California

Visit: http://www.ipam.ucla.edu/programs/cdm2014/

Name: Higher Structures in Algebraic Analysis

Date: February 10–21, 2014

Location: University of Padova, Department of Mathematics, Padova, Italy

Visit: http://events.math.unipd.it/hsaa/

Name: Hot Topics: Perfectoid Spaces and their Applications

Date: February 17–21, 2014

Location: Mathematical Sciences Research Institute, Berkeley, California

Visit: http://www.msri.org/workshops/731

Name: Stochastic Gradient Methods

Date: February 24–28, 2014

Location: Institute for Pure and Applied Mathematics (IPAM), UCLA, Los Angeles, California

Visit: http://www.ipam.ucla.edu/programs/sgm2014/

Name: XIX SIMMAC – International Symposium on Mathematical Methods Applied to the Sciences

Date: February 25–28, 2014

Location: University of Costa Rica, San Jose, Costa Rica

Visit: http://www.cimpa.ucr.ac.cr/simmac/en/

Name: AIM Workshop: Postcritically finite maps in complex and arithmetic dynamics

Date: March 3–7, 2014
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Location: American Institute of Mathematics, Palo Alto, California

Visit: http://www.aimath.org/ARCC/workshops/finitedynamics.html

Name: 11th German Probability and Statistics Days 2014 – Ulmer Stochastik-Tage

Date: March 4–7, 2014

Location: University Ulm, Ulm, Germany

Visit: http://www.gpsd-ulm2014.de

Name: International Workshop on Discrete Structures (IWODS)

Date: March 5–7, 2014

Location: Centre for Advanced Mathematics and Physics, National University of Sciences and Technology, H-12 Islamabad,

Pakistan

Visit: http://www.camp.nust.edu.pk/IWODS2014/

Name: School and Workshop on Classification and Regression Trees

Date: March 10–26, 2014

Location: Institute for Mathematical Sciences, National University of Singapore, Singapore

Visit: http://www2.ims.nus.edu.sg/Programs/014swclass/index.php

Name: Algebraic Techniques for Combinatorial and Computational Geometry

Date: March 10–June 13, 2014

Location: Institute for Pure and Applied Mathematics (IPAM), UCLA, Los Angeles, California

Visit: http://www.ipam.ucla.edu/programs/ccg2014

Name: Algebraic Techniques for Combinatorial and Computational Geometry: Tutorials

Date: March 11–14, 2014

Location: Institute for Pure and Applied Mathematics (IPAM), UCLA, Los Angeles, California

Visit: http://www.ipam.ucla.edu/programs/ccgtut/

Name: IAENG International Conference on Operations Research 2014

Date: March 12–14, 2014

Location: Hong Kong, China

Visit: http://www.iaeng.org/IMECS2014/ICOR2014.html

Name: 48th Annual Spring Topology and Dynamical Systems Conference

Date: March 13–15, 2014

Location: University of Richmond, Richmond, Virginia

Visit: http://math.richmond.edu/resources/topology-conference/index.html

Name: Representation Theory and Geometry of Reductive Groups

Date: March 14–28, 2014

Location: KlosterHeiligkreuztal, a Monastary in Germany, Altheim, Germany

Visit: http://www2.math.uni-paderborn.de/konferenzen/conferencespring-school.html

Name: ICERM Workshop: Stochastic Graph Models

Date: March 17–21, 2014
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Location: ICERM, Providence, Rhode Island

Visit: http://icerm.brown.edu/sp-s14-w2

Name: 2nd Annual International Conference on Architecture and Civil Engineering (ACE 2014)

Date: March 24–25, 2014

Location: Hotel Fort Canning, 11 Canning Walk, Singapore, Singapore 17881

Visit: http://www.ace-conference.org/

Name: Combinatorial Geometry Problems at the Algebraic Interface

Date: March 24–28, 2014

Location: Institute for Pure and Applied Mathematics (IPAM), UCLA, Los Angeles, California

Visit: http://www.ipam.ucla.edu/programs/ccgws1/

Name: Mathematical, Statistical and Computational Aspects of the New Science of Metagenomics

Date: March 24–April 17, 2014

Location: Isaac Newton Institute for Mathematical Sciences, Cambridge, United Kingdom

Visit: http://www.newton.ac.uk/programmes/MTG/index.html

Name: 38th Annual SIAM Southeastern Atlantic Section (SEAS) Conference

Date: March 28–30, 2014

Location: Florida Institute of Technology, Melbourne, Florida

Visit: http://my.fit.edu/∼abdulla/SIAMSEAS-2014

Name: SIAM Conference on Uncertainty Quantification (UQ14)

Date: March 31–April 3, 2014

Location: Hyatt Regency Savannah, Savannah, Georgia, USA

Visit: http://www.siam.org/meetings/uq14/

Name: Ischia Group Theory 2014

Date: April 1–5, 2014

Location: Grand Hotel delleTerme Re Ferdinando, Ischia, Naples, Italy

Visit: http://www.dipmat.unisa.it/ischiagrouptheory/

Name: 13th New Mexico Analysis Seminar

Date: April 3–4, 2014

Location: University of New Mexico, Albuquerque, New Mexico

Visit: http://www.math.unm.edu/conferences/13thAnalysis/

Name: AIM Workshop: The many facets of the Maslov index

Date: April 7–11, 2014

Location: American Institute of Mathematics, Palo Alto, California

Visit: http://www.aimath.org/ARCC/workshops/maslov.html

Name: ICERM Workshop: Electrical Flows, Graph Laplacians, and Algorithms: Spectral Graph Theory and Beyond

Date: April 7–11, 2014
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Location: ICERM, Providence, Rhode Island

Visit: http://icerm.brown.edu/sp-s14-w3

Name: Reimagining the Foundations of Algebraic Topology

Date: April 7–11, 2014

Location: Mathematical Sciences Research Institute, Berkeley, California

Visit: http://www.msri.org/web/msri/scientific/workshops/programmatic-workshops/show/-/event/Wm9550

Name: Tools from Algebraic Geometry

Date: April 7–11, 2014

Location: Institute for Pure and Applied Mathematics (IPAM), UCLA, Los Angeles, California

Visit: http://www.ipam.ucla.edu/programs/ccgws2/

Name: Advanced Monte Carlo Methods for Complex Inference Problems

Date: April 22–May 16, 2014

Location: Isaac Newton Institute for Mathematical Sciences, Cambridge, United Kingdom

Visit: http://www.newton.ac.uk/programmes/MCM/index.html

Name: International arab conference on mathematics and computations

Date: April 23–25, 2014

Location: Zarqa University, Zarqa, Jordan

Visit: http://www.iacmc.org

Name: AIM Workshop: Exact crossing numbers

Date: April 28–May 2, 2014

Location: American Institute of Mathematics, Palo Alto, California

Visit: http://www.aimath.org/ARCC/workshops/exactcrossing.html
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