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1. Introduction

The roots of the equation such as

f (z) = a (1.1)

where f is an entire function and a is a complex value, play an important role in solving certain theoretical or practical problems.

It is especially important to investigate the number n(r, a, f ) of the roots of (1.1) and their distribution in a disk |z| ≤ r , each

root being counted with its proper multiplicity. It was the reserach on such topics that raised the curtains of the theory of value

distribution of entire or meromorphic functions. The oldest result in the value distribution theory is the Fundamental Theorem of

Algebra which appeared in Gauss’s doctoral thesis in 1799. An easy consequence of it is the fact that a polynomial of degree n has

n complex roots (counting with proper multiplicity). The entire function ez behaves in entirely different manner. It omits the values

zero and infinity entirely and every other value is assumed infinitely often. In the nineteenth century, the famous mathematician

E. Picard obtained the path breaking result: Any transcendental entire function f must take every finite complex value infinitely

many times, with atmost one exception. Later, E. Borel, introduced the concept of order of an entire function: An entire function

f is of order ρ, if for every ε > 0, log+M(r, f ) = O(rρ+ε) as r → ∞, where log+ |x| is the max{log |x|, 0}. By introduction

of this concept, he gave the Picard’s theorem a more precise formulation: An entire function f of order ρ(0 < ρ < ∞) satisfies

lim sup
r→∞

log n(r, a, f )

log r
= ρ

for every finite complex value a, with atmost one exception. This result generally known as Picard–Borel Theorem, laid the

foundation for the theory of value distribution and since then has been the source of many research accomplishments on this

subject. The principal object and the tool of the theory were the class of entire functions and the maximum modulus, respectively.

For meromorphic functions, maximum modulus could not be the proper tool to study their growth since it may become infinite in

|z| < r for finite values of r due to the presence of poles. It was Rolf Nevanlinna who in 1924 gave an ingenious interpretation

to the well known Poisson–Jensen formula and got the study of the theory of meromorphic functions elevated to a new level

by introducing a charcteristic function T (r, f ), now commonly known as Nevanlinna characteristic function for a meromorphic

function f in a domain |z| < R(R ≤ ∞, 0 < r < R), as an efficient tool. What can be said about the distribution of the values of

entire and meromorphic functions in general? This is the subject matter of Nevanlinna theory of value distribution which we shall

refer to in this exposition as Nevanlinna Theory. In the present exposition we present a brief account-more or less a commentary- of
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Nevanlinna Theory and its applications to variety of fields. For a more comprehensive treatment, the reader is referred to Hayman’s

famous book[30]. For further developments into different directions one can refer to the books by Cherry and Ye[13], Chuang

and Yang[15], Gross[19], Lo[46], Nevanlinna[56], Ru[63], Rubel[64], and Zhang[81]. For historic development of the Nevanlinna

Theory the reader is referred to [59].

2. The Poisson–Jensen Formula

Let f (z) be a meromorphic function in |z| ≤ R (0 < R < ∞), and let aj (j = 1, 2, . . . m) and bk(k = 1, 2, . . . n) be the zeros

and poles of f (z) in |z| < R respectively, each zero and pole being counted according to their multiplicities. If z = reiθ is a point

in |z| < R distinct from aj and bk , then

log |f (z)| = 1

2π

∫ 2π

0
log |f (Reiφ)| R2 − r2

R2 − 2Rr cos(θ − φ)+ r2
dφ

+
m∑
j=1

log

∣∣∣∣R(z− aj )

R2 − āj z

∣∣∣∣ −
n∑
k=1

log

∣∣∣∣R(z− bk)

R2 − b̄kz

∣∣∣∣
Proof. Define

F(ζ ) = f (ζ )

∏n
k=1

(
R(ζ−bk)
R2−b̄kζ

)
∏m
j=1

(
R(ζ−aj )
R2−āj ζ

) (2.1)

Then F(ζ ) has no zeros and poles in |ζ | ≤ R and so it is analytic there. Choosing an analytic branch of logF(ζ ) in |ζ | ≤ R and

using Poisson’s formula, we have

logF(ζ ) = 1

2π

∫ 2π

0
logF(Reiφ)

R2 − r2

R2 − 2Rr cos(θ − φ)+ r2
dφ

Taking real parts and using �logF(ζ ) = log |F(ζ )|, we have

log |F(ζ )| = 1

2π

∫ 2π

0
log

∣∣F(Reiφ)∣∣ R2 − r2

R2 − 2Rr cos(θ − φ)+ r2
dφ (2.2)

From (2.1) and (2.2) we get,

log |f (ζ )| = 1

2π

∫ 2π

0
log

∣∣F(Reiφ)∣∣ R2 − r2

R2 − 2Rr cos(θ − φ)+ r2
dφ +

m∑
j=1

log

∣∣∣∣R(ζ − aj )

R2 − āj ζ

∣∣∣∣ −
n∑
k=1

log

∣∣∣∣R(ζ − bk)

R2 − b̄kζ

∣∣∣∣ (2.3)

Also, for ζ = Reiθ and |a| < R, we have ∣∣∣∣R(ζ − a)

R2 − āζ

∣∣∣∣ = 1

implying that

log

∣∣∣∣R(ζ − a)

R2 − āζ

∣∣∣∣ = 0

for |ζ | = R and so from (2.1) it follows that log |F(ζ )| = log |f (ζ )| for |ζ | = R. With this (2.3) reduces to

log |f (z)| = 1

2π

∫ 2π

0
log |f (Reiφ)| R2 − r2

R2 − 2Rr cos(θ − φ)+ r2
dφ

+
m∑
j=1

log

∣∣∣∣R(z− aj )

R2 − āj z

∣∣∣∣ −
n∑
k=1

log

∣∣∣∣R(z− bk)

R2 − b̄kz

∣∣∣∣
as desired. �
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Particularly important is the special case z = 0:

log |f (0)| = 1

2π

∫ 2π

0
log

∣∣f (Reiφ)∣∣ dφ +
m∑
j=1

log
∣∣∣aj
R

∣∣∣ −
n∑
k=1

log

∣∣∣∣bkR
∣∣∣∣ (2.4)

provided that f (0) �= 0, ∞. Equation (2.4) is called Jensen’s formula. If f (0) = 0 or ∞, then

f (z) =
∞∑
k=m

Ckz
k, Cm �= 0, m ∈ Z.

In fact, m > 0 if the origin is a zero of order m, and m < 0 if the origin is a pole of order m. Then g(0) �= 0, ∞, and has same

zeros and poles as f (z) in o < |z| < R. Now applying Jensen’s formula to g(z), we get

log |Cm| = 1

2π

∫ 2π

0
log |f (Reiφ)|dφ +

m∑
j=1

log
∣∣∣aj
R

∣∣∣ −
n∑
k=1

log

∣∣∣∣bkR
∣∣∣∣ −m logR (2.5)

In Nevanlinna’s hands Jensen’s formula, established by Jensen in 1899, was to lead to amazing consequences.

3. Reformulation of Jensen’s Formula-The Birth of Nevanlinna Theory

For non-negative real number x, define

log+ x = max{0, log x}.

Then one can easily find that log+ has the following properties:

1. log x ≤ log+ x

2. log+ x ≤ log+ y for x ≤ y

3. log x = log+ x − log+ 1
x

4. log |x| = log+ x − log+ 1
x

5. log+(
∏n
k=1 xk) ≤ ∑n

k=1 log+ xk
6. log+(

∑n
k=1 xk) ≤ log n+ ∑n

k=1 log+ xk

For a meromorphic function f in |z| ≤ R we denote by n(t, f ) the number of poles of f counting multiplicities in |z| ≤ t ,

0 < t < R; by n(t, 1
f−a ) or n(t, a) the number of a-points of f in |z| ≤ t , counting multiplicities. For a �= ∞, the proximity

function is given by

m

(
R,

1

f − a

)
= m(R, a) = 1

2π

∫ 2π

0
log+ 1∣∣f (Reiφ)− a

∣∣dφ
and

m(R, f ) = m(R,∞) = 1

2π

∫ 2π

0
log+ ∣∣f (Reiφ)∣∣ dφ

The counting function of a-points of f is defined as

N

(
R,

1

f − a

)
= N(R, a) =

∫ R

0

n(t, a)− n(0, a)

t
dt + n(0, a) logR

And

N(R, f ) = N(R,∞) =
∫ R

0

n(t, f )− n(0, f

t
dt + n(0, f ) logR
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m(R, a) defined as the mean value of log+
∣∣∣ 1
f−a

∣∣∣ (or log+ |f | if a = ∞) on the circle |z| = R receives a significant contribution

only from the arcs on the circle where the function value differs very little from the given value a. The magnitude of the proximity

function m(R, a) can thus be considered as a measure for the mean deviation on the circle |z| = R of the function f from the

value a.

The counting function of a-pointsN(R, a) indicates how densely the roots of the equation f (z) = a are distributed in the mean

in the disk |z| < R. The larger the number of a-points, the faster the counting function grows with R.

Now let us go back to (2.4). By using third property of log+, we find that

1

2π

∫ 2π

0
log

∣∣f (Reiφ)∣∣ dφ = 1

2π

∫ 2π

0
log+ ∣∣f (Reiφ)∣∣ dφ − 1

2π

∫ 2π

0
log+ 1∣∣f (Reiφ)∣∣dφ

= m(R, f )−m

(
R,

1

f

)
(3.1)

Next, let |bk| = rk . Then by Riemann-Stieltjes integral, we have

n∑
k=1

log
R

rk
=

∫ R

0
log

R

t
d[n(t, f )− n(0, f )]

= [n(t, f )− n(0, f )] log
R

t
|R0 +

∫ R

0

n(t, f )− n(0, f )

t
dt

=
∫ R

0

n(t, f )− n(0, f )

t
dt

Similarly, we have

n∑
k=1

log
R

|aj | =
∫ R

0

n
(
t, 1
f

) − n
(
0, 1

f

)
t

dt

With these notations and definitions (2.4) and (2.5)(with m = n(0, 1
f
)− n(0, f )) become

m(R, f )−m

(
R,

1

f

)
−N

(
R,

1

f

)
+N(R, f ) = log |f (0)| , (3.2)

and

m(R, f )−m

(
R,

1

f

)
−N

(
R,

1

f

)
+N(R, f ) = log |Cm| (3.3)

respectively. Define

T (R, f ) = m(R, f )+N(R, f ) (3.4)

which is called the Nevanlinna Characteristic function of f and after some more discussion we shall show that T (R, f ) is an

increasing convex function of logR and behaves like logM(R, f ) when f happens to be an entire function, where M(R, f ) =
max|z|=R |f (z)|.

With (3.4), (3.2) and (3.3) respectively reduce to

T

(
R,

1

f

)
= T (R, f )− log |f (0)|

and

T

(
R,

1

f

)
= T (R, f )− log |Cm|

Mathematics Newsletter -4- Vol. 18 #4, March 2009



Thus in general, we have,

T

(
R,

1

f

)
= T (R, f )+O(1), (3.5)

whereO(1) is a bounded term. Thus Jensen’s formula says that T (R, f ) and T
(
R, 1

f

)
differ only by a bounded term. If we look at

the physical meaning of proximity and counting functions we find that T (R, f ) is the total affinity of the function f for the value

∞ in |z| ≤ R whereas T
(
R, 1

f

)
is the total affinity of the function f for the value 0 in |z| ≤ R. Thus Jensen’s formula says that

the total affinity of f for 0 and ∞ is of the same order. Not only this, Nevanlinna proved that this is true for any value a ∈ C-the

fact known as the First Fundamental Theorem of Nevanlinna.

4. Properties of Characteristic Function and First Fundamental Theorem of Nevanlinna

Using properties 5 and 6 of log+ one can easily deduce that if fk , (k = 1, 2, . . . n) are meromorphic functions in |z| < R, then for

0 < r < R

1. m
(
r,

∏n
k=1 fk

) ≤ ∑n
k=1m(r, fk)

2. m
(
r,

∑n
k=1 fk

) ≤ log n+ ∑n
k=1m(r, fk)

Also, since the order of the pole of
∑n

k=1 fk at z0 does not exceed the sum of the orders of the poles of fk at z0, we have

N

(
r,

n∑
k=1

fk

)
≤

n∑
k=1

N(r, fk)

This together with property 2 above, gives

T

(
r,

n∑
k=1

fk

)
≤ log n+

n∑
k=1

T (r, fk). (4.1)

Similarly, we have

T

(
r,

n∏
k=1

fk

)
≤

n∑
k=1

T (r, fk). (4.2)

The most important property of the Characteristic function which makes it a suitable yard stick for measuring the growth of

meromorphic functions including entire functions as a sepecial case is

• T (r, f ) is an increasing function of r and a convex function of log r

To establish this property we first find an alternative representation of T (r, f ).

