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Introduction

The fancy title points out to a subject which originated with Ramanujan or,
at least, one to which he gave crucial impetus to. We can’t help but feel a
sense of bewilderment on encountering formulae such as
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The last expressions for the so-called Rogers-Ramanujan continued fraction
appeared in Ramanujan’s first letter to Hardy. These formulae are among
some problems posed by Ramanujan in the Journal of the Indian Mathemat-
ical Society. As was usual with Ramanujan, he had a general formula hidden
in the background and, singled out striking special cases in these problem
sections. Usually, a study of his notebooks revealed what general formula he
had in mind. The first thing to notice is that radicals are multi-valued and
the meaning of expressions where radicals appear has to be made clear. Spe-
cially, where there is a ‘nesting’ of radicals, the level of complexity increases
exponentially with each radical sign and it is computationally important to
have equivalent expressions with the least number of radical signs. One more
point to note is that often an equality, once written down, is almost trivial
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to verify simply by taking appropriate powers and simplifying. Thus, the
intriguing question is to find out how such a formula was discovered and how
to determine other such identities. The appropriate language to analyse this
problem is the language of Galois theory.

1 The identity in the title

We briefly discuss the title expression and go on to analyze the other ex-
pressions in the next sections. A beautiful, elementary discussion of the
convergence and evaluation of these expressions appears in an article written
by Shailesh Shirali in Resonance.
Ramanujan posed the problem of finding the values of :

√
1 + 2

√
1 + 3

√
1 + · · ·

and √
6 + 2

√
7 + 3

√
8 + · · ·.

These are special cases of Ramanujan’s theorem appearing as Entry 4 on
page 108, chapter 12 of his second notebook. Leaving aside the questions
of convergence of these infinite radicals, the values can easily be discovered.
Indeed, (keeping in mind the title expression), it is better to look at the more
general form of the first expression
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√
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√
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√
1 + · · ·

for x > 0. What is the meaning of this? One is looking to find functions
f : [0,∞) → [0,∞) satisfying

f(x) =
√

1 + xf(x + 1).

As f(x) ≥ 1, we have
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√
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1 + x

√√
(2 + x)f(x + 2) ≤ · · ·
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1
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For x ≥ 1, it is easy to bound the above infinite product above as
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∞∏
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In other words, for any x ≥ 0, we have f(x + 1) < 4(x + 1) and, therefore,

f(x) =
√

1 + xf(x + 1) <
√

1 + 4x(x + 1) = 2x+1. A fortiori, f(x) < 4x+1
for any x ≥ 0.
Playing the same game, if f(x) ≤ ax + 1 for some a > 0 (and all x ≥ 0), we
get - on using f(x + 1) ≤ a(x + 1) + 1 - that

f(x) ≤
√

1 + (a + 1)x + ax2 ≤
√

1 + (a + 1)x + (
a + 1

2
x)2 ≤ 1 +

a + 1

2
x.

Hence, starting with a = 4, we have the inequality f(x) ≤ ax + 1 recursively
for a = 5

2
, 7

4
, 11

8
etc. which is a sequence converging to 1. Thus, f(x) ≤ 1 + x

for all x ≥ 0. Similarly, using the fact that f(x + 1) ≥ f(x), one has

f(x) ≥
√

1 + xf(x) which gives f(x) ≥ 1 + x
2

for x ≥ 0. The earlier trick

of iteration gives us that if a > 0 satisfies f(x) ≥ 1 + ax for all x ≥ 0, then
f(x) ≥ 1+

√
ax. Thus, starting with a = 1

2
, we get f(x) ≥ 1+ax for a = 1

21/2k

for all k ≥ 1. The latter sequence converges to 1 and we therefore have a
perfect sandwich (which probably Ramanujan survived on, in England !) to
get f(x) = 1 + x for all x ≥ 0. Therefore,

√
1 + 2

√
1 + 3

√
1 + · · · = 3(!)

We leave the reader to ponder about the value of

√
6 + 2

√
7 + 3

√
8 + · · ·.

2 A theorem of Ramanujan

Ramanujan proved :
If m,n are arbitrary, then

√
m 3
√

4m− 8n + n 3
√

4m + n =

±1

3
( 3

√
(4m + n)2 + 3

√
4(m− 2n)(4m + n)− 3

√
2(m− 2n)2).

As mentioned above, this is easy to verify simply by squaring both sides !
However, it is neither clear how this formula was arrived at nor how general
it is. Are there more general formulae? In fact, it turns out that Ramanujan
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was absolutely on the dot here; the following result shows Ramanujan’s result
cannot be bettered :
Let α, β ∈ Q∗ such that α/β is not a perfect cube in Q. Then,

√
3
√

α + 3
√

β

can be denested if and only if there are integers m,n such that α
β

= (4m−8n)m3

(4m+n)n3 .