Applying Jensen’s formula with R = 1 to the function g(z) = a − z, we get

1

2π

∫ 2π

0
log+ |Reiφ − a|dφ = log+ |a|, ∀a ∈ C. (4.3)

Let 0 < r < R. Applying Jensen’s formula to the function f (z)− eiθ , we get

log |f (0)− eiθ | = 1

2π

∫ 2π

0
log+ |f (reiφ − eiθ |dφ −N

(
r,

1

f − eiθ

)
+N(r, f − eiθ )

Integrating w.r.t. θ from 0 to 2π , we obtain

1

2π

∫ 2π

0
log |f (0)− eiθ |dθ = 1

2π

∫ 2π

0

[
1

2π

∫ 2π

0
log+ |f (reiφ)− eiθ |dφ

]
dθ

− 1

2π

∫ 2π

0
N

(
r,

1

f − eiθ

)
dθ + 1

2π

∫ 2π

0
N(r, f − eiθ )dθ
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Using (4.3) with a = f (reiφ) we find that

1

2π

∫ 2π

0
log |f (0)− eiθ |dθ = 1

2π

∫ 2π

0
log+ |f (reiφ)|dφ

− 1

2π

∫ 2π

0
N

(
r,

1

f − eiθ

)
dθ +N(r, f )

= m(r, f )+N(r, f )− 1

2π

∫ 2π

0
N

(
r,

1

f − eiθ

)
dθ

= T (r, f )− 1

2π

∫ 2π

0
N

(
r,

1

f − eiθ

)
dθ

This by another application of (4.3) yields that

T (r, f ) = 1

2π

∫ 2π

0
N

(
r,

1

f − eiθ

)
dθ + log+ |f (0)|. (4.4)

Equation (4.4) is called Henri Cartan’s Identity and this is the alternative representation of T (r, f ).

SinceN(r, eiθ ) is a non-decreasing function of r , Cartan’s identity (4.4) yields that T (r, f ) is an increasing function of r.Again

from Cartan’s identity, we have

dT (r, f )

d log r
= d

d log r

1

2π

∫ 2π

0

(∫ r

0
n(t, eiθ )

dt

t

)
dθ = 1

2π

∫ 2π

0
n(r, eiθ )dθ.

Since the right hand side is non-negative and non-decreasing with r , it follows that T (r, f ) is a convex function of log r . Thus

T (r, f ) is an increasing function of r and a convex function of log r as desired.

• m(r, a) is neither increasing nor decreasing in general.

For example, consider

f (z) = z

1 − z2
.

Then |f (z)| < 1 for |z| < 1
2 and |z| > 2. This implies that m(r, f ) = 0 for r ≤ 1

2 and r ≥ 2. On the other for r = 1 we have

m(r, f ) = 1

2π

∫ 2π

0
log+ ∣∣f (eiφ)∣∣ dφ

= 1

2π

∫ 2π

0
log+ 1∣∣1 − e2iφ

∣∣dφ → ∞asφ → 0

and so m(r, f ) > 0, infact it is large enough.

Theorem 1 (First Fundamental Theorem of Nevanlinna). Let f (z) be a non-constant meromorphic function in |z| < R(0 <

R ≤ ∞). Then for any finite complex number a, we have

T

(
r,

1

f − a

)
= T (r, f )− log |Cm| + ε(r, a)

where |ε(r, a)| ≤ log+ |a| + log 2, 0 < r < R, and Cm is the first non-zero coefficient in the Laurent series expansion of f − a

about the origin.

Proof. Define h(z) = f (z)− a. Then N(r, h) = N(r, f ). Since

log+ |h| = log+ |f − a| ≤ log+ |f | + log+ |a| + log 2
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and

log+ |f | = log+ |f − a + a| ≤ log+ |f − a| + log+ |a| + log 2,

integrating these inequalities, we have

m(r, h) ≤ m(r, f )+ log+ |a| + log 2

and

m(r, f ) ≤ m(r, h)+ log+ |a| + log 2.

Thus,

ε(r, a) := m(r, h)−m(r, f )

satisfies that

|ε(r, a)| ≤ log+ |a| + log 2.

Now applying Jensen’s formula to h we get

T

(
r,

1

h

)
= T (r, h)− log |Cm|

= m(r, f )+N(r, f )− log |Cm| + ε(r, a)

= T (r, f )− log |Cm| + ε(r, a).

�

Remark 1. The last Theorem can also be put as

T (r, f ) = m(r, a)+N(r, a)+O(1), (4.5)

where O(1) remains bounded as r → ∞.

Corollary 1. 1
2π

∫ 2π
0 m(r, eiθ )dθ ≤ log 2.

Proof. By First Fundamental Theorem of Nevanlinna we have

T (r, f ) = m(r, eiθ )+N(r, eiθ )+ log+ ∣∣f (0)− eiθ
∣∣ + ε(r, eiθ )

where
∣∣ε(r, eiθ )∣∣ ≤ log 2.

Integrating on both sides with respect to θ from 0 to 2π and using Cartan’s identity, we get

T (r, f ) = 1

2π

∫ 2π

0
m(r, eiθ )dθ + T (r, f )+ 1

2π

∫ 2π

0
ε(r, eiθ )dθ

which implies that

1

2π

∫ 2π

0
m(r, eiθ )dθ = − 1

2π

∫ 2π

0
ε(r, eiθ )dθ

≤ log 2.

�

Note: The last result shows that m(r, a) is bounded in the mean on the circle |a| = 1. Thus if T (r, f ) is large, m(r, a) bounded

and N(r, a) is nearly equal to T (r, f ) for most values of a, in certain sense.

As mentioned earlier, if f is an entire function, then T (r, f ) behaves as log+M(r, f ) and this is a consequence of the following

fundamental inequality:
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Theorem 2. If f is holomorphic for |z| ≤ R and M(r, f ) = max{|f (z)| : |z| ≤ r}, then

T (r, f ) ≤ log+M(r, f ) ≤ R + r

R − r
T (R, f )

(0 ≤ r < R).

Proof. Since f is holomorphic in |z| ≤ R, for 0 ≤ r < R, we have

T (r, f ) = m(r, f ) = 1

2π

∫ 2π

0
log+ ∣∣f (reiθ )∣∣ dθ

≤ 1

2π

∫ 2π

0
log+M(r, f )dθ

= log+M(r, f )

which proves the left hand inequality. The right hand inequality trivially holds ifM(r, f ) ≤ 1. Thus we assume thatM(r, f ) > 1.

Let z0 be a point on the circle |z| = r such that |f (z0)| = M(r, f ). Since f has no poles in |z| < R and
∣∣∣R(z−aj )R2−āj z

∣∣∣ < 1,

Poisson–Jensen formula yields that

log+M(r, f ) = log |f (z0)| = 1

2π

∫ 2π

0
log+ ∣∣f (Reiφ)∣∣ R2 − r2

R2 − 2Rr cos(θ − φ)+ r2
dφ

≤ R + r

R − r

1

2π

∫ 2π

0
log+ ∣∣f (Reiφ)∣∣ = R + r

R − r
m(R, f )

= R + r

R − r
T (R, f ).

�

Since by last theorem T (r, f ) ∼ log+M(r, f ) as r → ∞, the order ρ of a meromorphic function f is defined as

ρ = lim sup
r→∞

log+ T (r, f )
log r

.

5. Examples

1. Consider the rational function

f (z) = P(z)

Q(z)
= anz

n + an−1z
n−1 + . . .+ a0

bmzm + bm−1zm−1 + . . .+ b0
, an, bm �= 0.

Distinguish the following two cases:

Case 1. Whenm ≥ n. In this case lim|z|→∞ f (z) is finite, so there is a positive real number r0 such that n(r, f ) = m ∀r ≥ r0.

Thus

N(r, f ) =
∫ r0

0

n(t,∞)− n(0,∞)

t
dt +

∫ r

r0

m− n(0,∞)

t
dt + n(0,∞) log r

= (m− n(0,∞))(log r − log r0)+ n(0,∞) log r +O(1)

= m log r −m log r0 + n(o,∞) log r0 +O(1) = m log r +O(1).

Next, note that for polynomial P(z) = anz
n + an−1z

n−1 + · · · + a0 with an �= 0, given positive ε there is an r0 > 0 such that

∀r = |z| > r0 we have

(1 − ε)|an|rn ≤ |P(z)| ≤ (1 + ε)|an|rn.
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Thus ∀r ≥ r0 we can assume that |P(z)| = |an|rn(1+o(1)) and |Q(z)| = |bm|rm(1+o(1)).This implies that log+ |f | = O(1)

and so m(r, f ) = O(1). Hence in this case

T (r, f ) = m log r +O(1) = O(log r)

Case 2. When m < n. In this case we apply Jensen formula and the arguments used in Case 1 and get

T (r, f ) = T

(
r,

1

f

)
+O(1) = n log r +O(1) = O(log r).

Thus for a rational function f we have T (r, f ) = O(log r). Also, the converse of this statement holds. That is, if f is a

meromorphic function with T (r, f ) = O(log r), then f is a rational function.

2. Let f (z) = ez. Then for a = ∞ we have

m(r, f ) = 1

2π

∫ 2π

o

log+ |ereiφ |dφ

= 1

2π

∫ 2π

o

log+ ercosφdφ

= 1

2π

∫ π
2

−π
2

rcosφdφ

= r

π

Since ez is entire, N(r, f ) = 0 and so

T (r, f ) = r

π
.

Also, if a = 0 we have

m(r, a) = r

π
, N(r, a) = 0.

Further, if a �= 0, ∞ and if z0 is a root of the equation f (z) = a, then by periodicity of f , other roots of this equation are of

the form z0 + 2kπi, k ∈ Z and hence the number of roots of f (z) = a in |z| ≤ t is

n(t, a) = t

π
+O(1) ⇒ N(r, a) = r

π
+O(log r)

Also, after doing some computations one gets that m(r, a) = O(1).

It may be remarked here that after finding T (r, f ) we appeal to the First Fundamental Theorem of Nevanlinna to obtain

T

(
r,

1

f − a

)
= T (r, f )+O(1) and this implies that N(r, a) = r

π
+O(log r).

3. Let P(z) = ∑n
k=0 akz

k be a polynomial of degree n and consider the function f (z) = eP(z). First we calculate T (r, f ) when

P(z) = anz
n.

Let an = |an|eiφ, z = reiθ . Then

|f (z)| = e|an|r
ncos(nθ+φ)
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and so we have

m(r, f ) = 1

2π

∫ 2π

o

log+ e|an|r
ncos(nθ+φ)dθ

= 1

2π

∫ 2nπ+φ

φ

log+ e|an|r
ncosηdη

= 1

2nπ

∫ 2nπ

0
log+ e|an|r

ncosηdη (by periodicity)

= |an|rn
2π

∫ π
2

−π
2

cosηdη

= |an|rn
π

Since f is entire, therefore,

T (r, f ) = m(r, f ) = |an|rn
π

.

Now Since

T (r, f ) = T (r, eP (z)) = T (r, eanz
n · ean−1z

n−1 · · · ea0)

and

T (r, ean−kz
n−k
) = |an−k|

π
rn−k = o

( |an|
π
rn

)
= o(T (r, eanz

n

),

it follows that

T (r, f ) = T (r, eP (z)) ∼ T (r, eanz
n

) = |an|
π
rn (r → ∞).

4. Let f be a non-constant meromorphic function and consider the function

g = af + b

cf + d

where a, b, c, and d are constants with ad − bc �= 0.

For c = 0, inequality (4.1) clearly implies that

T (r, g) = T (r, f )+O(1).

so, let us assume that c �= 0. Define

g1 = f + d

c
,

g2 = cg1,

g3 = 1

g2
,

and

g4 = (bc − ad)

c
g3.
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Then

g = g4 + a

c

Now by using inequalities (4.1) and (4.2) and First Fundamental Theorem of Nevanlinna, we get

T (r, g) = T (r, g4)+O(1)

= T (r, g3)+O(1)

= T (r, g2)+O(1)

= T (r, g1)+O(1)

= T (r, f )+O(1)

6. Second Fundamental Theorem of Nevanlinna

Relation (4.5) of the First Fundamental Theorem of Nevanlinna gave rise to a question of the relative size of the componentsm(r, a)

and N(r, a) in the invariant sum m(r, a)+ N(r, a). The answer to this question was given by Nevanlinna with great accuracy in

July 1924 (see [52]) by proving the inequality

T (r, f ) < N(r, a)+N(r, b)+N(r, c)+ S(r, f ), (6.1)

where a, b, c are three distinct values and S(r, f ) is in general small compared to T (r, f ).This inequality shows that in relation (4.5)

the termN(r, a) is usually larger thanm(r, a). For example, if lim supr→∞
N(r,a)

T (r,f )
= 0 for two values of a, then lim supr→∞

N(r,a)

T (r,f )
=

1 for all other values of a.

In 1925 Nevanlinna[53] presented a large survey of his theory of meromorphic functions which is regarded as Nevanlinna’s

main work. In 1943 H. Weyl[74] wrote about it: “The appearance of this paper has been one of the few great mathematical events

of our century”. After going through the observations made by Littlewood and Collingwood in 1924 that the method of the proof

of inequality (6.1) can actually be applied to arbitrary many values instead of just three values, Nevanlinna proved his second

fundamental theorem as

Theorem 3. Let f be a non-constant meromorphic function in |z| ≤ r , and let a1, a2, . . . , aq(q ≥ 3) be distinct finite complex

numbers. Then

m(r, f )+
q∑
k=1

m(r, ak) ≤ 2T (r, f )−N1(r, f )+ S(r, f ),

where N1(r, f ) is positive and is given by

N1(r, f ) = N

(
r,

1

f ′

)
+ 2N(r, f )−N(r, f ′), (6.2)

and

S(r, f ) = m

(
r,
f

f ′

)
+m

(
r,

q∑
k=1

f ′

(f − ak)

)
+ q log+ 3q

δ
+ log 2 + log

1

|f ′(0)| , (6.3)

with modifications if f (0) = 0 or ∞ or f ′(0) = 0.

The quantity S(r, f ) given by (6.3) in Theorem 3 plays in general(as we shall see in the following section)the role of an

unimportant error term. Theorem 3 with this fact is what is known as the second fundamental theorem of Nevanlinna. Thus the

second fundamental theorem of Nevanlinna says that the sum of any number of terms m(r, ak) can not in general be much greater

than 2T (r, f ). Just not to make the exposition too bulky and keeping in view the simplicity of the proof of Theorem 3 we refer the

reader to [30].
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6.1 Estimation of S(r, f )

The most interesting and of course challenging question in the Nevanlinna Theory is the sharp estimation of the term S(r, f ).

Following are some of the known estimates of S(r, f ) (see [30]):

Theorem 4. Let f be a non-constant meromorphic function in |z| < R ≤ +∞. Then

1. if R = +∞,

S(r, f ) = O {log T (r, f )} +O(log r)

as r → ∞ through all values if f is of finite order, and as r → ∞ outside a set E of finite linear measure otherwise.

2. if 0 < R < +∞,

S(r, f ) = O

{
log+ T (r, f )+ log

1

R − r

}

as r → ∞ outside a set E with
∫
E

dr
R−r < +∞.

As an immediate deduction from Theorem 4, we have

Theorem 5. Let f be a non-constant meromorphic function in |z| < R ≤ +∞. Then

S(r, f )

T (r, f )
→ 0, as r → R, (6.4)

with the following provisos:

1. If R = +∞, and if f is of finite order, then (6.4) holds without any restriction.

2. If R = +∞, and f is of infinite order, then (6.4) holds as r → ∞ outside a set E of finite length.

3. If R = +∞, and

lim inf
r→R

T (r, f )

log
{

1
R−r

} = +∞

then (6.4) holds as r → R through a suitable sequence of values of r .

In late eightees S. Lang[38] after pointing out that Vojta[73] had observed several connections between Number Theory and

Nevanlinna Theory raised the problem of finding the best possible form of the upper bound for S(r, f ). After S. Lang and

W. Cherry[39], P. Wong[75] and Z. Ye[79], A. Hinkkanen[33] obtained a (better) sharp upper bound for S(r, f ) : Let f be a

meromorphic function in the plane. Then for any positive increasing functions φ(t)

t
and p(t) with

∫ ∞
1

dt
φ(t)

< ∞ and
∫ ∞

1
dt
p(t)

= ∞,

S(r, f ) ≤ log+
{
φ(T (r, f ))

p(r)

}
+O(1), (6.5)

as r → ∞ outside a set E with
∫
E

dr
p(r)

< ∞. Further, if ψ(t)
t

is positive and increasing and
∫ ∞

1
dt
ψ(t)

= ∞, then there is an entire

function f such that

S(r, f ) ≥ logψ(T (r, f ))

outside a set of finite linear measure. A. Hinkkanen[33] has also obtained analogous results for functions meromorphic in a disk.

For further recent developments about the connections between Number Theory and Nevanlinna Theory, one can refer to Cherry

and Ye[13] and Ru[63].
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6.2 Quantitative Version of Picard’s Theorem

In the Second Fundamental Theorem of Nevanlinna taking S(r, f ) = o(T (r, f )) as r → ∞, for some set E ⊂ [0,∞) of finite

measure, we have

m(r, f )+
q∑
k=1

m(r, ak) ≤ (2 + o(1))T (r, f )−N1(r, f )

Adding
∑q

k=1N(r, ak)+N(r, f ) on both sides and using the First Fundamental Theorem of Nevanlinna, we get

(q − 1 − o(1))T (r, f ) ≤
q∑
k=1

N(r, ak)+N(r, f )−N1(r, f ), r /∈ E.

Since N1(r, f ) counts the multiple points, it follows from the last inequality that

(q − 1 − o(1))T (r, f ) ≤
q∑
k=1

N(r, ak)+N(r, f ), r /∈ E,

where N(r, a) = ∫ r
0
n(t,a)dt

t
wherein n(t, a) denotes the number of a-points of f ignoring multiplicity in the disk |z| ≤ r. The last

two inequalities can further be written as

(q − 2 − o(1))T (r, f ) ≤
q∑
k=1

N(r, ak)−N1(r, f ), r /∈ E. (6.6)

and

(q − 1 − o(1))T (r, f ) ≤
q∑
k=1

N(r, ak), r /∈ E. (6.7)

if a1, a2 . . . aq ∈ C are distinct.

Now suppose that a transcendental meromorphic function f that takes three distinct values a1, a2, a3 ∈ C only finitely many

times. ThenN(r, ak) = O(log r) for k = 1, 2, 3.Now inequality (6.6) with q = 3 yields that (1−o(1))T (r, f ) = O(log r)which

shows that f is rational, a contradiction. This is nothing but another proof of Picard’s Little Theorem using Nevanlinna Theory. This

is most elementary proof of Picard’s Little Theorem as compared to its original proof using elliptic modular functions. Also, this

proof has an advantage that it gets generalized to prove higher dimensional analogs of Picard’s Theorem. We may view the Second

Fundamental Theorem of Nevanlinna and the preceding inequalities deduced from it as a quantitative version of Picard’s Theorem.

Definition 1. A value a ∈ C is said to be a perfectly branched value of a meromorphic function f if only finitely many of the zeros

of f (z)− a are simple.

The Nevanlinna Theory also gives information about the multiplicities with which the values are assumed by meromorphic

functions.

Theorem 6. A transcendental meromorphic function has at most four perfectly branched values.

Proof. Suppose f (z)− a has q simple zeros at ak, k = 1, 2 . . . q. Then

N(r, ak) ≤ 1

2
N(r, ak)+O(log r),

and so inequality (6.7) yields

(q − 2 − o(1))T (r, f ) ≤
q∑
k=1

N(r, ak)

≤ 1

2

q∑
k=1

N(r, ak)+O(log r)

≤
(q

2
+ o(1)

)
T (r, f ), r /∈ E.

This implies that q − 2 ≤ q

2 and thus q ≤ 4. �
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By similar arguments we obtain that a transcendental entire function has at most two finite perfectly branched values. The

numbers 4 and 2 here are sharp. For example, the Weierastrass ℘-function has four perfectly branched values and the sine function

has two perfectly branched values.

6.3 An Extension of the Second Fundamental Theorem

R. Nevanlinna[54] asked if the complex numbers ak in the Second Fundamental Theorem can be replaced by functions of slower

growth as compared to f . He himself proved it for k = 3 (for proof see [30] p-47). Chi-tai Chuang[14] obtained the first non-trivial

result.

Theorem 7. Let f and φk(k = 1, 2, . . . , q) be meromorphic functions on C such that φk,s are distinct and T (r, φk) =
o(T (r, f )) for k = 1, 2 . . . , q. Then

(q − 1 − o(1))T (r, f ) <
q∑
k=1

N(r, φk)+ qN(r, f )+ S(r, f )

where S(r, f ) = o(1) as r → ∞, for some set E ⊂ [0,∞) of finite measure.

The complete solution of Nevanlinna’s problem was given by Osgood[60] and Steinmetz[70], independent of one another.

Theorem 8. Let f and φk(k = 1, 2, . . . , q) be meromorphic functions on C such that φk, s are distinct and T (r, φk) =
o(T (r, f )) for k = 1, 2 . . . , q. If ε is a positive number, then

m(r, f )+
q∑
k=1

m(r, φk) ≤ (2 + ε)T (r, f ),

except on a set Eε of r with finite linear measure.

The functions φk, s in the last two theorems are generally known as small functions of f excepting W. Cherry and Z. Ye[13]

who call such functions as slowly moving targets to fit it into the language of Number Theory. We denote by n(k)(r, a) the number

of a-points of f in |z| ≤ r of maximum multiplicity k and thus we define the truncated counting function N(k)(r, a) as

N(k)(r, a) =
∫ r

0

n(k)(t, a)dt

t
.

The above theorems are called versions of the Second Fundamental Theorem for moving targets. The Nevanlinna’s extension

to three small functions is described by Cherry and Ye as three moving target theorem of Nevanlinna stated by using truncated

counting function and contains a ramification term. Finding a proof for moving target second fundamental theorem that works

with truncated counting functions is an important open problem.

7. Applications of Nevanlinna Theory

In this section one can realise the power of Nevanlinna Theory. Nevanlinna Theory has a wide range of applications starting from

Number theory to Probability and Statistics and to Theoretical Physics. Here we shall touch upon a few areas within Function

Theory and of course Number Theory.

7.1 Defect Relation-A Weaker Reformulation of the Second Fundamental Theorem

The reformulation of the Second Fundamental Theorem we are about to take up, is called the Defect Relation. It is infact a weaker

reformulation of the Second Fundamental Theorem of Nevanlinna but has some nice consequences. For this, we first introduce
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the term defect. Let f be a non-constant meromorphic function on C. Then for a ∈ C, we define the terms δ(a, f ), θ(a, f )

and �(a, f ) known as Nevanlinna defect or deficiency of a w.r.t. f , the index of multiplicity or the ramification defect and the

truncated defect of order 1; as

δ(a, f ) = 1 − lim sup
r→∞

N(r, a)

T (r, f )

θ(a, f ) = lim inf
r→∞

N(r, a)−N(r, a)

T (r, f )

�(a, f ) = 1 − lim sup
r→∞

N(r, a)

T (r, f )

By the First Fundamental Theorem of Nevanlinna it follows that 0 ≤ δ(a, f ), θ(a, f ),�(a, f ) ≤ 1. If a is an omitted value, then

δ(a, f ) = 1. Also, given ε > 0, for sufficiently large r, we have

N(r, a)−N(r, a) > (θ(a, f )− ε)T (r, f ),

N(r, a) < (1 − δ(a, f )+ ε)T (r, f ),

and thus

N(r, a) < (1 − δ(a, f )− θ(a, f )+ 2ε)T (r, f ).

That is,

�(a, f ) ≥ δ(a, f )+ θ(a, f ).

A value a is called deficient w.r.t.f if δ(a, f ) > 0, it is called maximally deficient if δ(a, f ) = 1(follows that an omitted value is

maximally deficient), and it is called ramified if θ(a, f ) > 0. We call a value defective if either it is deficient or ramified. Now we

present the Defect Relation.

Theorem 9. The set T = {a : �(a, f ) > 0} is countable, and on summing over all such values a, we have
∑
a∈T
(δ(a, f )+ θ(a, f )) ≤

∑
a∈T

�(a, f ) ≤ 2.

The defects measure how far the Fundamental Theorem of Algebra is from holding for f at the value a, and the Defect Relation

says in some sense that the analogue of the Fundamental Theorem of Algebra fails by a finite amount, and supplies a quantative

bound for the failure. The Defect Relation also proves the Picard’s Little Theorem: Suppose a transcendental meromorphic function

f takes three distinct values a1, a2, a3 ∈ C only finitely many times. ThenN(r, ak) = O(log r) for k = 1, 2, 3, which implies that
N(r,ak)

T (r,f )
→ 0, asr → ∞ which further implies that

∑3
k=1�(ak, f ) = 3 and this contradicts the Defect Relation.

For more rigrous treatment of defects we urge the reader to refer to Chapter 4 of Hayman’s book[30], and of course Cherry and

Ye[13], Lo[46] and Nev[56].

7.2 Functions Sharing Values

Two meromorphic functions f and g are said to share the value a ∈ C iff f −1({a}) = g−1({a}). That is, iff {z ∈ C : f (z) =
a} = {z ∈ C : g(z) = a}. Perhaps some of the most striking applications of Nevanlinna value distribution theory are to the

sharing of values by two meromorphic functions. The most fascinating result in this direction is the following five point theorem

of Nevanlinna. For real functions, there is nothing that even remotely corresponds to this theorem.

Theorem 10. Suppose that f and g are two meromorphic functions in the plane sharing five distinct values. Then f ≡ g, or f

and g are both constant.
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The number five in the above theorem is sharp. For example the functions f1(z) = e−z, f2(z) = ez, with a = 0, 1,−1,∞ show

that here five cannot be replaced by four. In a special case when g = f ′, if f and f ′ share two distinct finite values then f = f ′;
the number 2 in this case is also sharp: the function

f (z) = ee
z

∫ z

0
e−e

t

(1 − et )dt

shares the value 1 with its derivative and is different from it since f ′−1
f−1 = ez.

This is a quite active area of research in the Nevanlinna Theory and some of the recent accomplishments in this area are [1],

[15], [34], [36], [40], [45], [69] and [76].

As a variation of this idea let f be a non-constant meromorphic function on C.DefineES(f ) = ⋃
a∈S{z : f (z) = a}, here zero

of f (z)− a is counted with due regard to its multiplicity. Similarly, we defineES(f )where a zero of f (z)− a is counted ignoring

multiplicity. A subset S of C such that for any two meromorphic functions f and g such thatES(f ) = ES(g) ⇒ f ≡ g is called a

Unique Range Set of meromorphic functions counting multiplicity. Similarly, the unique range set ignoring multiplicity. Currently

this is very interesting and active topic of research in the Nevanlinna Theory. Following are the still unsettled problems in this

area:

(A) To provide a necessary and sufficient conditions for a set to be a unique range set for meromorphic functions.

(B) To find the minimal cardinality of the Unique range set of meromorphic functions.

There is a rapid progress in this area, we refer the reader to the work of G. Frank and M. Reinders[17], Q. Han and H-X Yi([29]),

P. Li and C. C. Yang([43] and [44]) and E. Mues and M. Reinders[50].

7.3 Complex Dynamics

Complex Dynamics is a thrust area in modern function theory and two consective Fields Medals in 1990s were awarded to the

mathematicians for their works on Complex Dynamics. The Nevanlinna Theory also plays a vital role in the study of Dynamics

of transcendental meromorphic functions through Fixed-point Theory and Normality of meromorphic functions both of which are

most indispensable for the study of transcendental dynamics. Without going into the details we shall simply give some examples

illustrating the applications of Nevanlinna theory to Complex Dynamics. For details on the subject we refer the reader to [3], [7],

[8], [15], [35], [48], [49] and [71].

If f is holomorphic function, define a sequence {f n} of iterates of f as f 1 = f and f n = f of n−1 for n ≥ 2. The main

problem in the complex dynamics is to study the behavior of the sequence {f n} as n → ∞. A point z0 is called a fixed-point of

f if f (z0) = z0; it is called a fixed-point of exact order n of f if f n(z0) = z0 and z0 is not a fixed-point of any f k for k < n.

I. N. Baker[2] was first to use the Nevanlinna Theory to study the fixed-points of entire functions. We state here the Bergweiler’s

result[5] which has improved Baker’s result.

Theorem 11. If f is a transcendental entire function and n is any integer greater than or equal to 2, then f has infinitely many

fixed-points of exact order n.

Another route through which Nevanlinna Theory has found its applications in Complex Dynamics is normal families of mero-

morphic functions. A family F of meromorphic functions defined on a domain D is said to be normal in D if every sequence

{f n} in F has a subsequence which converges uniformly on compact subsets of D to a function f which can be a constant

function ∞. A subset of D on which the sequence of iterates of a meromorphic function f forms a normal family is called a

Fatou Set of f and the compliment of Fatou set is called the Julia Set of f . These two subsets are the main focus of atten-

tion in complex dynamics. David Drasin[16] was first to apply Nevanlinna theory in the study of normal families of meromor-

phic functions. For example, he proved Hayman’s conjecture[31] by using standard arguments of Nevanlinna theory. In fact he

proved
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Theorem 12. Let F be a family of holomorphic functions in the unit disk �, and for a fixed n ≥ 3 and a �= 0 suppose that

f ′ − af n = b, f ∈ F has no solution in �. Then F is normal.

For details on applications of Nevanlinna theory to normal families the reader is referred to Jeol Schiff’s book[67], and

W. Schwick’s articles[65] and [66].

7.4 Factorization of Meromorphic Functions

Another branch of function theory that has come out as an application of Nevanlinna theory is the Factorization Theory of

meromorphic functions. The factorization theory of meromorphic functions of one complex variable is to study how a given

meromorphic function can be factorized into other simpler meromorphic functions in the sense of composition. In number theory,

every natural number can be factorized as a product of prime numbers. Therefore, prime numbers serve as building blocks of natural

numbers and the theory of prime numbers is one of the main subjects in number theory. In our situation, we also have the so-called

prime functions which play a similar role in the factorization theory of meromorphic functions as prime numbers do in number

theory. More specifically, factorization theory of meromorphic functions essentially deals with the primeness, pseudo-primeness

and unique factorizability of a meromorphic function. We have the following definition.

Definition 2. Let F be a meromorphic function. Then an expression

F(z) = f (g(z)) (7.1)

where f is meromorphic and g is entire (g may be meromorphic when f is a rational function) is called a factorization of F

with f and g as its left and right factors respectively. F is said to be non-factorizable or prime if for every representation of F

of the form (7.1) we have that either f is bilinear or g is linear. If every representation of F of the form (7.1) implies that f is

rational or g is a polynomial(f is bilinear whenever g is transcendental, g is linear whenever f is transcendental), we say that

F is pseudo-prime (left-prime, right-prime respectively). If the factors are restricted to entire functions, the factorization is said

to be in entire sense and we have the correspoding concepts of primeness in entire sense(called E-primeness), pseudo-primeness

in entire sense (called E-pseudo-primeness) etc.

According to the Definition 2, it seems inevitable that one must consider meromorphic factors in a factorization in order to

determine whether a given entire function is prime or not. However, F. Gross(see [15] Lemma 3.1, pp. 116) has proved that any

non-periodic entire function is prime if and only if it is E-prime. Thus for a certain class of entire functions we need not to consider

meromorphic factors. Rosenbloom[62] was first to introduce the concept of prime entire functions while investigating the fixed-

points of iterates of transcendental entire functions. He stated without proof that the function z+ ez is prime and remarked that the

proof was complecated. In 1968 Fred Gross (see [18] or [19]) gave a complete definition of factorization of meromorphic function.

He not only proved the primeness of z+ez but started a series of studies on factorization of meromorphic functions (see [18] to [22],

[23] to [25] and [26]). Also, he raised a very famous conjecture[18] known as Gross’s Conjecture: z + P(z)eα(z) is prime, where

P(z) is a polynomial and α(z) is an entire function. The fixed-point version of Gross’s Conjecture is: Let f and g be two non-linear

entire functions, at least one of them being transcendental. Then the composite function fog has infinitely many fixed-points. This

conjecture remained unsettled for more than two decades and was proved in affirmation by Bergweiler[4] in 1990. Though there

is abundance of research/open problems in the theory but the following conjecture of He and Yang[32] is the most challenging

one.

He-Yang Conjecture: Let f be a pseudo-prime transcendental meromorphic function and P be a polynomial of degree at

least 2. Then foP is pseudo-prime.

For deep insight into this area the reader is referred to the books by Chuang and Yang[15] and Gross[20]. For further developments

in this area one may refer to [6], [9], [10], [11], [57], [58], [61], [68], [72], and [77]. For Factorization theory of meromorphic

functions of several variables one may refer to [42] and [78].
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7.5 Complex Differential Equations

Nevanlinna theory has been applied to get insight into the properties of solutions of complex differential equations. The first such

applications were made by F. Nevanlinna[51] to study the meromorphic solutions with maximum deficiency sum of the differential

equation f ′′ +A(z)f = 0 withA(z) a polynomial. Also R. Nevanlinna[55] considered the same differential equation in connection

of covering surfaces with finitely many branch points. K. Yosida[80] in 1933 proved the celebrated Malquist theorem[47] by using

Nevanlinna theory. Malquist theorem states that a differential equation of the form y ′ = R(z, y), where the right-hand side is

rational in both arguments, which admits a transcendental solution, reduces to a Riccati differential equation

y ′ = a0(z)+ a1(z)y + a2(z)y
2

with rational coefficients. Since 1933 a whole range of theorems in complex differential equations can be classified as “Malquist-

Yosida” theorems. For getting deep insight into the subject we refer the reader to Ilpo Laine’s book[37].

We conclude our discussion on Nevanlinna Theory by mentioning that recently R. G. Halburd and R. J. Korhonen (see [27]

and [28]) have extended Nevanlinna Theory to a theory for the exact difference f �→ �f = f (z + c) − f (z), where f is a

meromorphic function and c is a fixed constant.
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Truth vs. Provability in Mathematics: The Completeness Theorem
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Abstract. Most mathematicians study issues concerning truth and provability. For example, when they talk about number theory

or analysis, they have specific structures in mind, such as the usual set of natural numbers N, or the set of real numbers R. And

when they prove statements regarding these structures, they use particular properties of the natural or real numbers, combined with

logical steps in reasoning that most people would agree are valid. Thus, there are two main components in mathematical reasoning:

the formal logical part and the part that derives meaning because we are talking about specific structures such as N or R. Gödel’s

Completeness Theorem elucidates the subtle connection between these two aspects in mathematics. We give a self-contained

statement of this theorem, and in the process also give an introduction to mathematical logic.

Introduction

Mathematicians want to know the answers to particular ques-

tions regarding particular mathematical objects. For example,

once we have defined the concept of “prime”, we can ask

whether it is true that there are infinitely many primes. And

we can exhibit an elementary proof of this statement. A more

complicated question would be to ask whether Fermat’s Last

Theorem is true. As is well known, the answer is provided by

Wiles’ proof. This proof is by no means easy to understand, but

it has been looked at by many experts in number theory, and

nobody really doubts its correctness. Of course, many people

still aim to find an “elementary proof” of the theorem. A very

famous question relates to the cardinality of the set of real

numbers: Is there a set whose cardinality is strictly larger than

that of the set of natural numbers, and strictly smaller than

that of the set of real numbers? This question is known as the

Continuum Hypothesis. The hypothesis is that there is no such

set. It has been shown, using strictly mathematical methods,

that this question cannot be answered either in the affirma-

tive or in the negative by using the currently accepted ideas

of mathematics. This is an intriguing example of a situation

in mathematics where it is possible to prove that one cannot

either prove or disprove a statement about certain mathemati-

cal objects. These issues raise the questions: What is truth, and

what is provability? What are the connections between truth

and provability? Is it true that all true mathematical statements

can be proven? What is a proof? Are there any limitations to

what can be proven?

Mathematical logic is the subject that studies these ques-

tions. The distinctive feature about mathematical logic is that

mathematical methods are used in the analysis of questions

about mathematics. Thus, mathematical logic is also called

metamathematics, since it is the study of methods used in

the study of mathematics. Mathematical logic is a relatively

new subject. It really got off the ground only about 150 years

ago. Though some of the basic principles that underlie math-

ematical logic are already to be found in Euclid’s Elements,

they were not explicitly studied as an independent subject till

the 19th century. In the previous century, mathematical logic

saw many stunning successes. Many mathematical questions

were answered using the techniques developed in mathemat-

ical logic, and many subtle issues about the nature of mathe-

matics itself were clarified. Mathematical logic makes it pos-

sible to give one foundational treatment for various disciplines

of mathematics, such as number theory, analysis, algebra etc.

In this article we will give examples of the kinds of questions

that logicians study, and the methods that they use.

1. The Basic Issues Studied in Mathematical Logic

Mathematical logic tries to understand the nature of mathemat-

ical activity. We will illustrate some of the basic ideas using

concepts from number theory. To start with, if we ask what

the numbers are, then there will be many different answers,

depending on the person asked. But rather than ask this ques-

tion, we assume that the concept of “number” is an undefined,

primitive, and intuitively clear concept. What we are more
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interested in are the properties of numbers, and what we can

say about questions asked about numbers. We begin by giv-

ing names for certain primitive concepts. So we denote by “0”

the number zero. Observe that we are not defining the num-

ber zero. We agree that most people have an understanding of

what the concept of zero is, and we are just giving this concept

a name. Similarly, we give a name “+” to the concept of addi-

tion. We can also give a name to the “successor” operation,

which when applied to any number gives us the next number.

This we call as “S”. Once we have these names for concepts,

nobody would seriously argue about the following property of

numbers: x + S(y) = S(x + y). So what happened here is

that we gave some names for concepts, and we wrote down

certain properties about these concepts that we would like to

consider as true about these concepts. Such statements that we

want to hold as primitively true, and not requiring any expla-

nation, are called axioms. We can similarly write down certain

other axioms about natural numbers. This is similar to what

Euclid did: He gave a name for certain primitive concepts such

as “point”, “straight line” etc., and wrote down some basic

axioms about these concepts. Thus, two points determining a

unique straight line is an axiom in plane geometry.

Once we have written down basic axioms about the objects

that we want to study, we ask what else can be gleaned from

these axioms. In the example of Euclid, starting from the basic

axioms about geometric objects, he was able to conclude a

great many other properties about these geometric objects.

How did he do so? Or in the example of numbers, we start with

some basic assumptions about numbers, and then we can con-

clude a great many other facts about numbers. How do we go

about doing this? Well, we use the concept of a proof. A proof

of a statement about numbers is an argument that uses other

known (proven) facts about numbers, the axioms about num-

bers, and logical reasoning to conclude new facts. So what

is this concept of logical reasoning? Certain facts are true by

virtue of logic. Suppose I say “If it is raining, the road is wet”.

This statement is normally considered to be true. From this, we

can logically conclude: “If the road is not wet, it has not been

raining”. But we cannot logically conclude “If it is not raining,

the road is not wet” (Why?). These kinds of inferences, which

depend on the structure of statements, and not their meaning,

are called logical inferences. Mathematicians use these kinds

of reasoning all the time, without explicitly recognizing such

a step in their argument. For example, if A implies B, and if

B implies C, where A, B, and C may mean anything whatso-

ever, then it follows logically thatA impliesC. A chain of rea-

soning, that starts from axioms about concepts, and uses other

known statements about these concepts, and logical inferences,

is called a proof. A more formal definition will be given later.

In order to talk about concepts, we introduce the notion of

a formal language. This is similar to the notion of a natural

language such as English, except that the rules governing a

formal language are a lot stricter. The formal language would

have notation for non-logical concepts, such as 0, +, S, etc.,

and notation for logical concepts such as implications (⇒),

negation (¬) etc. There will be rules for saying what is allowed

and what is not allowed to be written as a formal expression.

We can now write formally the axioms, the rules of inference

etc. in this formal language.

Once we have these basic ideas, we can ask further ques-

tions. For example, once we have written down the concepts

about natural numbers and the axioms that are true of them,

we can ask whether there is a structure for the formal language

that satisfies these axioms. That is, we seek to give meaning

to the notation that we have introduced. Informally, we seek a

set, whose elements we will call natural numbers. Note that we

do not care about the nature of these objects. For the purpose

of understanding, we can think of a number, say seven, as a

collection of seven matchsticks tied together by a rubber band,

and the set of natural numbers as the set consisting of all these

collections of matchsticks. Of course, there are not enough

matchsticks or rubber bands to populate this set, but that is not

our concern. Next we seek an interpretation of the basic con-

cepts such as 0, S, + etc. in relation to this set. Thus, we have

the usual set N of natural numbers, and we have the usual inter-

pretation of 0, S, + etc. We satisfy ourselves that the axioms of

natural numbers are true when interpreted with respect to this

set. But then we can ask: are there other structures, which do

not look like N, but with respect to which also the axioms are

satisfied? What does it mean to say that these other structures

“do not look like” N? What if there was a statement expressed

in the formal language for natural numbers such that it would

turn out to be true when interpreted in every structure for this

language with respect to which the axioms were true? Would

this statement be derivable from the axioms? In other words,

would there be a proof of this statement? Could there be state-

ments known to be true in this structure that cannot be proven?

How then are these statements known to be true?
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We now state some of the basic results in logic informally.

Suppose we have a formal language for the natural numbers.

And suppose we have a structure for the language with respect

to which the axioms about numbers are true. Note that this

structure does not have to be N. And suppose we have a proof of

a statement, say A, derived from the axioms for numbers. Then

A, interpreted in this structure, will be true. This is called the

Soundness Theorem. The idea of this result is that by starting

from statements that are true, by using the principles of logic,

one only passes to true statements, never to false statements.

The converse of this result is also true, though much harder to

see. It is called the Completeness Theorem. The converse is the

statement that if there is a statement A, say in the language of

natural numbers, that is true in every structure for the language

of natural numbers with respect to which the axioms about

natural numbers are true, then this statement has a proof from

the axioms of natural numbers. Note that this statement is not

saying that every true statement about the natural numbers

(with respect to the structure N) can be proven using the axioms

of natural numbers.

One other important result in logic is the Incompleteness

Theorem. The use of the word “complete” in this and the Com-

pleteness Theorem are not technically related. The Incomplete-

ness Theorem states roughly that it is not possible to have an

algorithm that lists all the true facts about the numbers in N.

In other words, if we came up with any algorithm no matter

what, that starts to list the true statements about natural num-

bers, then it is possible to obtain one true statement about the

numbers that will not be contained in this list. This is basically

a very clever diagonalization argument. So this result essen-

tially says that computers cannot replace human ingenuity and

creativity, though they can be very fast. These results, though

often misunderstood as saying that there are true statements

about natural numbers that can never be proven, do point out

serious limitations in the way we view mathematical proof and

truth, and have sweeping philosophical and mathematical con-

sequences. Whether there are any methods to overcome this

limitation is a fascinating question.

Finally, we state the notion of independence in relation to the

Continuum Hypothesis that we stated earlier. We fix a formal

language for sets, and we figure out how to talk about the

basic notions of sets, such as subsets, power sets, infinite sets

etc. We can also write down axioms about sets in the formal

language. Note now that it is tricky to talk about a structure

for the axioms. Here’s why. A structure for a mathematical

theory is a set. So a structure for the theory of sets should be a

set with respect to which we can interpret the axioms of sets.

Also, one would imagine that all relevant sets that we want to

discuss live inside this set. But then how do we interpret the

power set of this set, clearly a relevant set? These issues are not

fully resolved yet, but it is possible to talk about structures for

set theory in a more technical way where we can satisfactorily

deal with issues such as the one above. Once we have this

machinery, we can talk about sets such as N, R etc. And we can

phrase questions about cardinality of these sets. Thus, we can

formally state the Continuum Hypothesis, and ask whether it

can be proven using the axioms of set theory. The surprising

answer is that one can exhibit a structure for set theory where

the Continuum Hypothesis is true and a structure where it is

false. Thus, by the Soundness Theorem, it is not possible that

the Continuum Hypothesis has a proof from the axioms of

set theory (Why?). We say that the Continuum Hypothesis is

independent of the axioms of set theory.

And now we name a couple of names. The Soundness and

Completeness Theorems, as well as the Incompleteness Theo-

rem were proven by Kurt Gödel. He proved the Completeness

Theorem in his PhD thesis in 1929 at the age of 23, and the

Incompleteness Theorem in 1931 at the age of 25. Gödel is

one of the most fascinating figures in the history of ideas. He

also proved one half of the independence of the Continuum

Hypothesis: he proved that it is possible to exhibit a structure

for set theory with respect to which the hypothesis is true. The

other half of the independence, that there is a structure for

set theory with respect to which the hypothesis is false, was

proven by Paul Cohen. Cohen got a Fields Medal for his work

in 1966, the only Fields Medal ever awarded for a work in

logic.

2. The Formal Setup

We will use basic ideas from number theory to motivate and

illustrate our concepts. We will follow the treatment as in

Shoenfield’s book [3]. Since this is an informal account we

will attempt to make the concepts as clear as possible without

too much symbolism, so that we don’t lose our reader. If the

reader’s interest is piqued after reading this article, we strongly

urge the reader to read Shoenfield’s classic for a deep treat-

ment of the subject.
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Definition 2.1. A first order language consists of three parts:

(i) An infinite list of variables, x, y, z, x ′, y ′, z′, x", y",

z", . . . .

(ii) For each n, n-ary function symbols, and n-ary predicate

symbols. Among the predicate symbols, we assume that

the 2-ary predicate “=” always exists.

(iii) The symbols ¬, ∨, and ∃ .

The symbols in (i) and (iii) are called logical symbols. The

symbols in (ii) are called the non-logical symbols. The logical

symbols in (iii) stand, respectively, for “not”, “or” and “there

exists”. You may have seen other logical symbols, such as ∀
(universal quantifier), ⇒ (implication), ⇔ (iff) etc. These can

all be expressed using the three we have given. For example,

if it is true that all people in Bangalore love logic, then it is

also true that it is not the case that there exists someone in

Bangalore who does not love logic. In other words, ∀xA (“for

all x A is true”) is the same as ¬∃x¬A (it is not the case that

there exists an x for which A is not true). The symbol for

“and” (∧) can be obtained from that for “or” by negation and

De-Morgan’s laws. The symbols we have given constitute the

most economic possible set.

The non-logical part consists of symbols specific to the topic

under discussion. Thus, if we are discussing the natural num-

bers, we will have the symbols 0, S, +, ∗, and <, to stand for

the number zero, the successor function, addition, multiplica-

tion, and the relation “less than”, respectively. The functions

symbols and predicate symbols are used to denote these kinds

of concepts. For example, the successor function symbol S is

a 1-ary function symbol, + a 2-ary function symbol, and < a

2-ary predicate symbol. We can use “∈” to denote the mem-

bership predicate for sets when we speak about set theory. This

is a 2-ary predicate symbol. The logical symbols are the same

for all topics under discussion, be they groups, or numbers, or

Hilbert spaces, whereas the non-logical symbols are specific

to the subject under discussion

The phrase “first-order” in definition 2.1 is used to indicate

that the variables range over the particular objects under inves-

tigation, but not over subsets thereof. Thus, while speaking

about numbers, the variables are supposed to range over num-

bers, and not over subsets of numbers. In order to talk about

the subset of prime numbers, we have to first interpret num-

ber theory in set theory. Observe that in set theory, since the

variable are supposed to range over sets, there is no problem

with talking about subsets etc. This point is connected with the

issue that we are using set theory to study logic and making

set theory itself an object of study in logic. We refer the reader

to [3] and [1] for more details about this delicate issue.

We use the logical and non-logical symbols to construct

terms and formulas. Thus, S(S(0)) is a term in the language

for natural numbers, and ∃x(y = S(S(S(x)))) is a formula

of the language. As you can probably tell, the terms are

intended to represent particular objects under investigation,

whereas formulas are intended to convey assertions about these

objects.

Definition 2.2. A term is given by the inductive definition:

(i) A variable is a term.

(ii) If u1, . . . , un are terms, and f is an n-ary function sym-

bol, then f u1 . . . un is a term.

Definition 2.3. A formula is given by the inductive definition:

(i) An atomic formula is of the form pu1 . . . un where p is an

n-ary predicate symbol, and u1, . . . , un are terms.

(ii) If A is a formula, so is ¬A.

(iii) If A and B are formulas, so is ∨AB.

(iv) If A is a formula, so is ∃xA where x is a variable.

Note that we use parentheses and other notational conven-

tions only to make reading easier, but these are not part of the

definition of the formal language that we have given above.

Thus, the correct way of writing x + y would be, as per (ii)

of 2.2, “+xy” but this is hard on the eye, so we use the infix

notation and write x + y, remembering that this is really a

notational convention.

Definition 2.4. LetL be a first order language. A structure for

L consists of:

(i) A non-empty set X.

(ii) For each n-ary function symbol f of L, an n-ary function

fX from X to X.

(iii) For each n-ary predicate symbol p ofL, an n-ary relation

pX on X.

We illustrate the previous definitions using the case of nat-

ural numbers. The formal first-order language for speaking

about natural numbers is given by the non-logical symbols: 0

(which is a constant, and thus can be viewed as a 0-ary func-

tion symbol), the 1-ary function symbol S, the 2-ary function
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symbols + and ∗, and the 2-ary predicate symbol <. These

symbols have the evident meaning associated with them. Note

that we only need to specify the non-logical symbols, since the

logical symbols are common for every situation. A structure

for this language would be N, where the non-logical symbols

have the usual interpretations. The symbol “0” is interpreted as

the number 0, the successor function S is interpreted as a func-

tion from N to N that does the expected thing (Sx = x + 1; of

course, we do not have “1” in our language, so the correct for-

mal way to say what S does would be to say that Sx = x+S0),

and < is interpreted in the usual way as a relation on N × N.

Also try and convince yourself that we do really need all the

symbols we have introduced. For example, we cannot do with-

out “S”: try and express what S does by just using the other

symbols.

We next introduce the concept of free and bound occur-

rences of variables. Suppose we write ∃x∀y(y < x). This is

intended to be read as: “There exists an x such that for all y

it is the case that y is less than x”. For this statement to be

true in the structure N, there would have to exist one number

which is greater than all numbers. This statement is obviously

false when referring to the structure N. The occurrences of the

variable x are said to be “bound” in the formula ∃x∀y(y < x)

because there is a quantifier having the variable x immedi-

ately following it, and because this quantifier affects the sec-

ond occurrence of x also. But in the formula ∃y(y < x), we

do not specify any restrictions on x. Thus it is “free”. In this

formula, y is bound. For this formula to be true with respect

to N, the meaning of the formula would have to be true no

matter which natural number we think of x as representing.

∃y(y < x) is false when applied to N. Can you tell why? It is

possible for one occurrence of a variable to be free and for the

other to be bound in the same formula. Here is an example:

(y < x) ∨ (∃x∀y(y < x)). Here the first occurrence of x is

free, and the other occurrences are bound. Once we have the

notion of free and bound occurrences, we denote byAx[u] the

result of replacing every free occurrence of the variable x in

the formula A by the term u.

With the preceding ideas, here is a list of (non-logical)

axioms (formulas) about natural numbers written in the for-

mal language. The variables in the list are supposed to range

over natural numbers. We repeat that we use parentheses and

logical symbols other than ¬, ∀, and ∃ only to avoid confusion

and that they are not part of the formal language.

N1 ¬(Sx = 0)

N2 Sx = Sy ⇒ x = y.

N3 x + 0 = x.

N4 x + Sy = S(x + y).

N5 x ∗ 0 = 0.

N6 x ∗ Sy = (x ∗ y)+ x.

N7 ¬(x < 0).

N8 x < Sy ⇔ x < y ∨ x = y.

N9 x < y ∨ x = y ∨ y < x.

N10 (Ax[0] ∧ ∀x(A ⇒ Ax[Sx])) ⇒ A.

Definition 2.5. A formula is said to be valid in a structure if

its meaning is true when interpreted in that structure.

At this point it is a good exercise for the reader to go through

the list of the axiomsN1 −N10 and convince herself that these

axioms are valid when interpreted in the structure N. Observe

thatN10 is a formulation of the induction axiom, and is actually

a schema, one formula for each A. In this sense, the list N1 −
N10 is an infinite list, because there is a different statement of

N10 for each A.

We now present the logical axioms. Remember that these

axioms are valid in all structures. In fact, you should convince

yourself that these axioms will indeed be valid in all struc-

tures because of their logical nature. The letter A ranges over

formulas, and “f ” and “p” in L4 and L5 range over function

symbols and predicate symbols, respectively. Also remember

that some of the symbols that we use are not technically part

of the language, but can be written in terms of the ones that

are part of the formal definition of a language. We use these

abbreviations for the sake of readability.

L1 ¬A ∨ A.

L2 Ax[a] ⇒ ∃xA.

L3 x = x.

L4 x1 = y1 ∧ . . . ∧ xn = yn ⇒ f x1 . . . xn = fy1 . . . yn.

L5 x1 = y1 ∧ . . . ∧ xn = yn ⇒ px1 . . . xn ⇒ py1 . . . yn.

And we finally present the logical rules of inference. It is

important to note that if the hypotheses of any of these infer-

ence rules are valid in some structure, then the conclusion of

that rule is also valid in that structure. This should of course

be the case, otherwise how could we use logical inference? It

is straightforward in the first four rules to see that this is the

case, but the fifth rule requires some thought.
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LR1 Infer B ∨ A from A.

LR2 Infer A from A ∨ A.

LR3 Infer (A ∨ B) ∨ C from A ∨ (B ∨ C).
LR4 Infer B ∨ C from A ∨ B and ¬A ∨ C.

LR5 If x is not free in B, infer ∃xA ⇒ B from A ⇒ B.

Definition 2.6. A first-order theory or simply a theory is a

formal system consisting of:

(i) A first-order language.

(ii) The logical and non-logical axioms.

(iii) The logical rules of inference.

We can now speak of the first-order theory of natural num-

bers. This will have the formal language that we introduced

earlier for speaking about natural numbers, the non-logical

axiomsN1 throughN10, the logical axiomsL1 throughL5, and

the logical rules of inference LR1 through LR5.

Definition 2.7. A model of a theory is a structure with respect

to which the non-logical axioms of that theory are valid.

One question is whether there are any other models for the

axiomsN1 −N10. The (perhaps surprising) answer is that there

are many other models, even uncountable models. In fact, there

are models of the axioms N1 −N10 where “infinite” elements

exist: i.e. elements x such that x is simultaneously greater than

S0, SS0, SSS0, and so on. This leads to a whole active current

topic of research in logic called non-standard number theory.

3. Soundness and Completeness Theorems

We can now state the soundness and completeness theorems.

We first need to introduce the formal concept of a proof and

that of a theorem.

Definition 3.1. A (formal) proof in a theory is a finite list of

formulas, each formula of the list satisfying:

(i) It is either a logical axiom or a non-logical axiom of the

theory.

(ii) It is the conclusion of a logical inference rule applied to

hypotheses that appear before this formula on the list.

Definition 3.2. A (formal) theorem of a theory is the last for-

mula of a proof in that theory.

Definition 3.3. A formula is said to be valid in a theory T if

it is valid in every model of T.

We can now state the Soundness Theorem.

Theorem 3.1 (Soundness). If T is a theory, then every theo-

rem of T is valid in T .

Proof. The proof is by induction on theorems. A non-logical

axiom of the theory is valid in any model of the theory by the

definition of a model. A logical axiom is valid in all structures.

If the theorem is the conclusion of an inference rule, then the

result is true by the induction axiom the comments immedi-

ately preceding the list of inference rules. �

The idea of this result is straightforward: Imagine we have

the theory of natural numbers given by the non-logical axioms

N1 − N10. Now consider any model of these axioms, such as

the structure N. Then, the soundness theorem says that if we

were to generate more theorems fromN1 −N10, along with the

help of the logical axioms and the logical rules of inference,

we would arrive at formulas that remain true in N. Surely we

would want a result like this, otherwise we would not have a

guarantee that the act of doing everyday mathematics does not

lead to wrong results.

Theorem 3.2 (Completeness). If a formula of a theory T is

valid in T , then it is a theorem of T .

The statement of this result is easy to understand: imagine

that there is a formula A in the language of number theory

that we introduced earlier, involving S, 0, <, +, ∗, and the

logical symbols. Now imagine that the formulaA is true when

interpreted in every model of the axioms N1 −N10, not just in

N. Then the completeness theorem says that it is possible to

have a proof of this formulaA, that is, a finite list consisting of

formulas of the form N1 − N10, and using the logical axioms

and the logical rules of inference. This is far from obvious.

Gödel also proved the Compactness theorem, which can

be shown to be equivalent to the Completeness theorem. This

requires some advanced ideas. But the statement of the Com-

pactness Theorem is easy to understand, and it has startling

consequences. The Compactness Theorem says that if there is

an infinite set S of formulas such that for every finite subset S′

of S, there exists a structure relative to which every formula in

S′ is valid, then there is a structure relative to which all of the

formulas in S are valid. To see some interesting consequences,

suppose the set S consists of the formulas ∃x(x > Sn(0)), one

for each “n”, where Sn stands for “n” instances of S. In other

words, Sn denotes the number “n”. Any finite subset of S is

Mathematics Newsletter -26- Vol. 18 #4, March 2009



clearly satisfied in N. The Compactness theorem then says that

there is a structure where all of the formulas in S are simulta-

neously true. This structure clearly cannot be N because then

it would mean that there is an element in N that is larger than

every natural number. This leads to the idea of structures for

the axioms N1 −N10 with “infinite” elements.

The ideas that we have introduced here could be applied to

other areas of mathematics, such as group theory, or set theory.

You may find it curious that in order to talk about some of these

results, we need an ambient set theory (to talk about the set N,

for example), and yet we can study set theory itself using the

methods of mathematical logic. This is actually an important

issue, the relation between logic and set theory. Set theory

is itself a first order theory, where the variables range over

sets. The non-logical axioms of set theory give us mechanisms

to talk about subsets, power sets, infinite sets etc. And the

resulting theory can be analyzed using logical methods and

these logical methods rely on set theoretic intuitions. These

issues are further discussed in [1]. We also refer to Kleene’s

book [2] for a treatment of some philosophical and technical

issues that are not to be found in [1] and [3].

Ramanujan’s Route to Roots of Roots
B. Sury

Stat-Math Unit, Indian Statistical Institute, 8th Mile Mysore Road, Bangalore 560 059, India

E-mail: sury@isibang.ac.in

Introduction

The fancy titlea points out to a subject which originated with

Ramanujan or, at least, one to which he gave crucial impetus to.

We can’t help but feel a sense of bewilderment on encountering

formulae such as

3

√
3
√

2 − 1 = 3

√
1

9
− 3

√
2

9
+ 3

√
4

9
;

√
3
√

28 − 3
√

27 = −1

3
(− 3

√
98 + 3

√
28 + 1);

√
3
√

5 − 3
√

4 = 1

3
(− 3

√
25 + 3

√
20 + 3

√
2);

aExpanded version of a talk in IIT Madras on the occasion of

the

√
1 + 119

√
1 + 120

√
1 + 121

√· · ·-th birthday of someone

who radically changed the mathematical landscape
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2π
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√
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√
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√
8 −

√
8 + √

8 − · · · = 1 + 2
√

3 sin 20◦;
√

23 − 2

√
23 + 2

√
23 + 2

√
23 − · · · = 1 + 4

√
3 sin 20◦;

e−2π/5

1+
e−2π

1+
e−4π

1+
e−6π

1+ · · · =
√

5 + √
5

2
−

√
5 + 1

2
.

The last expressions for the so-called Rogers–Ramanujan

continued fraction appeared in Ramanujan’s first letter to

Hardy. These formulae are among some problems posed by
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Ramanujan in the Journal of the Indian Mathematical Soci-

ety (see the article by Berndt, Choi & Kang in [R1]). As was

usual with Ramanujan, he had a general formula hidden in

the background and, singled out striking special cases in these

problem sections. Usually, a study of his notebooks revealed

what general formula he had in mind. The first thing to notice

is that radicals are multi-valued and the meaning of expres-

sions where radicals appear has to be made clear. Specially,

where there is a ‘nesting’ of radicals, the level of complexity

increases exponentially with each radical sign and it is com-

putationally important to have equivalent expressions with the

least number of radical signs. One more point to note is that

often an equality, once written down, is almost trivial to verify

simply by taking appropriate powers and simplifying. Thus,

the intriguing question is to find out how such a formula was

discovered and how to determine other such identities. The

appropriate language to analyze this problem is the language

of Galois theory.

1. Entry 4, page 108, 2nd notebook [R2]

Ramanujan posed the problem of finding the values of:

√
1 + 2

√
1 + 3

√
1 + · · ·

and
√

6 + 2
√

7 + 3
√

8 + · · ·.

These are special cases of Ramanujan’s theorem appearing

as Entry 4 on page 108, chapter 12 of his second notebook.

Leaving aside the questions of convergence of these infinite

radicals, the values can easily be discovered. Indeed, a beauti-

ful, elementary discussion of the convergence and evaluation

of these expressions appears in an article written by Shailesh

Shirali ([S]). It is better to look at the more general form of the

first expression

f (x) =

√
1 + x

√
1 + (x + 1)

√
1 + (x + 2)

√
1 + · · ·

for x > 0. What is the meaning of this? One is looking to find

functions f : [0,∞) → [0,∞) satisfying

f (x) =
√

1 + xf (x + 1).

As f (x) ≥ 1, we have

f (x) ≤
√
(1 + x)f (x + 1)

≤ √
1 + x

√√
(2 + x)f (x + 2) ≤ · · ·

Thus, f (x) ≤ ∏∞
k=1(k + x)

1
2k .

For x ≥ 1, it is easy to bound the above infinite product

above as
∞∏
k=1

(k + x)
1

2k ≤
∞∏
k=1

(2kx)
1

2k = 2x
∞∏
k=1

k
1

2k < 2x
∞∏
k=1

2
k−1
2k ≤ 4x.

In other words, for anyx ≥ 0, we havef (x+1) < 4(x+1) and,

therefore, f (x) = √
1 + xf (x + 1) <

√
1 + 4x(x + 1) =

2x + 1. A fortiori, f (x) < 4x + 1 for any x ≥ 0.

Playing the same game, if f (x) ≤ ax + 1 for some a > 0

(and all x ≥ 0), we get - on using f (x+1) ≤ a(x+1)+1 - that

f (x) ≤
√

1 + (a + 1)x + ax2

≤
√

1 + (a + 1)x +
(
a + 1

2
x

)2

≤ 1 + a + 1

2
x.

Hence, starting with a = 4, we have the inequality f (x) ≤
ax + 1 recursively for a = 5

2 ,
7
4 ,

11
8 etc. which is a sequence

converging to 1. Thus, f (x) ≤ 1 + x for all x ≥ 0. Simi-

larly, using the fact that f (x + 1) ≥ f (x), one has f (x) ≥√
1 + xf (x) which gives f (x) ≥ 1 + x

2 for x ≥ 0. The earlier

trick of iteration gives us that if a > 0 satisfies f (x) ≥ 1 +ax
for all x ≥ 0, then f (x) ≥ 1 + √

ax. Thus, starting with

a = 1
2 , we get f (x) ≥ 1 + ax for a = 1

21/2k
for all k ≥ 1. The

latter sequence converges to 1 and we therefore have a perfect

sandwich (a vegetarian version of which probably Ramanujan

survived on, in England !) to get f (x) = 1 + x for all x ≥ 0.

Therefore, √
1 + 2

√
1 + 3

√
1 + · · · = 3(!)

We leave the reader to ponder about the value of√
6 + 2

√
7 + 3

√
8 + · · ·.

2. A Theorem of Ramanujan

If m, n are arbitrary, then√
m

3
√

4m− 8n+ n
3
√

4m+ n = ±1

3

(
3
√
(4m+ n)2

+ 3
√

4(m− 2n)(4m+ n)− 3
√

2(m− 2n)2
)
.
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As mentioned above, this is easy to verify simply by squar-

ing both sides ! However, it is neither clear how this formula

was arrived at nor how general it is. Are there more general

formulae? In fact, it turns out that Ramanujan was absolutely

on the dot here; the following result shows Ramanujan’s result

cannot be bettered:

Let α, β ∈ Q∗ such that α/β is not a perfect cube in Q.

Then,
√

3
√
α + 3

√
β can be denested if and only if there are

integers m, n such that

α

β
= (4m− 8n)m3

(4m+ n)n3
.

For instance, it follows by this theorem that
√

3
√

3 + 3
√

2

cannot be denested.

What is meant by denesting?

By the denesting of a nested radical one means rewriting it

with fewer radical symbols. More formally, over any field K ,

nested radicals are defined as follows. Start with the elements

in K – these are said to be nested radicals of depth zero. Use

addition, subtraction, product, division and n
√
x for n ≥ 2

to form expressions (possibly not in K as we are taking n-

th roots). With the expressions so formed, one can apply all

the above procedures to form new expressions. Thus, a nested

radical is an expression obtained from earlier-formed nested

radicals by means of these procedures.

The usual convention used in fixing the values of radical

expressions is as follows. An expression 3
√
t for a real number

t will stand for the unique real cube root and, if s is a posi-

tive real number,
√
s stands for the value which is the positive

square root.

For example, the expression
3
√√

5 + 2 − 3
√√

5 − 2 has

value 1!

Indeed, if t is the value (according to the agreed-upon con-

vention above), then t is seen to be a (real) root of the polyno-

mial X3 + 3X − 4. As

X3 + 3X − 4 = (X − 1)(X2 +X + 4),

the only real root is 1.

3. Galois Theory for Denesting

To de-nest an expression such as
√

3
√
α + 3

√
β, one needs to

locate a field where the de-nesting exists. Usually, one will

need to go to a field where enough roots of unity exist. Let K

be any field of characteristic zero and let K̄ be an algebraic

closure. The definition of depth over a field K implies that

there are subfields K(d) of K̄ defined by depthK(x) = d for

x ∈ K̄ if and only if x ∈ K(d)\K(d−1). Here,K(d) is generated

by radicals over K(d−1). In fact,

K(d) := {x ∈ K̄ : xn ∈ K(d−1)for some n}.

For example,

6

√
7 3
√

20 − 19 = 3

√
5

3
− 3

√
2

3

shows that the element on the left side which is in Q(2) is

actually contained in Q(1) itself.

An element x ∈ K̄ is a nested radical over K if and only if

there exists a Galois extension L ofK and a chain of interme-

diate fields

K ⊂ K1 ⊂ · · · ⊂ Kn = L

such that Ki is generated by radicals over Ki−1 and x ∈ L.

Normally, if an element x is a nested radical over K , one

obtains a chain as above successively generated by radicals

such that x ∈ L but L may not be automatically a Galois

extension. For example, the left hand side above generates a

non-Galois extension of Q and one needs to attach the 6-th

roots of unity to get a Galois extension containing it.

So, why is it so important/useful to have a Galois extension?

The fact of the matter is that Galois’s famous theorem tells

us that x ∈ K̄ is a nested radical if and only if the Galois

closure of K(x) over K has a solvable Galois group. Thus,

the extensions K(d), if they are Galois extensions of K(d−1),

have an abelian Galois group and this theory is well-studied

under the title of ‘Kummer theory’. Therefore, one may adjoin

enough roots of unity at the first step of the chain to get a

chain of Galois extensions and may apply Kummer theory. For

instance,

Q ⊂ Q(ζ6) ⊂ Q( 3
√

20, ζ6) ⊂ Q
( 6

√
7 3
√

20 − 19, ζ6
)

is a chain with each successive extension abelian.

Roughly speaking, Kummer theory (see [M]) can be sum-

marized by:

Main Theorem of Kummer Theory. If K contains the n-th

roots of unity, then abelian extensions L of K whose Galois

Mathematics Newsletter -29- Vol. 18 #4, March 2009



groups have exponent n correspond bijectively to subgroups�

of K∗ containing (K∗)n via L �→ K∗ ∩ (L∗)n and its inverse

map � �→ K(�1/n).

Using Kummer theory, one may analyze all nested radicals

x over Q. In this talk, we do not go into the details of this

general result proved by Mascha Honsbeek ([H]) in his doc-

toral thesis but focus mainly on the result relevant to Ramanu-

jan’s theorem. We will use the notation Q for the field of all

algebraic numbers. In this field, every nonconstant polynomial

over it has all its roots in it. The following consequence of the

above main theorem of Kummer theory and will be a key to

denesting radicals.

Proposition 1. LetK denote a field extension of Q containing

the n-th roots of unity. Suppose a, b1, b2, . . . , br ∈ Q
∗

are so

that an, bn1, . . . , b
n
r ∈ K . Then, a ∈ K(b1, . . . , br) if, and only

if, there exist b ∈ K∗ and natural numbers m1,m2, . . . , mr

such that

a = b

r∏
i=1

b
mi
i .

Proof. The ‘if’ part is easily verified. Let us assume that a ∈
L := K(b1, . . . , br). The subgroup � of L∗ generated by

the n-th powers of elements of (K∗) along with bn1, . . . , b
n
r

satisfies L = K(�1/n) by Kummer theory. So, an ∈ (L∗)n ∩
K∗ = �. Thus, there exists c ∈ K∗ so that

an = cn
r∏
i=1

b
min
i .

Taking n-th roots on both sides and multiplying by a suitable

n-th root of unity (remember they are in K), we get

a = b

r∏
i=1

b
mi
i

for some b ∈ K∗. The proof is complete.

The following technical result from Galois theory which

uses the above proposition is crucial in the denesting of√
1 + 3

√
β/α over Q. Although this result is not difficult to

prove, we shall not go into the details of the proof. We give a

sketch for the cognoscenti; others may skip it.

Theorem 13. Let c be a rational number which is not a perfect

cube. Let δ ∈ Q( 3
√
c) \ Q and let G denote the Galois group

of the Galois-closure M of Q(
√
δ) over Q. Then, the nested

radical
√
δ can be denested over Q if, and only if, the second

commutator groupG′′ ofG is trivial. Further, these conditions

are equivalent to the existence of f ∈ Q∗ and some e ∈ Q(δ)

so that δ = f e2.

Sketch of Proof. The essential part is to show that when

G′′ is trivial, then there are f ∈ Q∗ and e ∈ Q(δ) with

δ = f e2.

We consider the field K = Q(δ, ζ3), the smallest Galois

extension of Q which contains δ. If δ2, δ3 are the other Galois-

conjugates of δ in K , the main claim is that if δ2δ3 is not a

square in K , then G′′ is not trivial. To see this, suppose δ2δ3

(and hence its Galois-conjugates δδ3, δδ2) are non-squares as

well. Then,
√
δδ2 cannot be contained inK(

√
δ2δ3) because of

the above proposition. So, the extensionL = K(
√
δδ2,

√
δ2δ3)

has degree 4 over K and is contained in the Galois closure

M of Q(
√
δ) over Q. The Galois group Gal (L/K) is the

abelian Klein 4-group V4. Indeed, its nontrivial elements are

ρ1, ρ2, ρ1ρ2 where ρ1 fixes
√
δδ2 and sends

√
δ2δ3 and

√
δδ3

to their negatives; ρ2 fixes
√
δ2δ3 and sends

√
δδ2 and

√
δδ3 to

their negatives.

Also, Gal (K/Q) is the full permutation group on δ, δ2, δ3.

We also put δ1 instead of δ for convenience.

Suppose, if possible, G′′ = {1}. Now, the second commu-

tator subgroup of Gal (L/Q) is trivial as it is a subgroup of

G′′. In other words, the commutator subgroup of Gal (L/Q)

is abelian.

Consider the action of Gal(K/Q) on Gal (L/K) defined as:

(σ, τ ) �→ σLτσ
−1
L

where, for σ ∈Gal (K/Q), the element σL ∈Gal (L/Q)which

restricts to K as σ .

The following computation shows that the commutator sub-

group of Gal (L/Q) cannot be abelian.

If π : Gal (L/Q) → Gal (K/Q) is the restriction map,

look at any lifts a, b, c of (12), (13), (23) respectively. For

any d ∈ Gal (L/K), the commutator ada−1d−1 is defined

independently of the choice of the lift a since Gal (L/K) is

abelian. An easy computation gives:

aρ2a
−1ρ−1

2 = ρ1

bρ1b
−1ρ−1

1 = ρ1ρ2

c(ρ1ρ2)c
−1(ρ1ρ2)

−1 = ρ2.

Therefore, the whole of Gal (L/K) is contained in

the commutator subgroup of Gal (L/Q). Now (123) =
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(13)(23)(13)(23) implies that d = bcb−1c−1 which is in the

commutator subgroup of Gal (L/Q) is a lift of (123). Thus,

dgd−1g−1 = Id for any g ∈Gal (L/K) as Gal (L/K) is con-

tained in the commutator subgroup of Gal (L/Q) (an abelian

group). But note that dρ1d
−1 fixes

√
δ2δ3 and hence, cannot

be equal to ρ1. Thus, we have a contradiction to the assump-

tion that G′′ = {1} while δ2δ3 is a non-square in K; the claim

follows.

Now, assume that G′′ is trivial. We would like to use the

claim proved above to show that there aref ∈ Q∗ and e ∈ Q(δ)

with δ = f e2.

Start with some η ∈ K with δ2δ3 = η2. We would like to

show that η ∈ Q(δ). This will prove our assertion, for then,

δ = δ1δ2δ3

δ2δ3
= δ1δ2δ3

η2
= f e2

where f = δ1δ2δ3 ∈ Q and e = η−1 ∈ Q(δ).

Supposeη �∈ Q(δ). Since the product δ2δ3 ∈ Q(δ), on apply-

ing the above proposition to K = Q(δ, ζ3) = Q(δ,
√−3), we

get
√
δ2δ3 = √−3θ for some θ ∈ Q(δ); that is,

η2 = δ2δ3 = −3θ2.

Taking norms over Q, we get N(η)2 = (−3)3N(θ)2 which

is a contradiction since (−3)3 is not a square in Q. Therefore,

η indeed belongs to Q(δ) and we are done.

4. Existence of De-nesting

In this section, we determine conditions under which elements

e, f as in theorem 2 exist. For any non-zero α, β in Q, the

polynomial

Fβ/α(t) = t4 + 4t3 + 8
β

α
t − 4

β

α

plays a role in determining the denestability of the nested rad-

ical
√

3
√
α + 3

√
β over Q.

Lemma 3. Let α, β ∈ Q∗ such that α/β is not a perfect cube

in Q. Then,
√

3
√
α + 3

√
β can be denested if and only if the

polynomial Fβ/α has a root in Q.

Proof. Now
√

3
√
α + 3

√
β can be denested if and only if√

1 + 3
√
β/α can be denested. By the theorem, this happens if

and only if there exists f, x, y, z ∈ Q with

1 + 3
√
β/α = f (x + y 3

√
β/α + z

3
√
β2/α2)2 · · · · · · ♦

Assume that denesting can be done. The elements

1, 3
√
β/α, 3

√
β2/α2 are linearly independent over Q. Thus, we

may compare like powers of 3
√
β2/α2 in ♦ to get

1/f = x2 + 2yzβ

α

0 = y2 + 2xz

1/f = βz2

α
+ 2xy

After a simple calculation, it is easy to see that z �= 0 and that

y/z is a root of Fβ/α .

Conversely, suppose Fβ/α has a rational root s. Then, work-

ing backwards, a denesting is given as:
√

3
√
α + 3

√
β = ± 1√

f
(−s

2 3
√
α2

2
+ s 3

√
αβ + 3

√
β2)

where f = β − s3α. The proof is complete.

Examples 4. For α = 5, β = −4 we get s = −2 to be the

rational root of F−4/5(t) = t4 + 4t3 − 32
5 t + 16

5 = 0. Thus,

f = −4 + 40 = 36 and we have√
3
√

5 − 3
√

4 = 1

6
(−2 3

√
25 − 2 3

√−20 + 3
√

16)

= 1

3
(− 3

√
25 + 3

√
20 + 3

√
2).

Similarly, for α = 28, β = 27, we have s = −3 and f = 272

and we get√
3
√

28 − 3
√

27 = − 1

27
(−9

2
3
√

282 − 3 3
√
(−27)(28)+ 3

√
272)

= −1

3
(− 3

√
98 + 3

√
28 + 1).

5. Connection with Ramanujan’s De-nesting

We saw that denesting of
√

3
√
α + 3

√
β involved the rational root

of a certain related polynomial. The connection with Ramanu-

jan’s denesting comes while trying to characterize the α, β for

which the polynomial Fβ/α has a root in Q. This is easy to see

as follows:

Lemma 5. Let α, β ∈ Q∗ where the ratio is not a cube. Then√
3
√
α + 3

√
β can be denested over Q if, and only if, Fβ/α has

a root s in Q which is if, and only if, there are integersm, n so

that

α

β
= (4m− 8n)m3

(4m+ n)n3
.
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Proof. Of course, we need to prove only the second ‘if and

only if’ and, even there, it suffices to prove the ‘only if’ part

as the other implication is obvious. Now s4 + 4s3 + 8sβ/α −
4β/α = 0 implies (on taking s = n/m) that

β

α
= s3(s + 4)

4 − 8s
= (4m+ n)n3

(4m− 8n)m3
.

Remarks. This is not quite the same as Ramanujan’s de-

nesting formula although the ratio β/α is the same. Ramanu-

jan’s theorem is:
√
m

3
√

4m− 8n+ n
3
√

4m+ n = ±1

3
(

3
√
(4m+ n)2

+ 3
√

4(m− 2n)(4m+ n)− 3
√

2(m− 2n)2).

If we apply this to denest
√

3
√
α + 3

√
β

where β

α
= n3(4m+n)

m3(4m−8n) , we would get

√
3
√
α + 3

√
β = 1√

m
6

√
α

4m− 8n

√
m

3
√

4m− 8n+ n
3
√

4m+ n.

This formula looks quite awkward and the natural question

arises as to whether it is true that for integers α, β there exist

integers m, n with α = m3(4m− 8n) and β = n3(4m+ n).

It turns out that this is not always the case. For example, if

α = −4, β = 5, the integers m = n = 1 work whereas for

the other choice α = 5, β = −4, there are no such integers

(!) Thus, when we are denesting
√

3
√
α + 3

√
β, we are actually

denesting
√

1 + 3
√
β/α and it is better to use the method we

discussed.

The asymmetry between m and n in Ramanujan’s formula

can be explained as follows. If one changes m to m′ = − n√
2

and n to n′ = m
√

2, it turns out that

4(m− 2n)m3 = (4m′ + n′)n′3

(4m+ n)n3 = 4(m′ − 2n′)m′3.

Thus, we have the same denesting !

6. De-nesting Nested Square Roots

As mentioned in the beginning, using Galois theory, one may

investigate the denesting of any nested radical in principle.

However, it is not clear how to do in general. When the nested

radical consists only of nested square roots, some nice results

can be proved. We merely state two of them due to Borodin,

Fagin, Hopcroft and Tompa ([BFHT]):

Theorem 6. LetK have characteristic 0 and a, b, r ∈ K with√
r �∈ K . Then,

(a)
√
a + b

√
r ∈ K(

√
r,

√
a1, . . . ,

√
an) for some ai ∈

K ⇔ √
a2 − b2r ∈ K;

(b)
√
a + b

√
r ∈ K( 4

√
r,

√
a1, . . . ,

√
an) for some ai ∈

K ⇔ either
√
a2 − b2r or

√
r(−a2 + b2r) is in K .

Theorem 7. Let K ⊂ R and a, b, r ∈ K with
√
r �∈ K .

Let a1, . . . , an ∈ K be positive and let r1, . . . , rn ≥ 1. If√
a + b

√
r ∈ K( r1

√
a1, . . . , rn

√
an), then

√
a + b

√
r is already

in K( 4
√
r,

√
b1, . . . ,

√
bn) for some b1, . . . , bn ∈ K .

These theorems also provide an algorithm for de-nesting.

We do not go into it and proceed to the last section where

we discuss certain values of the Rogers–Ramanujan continued

fractions as nested radicals.

7. Rogers–Ramanujan Continued Fraction as
Nested Radicals

The Rogers–Ramanujan continued fraction is the function

R(z) = q1/5

1+
q

1+
q2

1+ · · ·

defined on the upper half plane (where q = e2iπz). It is a

holomorphic function and is also given by the product

R(z) = q1/5
∞∏
n=1

(1 − qn)(
n
5 )

where
(
n
5

)
here denotes the Legendre symbol. We had men-

tioned at the beginning Ramanujan’s beautiful formula which

he wrote in his first letter to Hardy:

e−2π/5

1+
e−2π

1+
e−4π

1+
e−6π

1+ · · · =
√

5 + √
5

2
−

√
5 + 1

2
.

In other words, as z = i gives q = e−2π , we have

R(i) =
√

5 + √
5

2
−

√
5 + 1

2
.
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Actually, this follows from a reciprocity theorem forR(z) that

Ramanujan wrote in his second letter to Hardy and which was

proved by Watson. There are several other such identities writ-

ten by Ramanujan like:

R(ei
√

5) =
√

5

1 + 5

√
53/4

√
(

√
5−1
2 )5 − 1

−
√

5 + 1

2
.

Each of these and many others can be proved using eta-

function identities which were known to Ramanujan. Two such

are:

1

R(z)
− R(z)− 1 = η(z/5)

η(5z)
· · · · · · · · · (♥)

1

R(z)5
− R(z)5 − 11 =

(
η(z)

η(5z)

)6

· · · · · · · · · (♠)

Here, the Dedekind eta function η(z) = q1/24 ∏∞
n=1(1 − qn)

where q = e2iπz as before.

Note that η(z) is essentially the generating function for

the sequence p(n) of partitions of a natural number n. Fur-

ther, η(z)24 is the discriminant function (sometimes called the

Ramanujan cusp form)

�(z) = q

∞∏
n=1

(1 − xn)24

which is the unique cusp form (up to scalars) of weight 12 and

its Fourier expansion

�(z) = (2π)12
∞∑
n=1

τ(n)e2iπnz

has Fourier coefficients τ(n), the Ramanujan tau function.

Thus, this is familiar territory to Ramanujan. But, keeping in

mind our focus on nested radicals, we shelve a discussion of

proofs of these – there are proofs due to Berndt et al. in the spirit

of Ramanujan and other ones by K. G. Ramanathan ([Ra])

using tools like Kronecker limit formula which were unfamil-

iar to Ramanujan. Readers interested in these may refer to

[ABJL].

We go on to briefly discuss in the modern spirit how val-

ues of R(z) at imaginary quadratic algebraic integers z on the

upper half-plane can be expressed as nested radicals. This will

involve class field theory, modular functions and the theory

of complex multiplication. In order to be comprehensible to a

sufficiently wide audience, we merely outline this important

but rather technical topic.

What is the key point of this procedure?

The discussion below can be informally summed up as fol-

lows. The values of ‘modular functions’ (functions like R(z))

at an imaginary quadratic algebraic integer τ on the upper half-

plane generate a Galois extension over Q(τ ) with the Galois

group being abelian. This is really the key point. For, if we

have any abelian extension L/K , one has a standard proce-

dure whereby one could express any element of L as a nested

radical over a field L′ with degree [L′ : K] < [L : K]. Recur-

sively, this leads to a nested radical expression over K . Let us

make this a bit more formal now.

Modular functions come in.

A meromorphic function on the extended complex upper

half-plane H ∪ P1(Q) which is invariant under the natural

action of �(N) := Ker(SL2(Z) → SL2(Z/NZ)) is known

as a modular function of level N . One has:

The Rogers-Ramanujan continued fractionR(z) is modular,

of level 5.

Now, a modular function of level N (since it is invariant

under the transformation z �→ z+N ) has a Fourier expansion

in the variable e2iπz/N = q1/N . Those modular functions of

level N whose Fourier coefficients lie in Q(ζN) form a field

FN . In fact, in the language of algebraic geometry, FN is the

function field of a curve known as the modular curve X(N)

(essentially, the curve corresponding to the Riemann surface

obtained by compactifying the quotient of the upper half-plane

by the discrete subgroup �(N)). Moreover, FN is a Galois

extension of F1 with Galois group GL2(Z/NZ)/{±I }. The

classical modular j -function generates F1 over Q and, hence,

induces an isomorphism of X(1) with P1(Q). Let us briefly

define it.

For τ on the upper half-plane, consider the lattice Z + Zτ

and the functions

g2(τ )=60
′∑
m,n

1

(m+ nτ)4

(
= (2π)4

12

(
1 +

∞∑
n=1

σ3(n)e
2πinτ

))

g3(τ )=140
′∑
m,n

1

(m+ nτ)6

(
= (2π)6

12

(
1 +

∞∑
n=1

σ5(n)e
2πinτ

))
.

[
Note that p′(z)2 = 4p(z)3 − g2(τ )p(z) − g3(τ ) where the

Weierstrass p-function on Z + Zτ is given by p(z) = 1
z2 +∑

w

( 1
(z−w)2 − 1

w2 ).
]
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It can be shown that �(τ)
d= g2(τ )

3 − 27g3(τ )
2 �= 0. The

elliptic modular function j : h → C is defined by

j (τ ) = 123 · g2(τ )
3

�(τ)
.

Similar to the generation of F1 by the j -function is the fact

that the field F5 also happens to be generated over Q(ζ5) by

a single function (in other words, X(5) also has genus 0). An

interesting classical fact is:

The function R(z) generates F5 over Q(ζ5).

The idea used in the proof of this is the following. The j -

function can be expressed in terms of the eta function and on

using the two identities (♥) and (♠), it follows that

j = (1 + 228R5 + 494R10 − 228R15 + R20)3

(−R + 11R6 + R11)
.

From this, one can derive also explicitly the minimal polyno-

mial of R5 over Q(j), a polynomial of degree 12. Thus, Q(R)

has degree 60 over Q(j). In fact, this minimal polynomial is

a polynomial in j with integer coefficients. In particular, if τ

is an imaginary quadratic algebraic integer on the upper half-

plane, R(τ) is an algebraic integer as this is true for j .

If τ is an imaginary quadratic algebraic integer on the upper

half-plane, one can form the Z-lattice Oτ with basis 1, τ . This

is an order (a subring containing a Q-basis) in the imaginary

quadratic field Q(τ ). When Oτ is a maximal order, the ‘class

field’ H of Oτ is the ‘Hilbert class field’ of Q(τ ) - a finite

extension of Q(τ ) in which each prime of Q(τ ) is unramified

and principal. More generally, for any N , the field HN gen-

erated by the values f (τ) of modular functions f of level N

is nothing but the ‘ray class field’ of conductor N over Q(τ )

when Oτ is a maximal order.

We have (see [L]):

The first main theorem of complex multiplication.HN is an

abelian extension of Q(τ ).

The Hilbert class field H is H1 in this notation. That is,

H1 = Q(τ )(j (τ )) is Galois over Q(τ ) with the Galois group

isomorphic to the class group of Oτ . In general, for any N ,

one may explicitly write down the action of Gal(HN/Q(τ ))

on f (τ) for any modular function f of level N . One may use

that and the fact mentioned earlier that R(τ) is an algebraic

integer to prove:

If τ is an imaginary quadratic algebraic integer on the upper

half-plane, and Oτ is the order in Q(τ ) with Z-basis 1, τ , the

ray class field H5 of conductor 5 over Q(τ ) is generated by

R(τ).

Let us begin with this data to describe an algorithm to

express elements of HN as nested radicals over Q(τ ).

Procedure for expressing as nested radicals

Let L/K be any abelian extension and let w ∈ L. Choose

an element σ ∈ Gal(L/K) of order n > 1. Take L′ = Lσ (ζn)

where Lσ denotes the fixed field under < σ >. Now, L′ is an

abelian extension of K and

[L′ : K] ≤ φ(n)[Lσ : K] < n[Lσ : K]

= [L : Lσ ][Lσ : K] = [L : K].

Look at the Lagrange resolvents hi = ∑n
k=1 ζ

ik
n w

(σk); 0 ≤ i <

n of w with respect to σ . Thus, we have

w = h0 + h1 + · · · + hn−1

n
.

Since h0 = trL/Lσ (w) ∈ L′, it is fixed by every ele-

ment of Gal(L(ζn)/L′). Furthermore, any element ρ ∈
Gal(L(ζn)/L

′) acts by some power of σ on L and as identity

on ζn. Therefore, for i = 1, 2, . . . , n− 1;

h
ρ

i = ζ−ia
n hi

where ρ is acting as σa on L.

Hence, we get hn1h
n
2 · · ·hnn−1 ∈ L′. Thinking of hi as m

√
hmi ,

the expression

w = h0 + h1 + · · · + hn−1

n

is actually an expression as a nested radical over L′. Next, one

can apply this procedure to h0, h
n
1, h

n
2, . . . , h

n
n−1 in L′ etc.

Returning to our situation, when τ is an imaginary quadratic

algebraic integer, we wish to look at the valueR(τ). So, we will

work with the ray class fieldH5 over Q(τ ). Recall the identity

1

R(z)
− R(z)− 1 = η(z/5)

η(5z)
· · · · · · · · · (♥)

It turns out that the elements 1
R(τ)

and −R(τ) ofH5 are Galois-

conjugate over the field Q(τ )(w(τ)) where we have written

w(τ) for η(τ/5)
η(5τ) . Therefore, we have:

H5 is generated over Q(τ ) by w(τ) and ζ5.

Now w(τ) is an algebraic integer as both 1
R(τ)

and −R(τ)
are so. Usually, one works with w(τ) instead of with R(τ)

because the former has half the number of conjugates and
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also, it is defined in terms of the eta function which can be

evaluated by software packages very accurately. The point

is that the software packages exploit the fact that SL2(Z)-

transformations carry z to a new z with large imaginary part

and so the Fourier expansion of η(z) will converge quite

rapidly. Therefore, to obtain expressions for R(τ), one works

with w(τ) and uses (♥).
What τ to choose ?

Analyzing the product expression

R(z) = q1/5
∞∏
n=1

(1 − qn)(
n
5 )

one observes that R(z) is real when Re(z) = 5k/2 for some

integer k. Thus, keeping in mind that we need algebraic inte-

gers τ with the corresponding order being maximal, we look at:

τn = √−n if − n �≡ 1 mod 4;

τn = 5 + √−n
2

if − n ≡ 1 mod 4.

Observe that τ1 = i. In general, it can be shown that√
5 ∈ Q(τn) and that w(τn)√

5
is an algebraic integer. So, one can

generate H5 over Q(τn) by w̃(τn) = w(τn)√
5

(instead of w(τn))

along with ζ5.

Applying the procedure of finding nested radicals in an

abelian extension, one can show (using software packages):

w̃(τ1) = w̃(i) = 1.

Unwinding this for w(i) and then for R(i), one gets

R(i) =
√

5 + √
5

2
−

√
5 + 1

2
!

Similarly, one may obtain formulae like

R

(
5 + i

2

)
= −

√
5 − √

5

2
+

√
5 − 1

2

Last take on j -function

A romantic story goes that Ramanujan wrote somewhere

that eπ
√

163 is ‘almost’ an integer ! Whether he actually did so

or not, he could have known the following interesting fact.

Applying the first theorem of complex multiplication to

j (τ ) for τ imaginary quadratic, it follows that j (τ ) is an alge-

braic integer of degree = class number of Q(τ ) i.e, ∃ integers

a0, . . . , ah−1 such that

j (τ )h + ah−1j (τ )
h−1 + · · · + a0 = 0.

Now, there are only finitely many imaginary quadratic fields

Q(τ ) = K which have class number 1. The largestD such that

Q(
√−D) has class number 1 is 163. Since 163 ≡ 3(4), the

ring of integers is Z + Z(−1+i√163
2 ). Thus j (−1+i√163

2 ) ∈ Z.

The Fourier expansion of j has integer coefficients and looks

like j (τ ) = 1
q

+ 744 + ∑
n≥1

cnq
n with cn ∈ Z and

q = e2πi(+1+i√163
2 ) = −e−π

√
163.

Thus −eπ
√

163+744−196884 e−π
√

163+21493760 e−2π
√

163+
· · · = j (τ ) ∈ Z. In other words,

eπ
√

163 − integer = 196884 e−π
√

163

+ 21493760 e−2π
√

163 . . . ≈ 0!

To end, we should agree that Ramanujan radically changed

the mathematical landscape!
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