For instance, it follows by this theorem that
√

3
√

3 + 3
√

2 cannot be denested.

What is meant by denesting ?
By the denesting of a nested radical one means rewriting it with fewer radical
symbols. More formally, over any field K, nested radicals are defined as
follows. Start with the elements in K - these are said to be nested radicals of
depth zero. Use addition, subtraction, product, division and n

√
x for n ≥ 2 to

form expressions (possibly not in K as we are taking n-th roots). With the
expressions so formed, one can apply all the above procedures to form new
expressions. Thus, a nested radical is an expression obtained from earlier-
formed nested radicals by means of these procedures. One defines the depth
dep = dep K of a nested radical over K inductively by :
depth (x) = 0 for x ∈ K;
depth (x± y) = depth (x.y) = depth (x/y) = max (depth x, depth y);
depth n

√
x = 1+ depth x.

The usual convention used in fixing the values of radical expressions is as
follows. An expression 3

√
t for a real number t will stand for the unique real

cube root and, if s is a positive real number,
√

s stands for the value which
is the positive square root.

For example, the expression
3
√√

5 + 2− 3
√√

5− 2 has value 1 !
Indeed, if t is the value (according to the agreed-upon convention above), then
t is seen to be a (real) root of the polynomial X3 +3X−4. As X3 +3X−4 =
(X − 1)(X2 + X + 4), the only real root is 1.

3 Galois theory for denesting

To denest an expression such as
√

3
√

α + 3
√

β, one needs to locate a field where
the denesting exists. Usually, one will need to go to a field where enough
roots of unity exist. Let K be any field of characteristic zero and let K̄ be an
algebraic closure. The definition of depth over a field K implies that there
are subfields K(d) of K̄ defined by depthK(x) = d for x ∈ K̄ if and only if
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x ∈ K(d) \K(d−1). Here, K(d) is generated by radicals over K(d−1). In fact,
K(d) := {x ∈ K̄ : xn ∈ K(d−1)}.
For example,

6
√

7 3
√

20− 19 = 3

√
5
3
− 3

√
2
3

shows that the element on the left

side which is in Q(2) is actually contained in Q(1) itself.
An element x ∈ K̄ is a nested radical over K if and only if there exists a
Galois extension L of K and a chain of intermediate fields

K ⊂ K1 ⊂ · · · ⊂ Kn = L

such that Ki is generated by radicals over Ki−1 and x ∈ L.
Normally, if an element x is a nested radical over K, one obtains a chain
as above successively generated by radicals such that x ∈ L but L may not
be automatically a Galois extension. For example, the left hand side above
generates a non-Galois extension of Q and one needs to attach the 6-th roots
of unity to get a Galois extension containing it.
So, why is it so important/useful to have a Galois extension ?
The fact of the matter is that Galois’s famous theorem tells us that x ∈ K̄ is a
nested radical if and only if the Galois closure of K(x) over K has a solvable
Galois group. Thus, the extensions K(d), if they are Galois extensions of
K(d−1), have an abelian Galois group and this theory is well-studied under
the title of ‘Kummer theory’. Therefore, one may adjoin enough roots of
unity at the first step of the chain to get a chain of Galois extensions and
may apply Kummer theory.
For instance,

Q ⊂ Q(ζ6) ⊂ Q(
3
√

20, ζ6) ⊂ Q(
6
√

7
3
√

20− 19, ζ6)

is a chain with each successive extension abelian.
Roughly speaking, Kummer theory can be summarized by the following :
Main Theorem of Kummer theory.
If K contains the n-th roots of unity, then abelian extensions L of K whose
Galois groups have exponent n correspond bijectively to subgroups Ω of K∗

containing (K∗)n via L 7→ K∗ ∩ (L∗)n and its inverse map Ω 7→ K(Ω1/n).

Using Kummer theory, one may analyze all nested radicals x over Q. In this
talk, we do not go into the details of this general result proved by M.Honsbeek
in 1999 but focus mainly on the result relevant to Ramanujan’s theorem. We
will use the notation Q for the field of all algebraic numbers. In this field,
every nonconstant polynomial over it has all its roots in it. The following
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consequence of the above main theorem of Kummer theory and will be a key
to denesting radicals.

Proposition 1.
Let K denote a field extension of Q containing the n-th roots of unity. Sup-
pose a, b1, b2, · · · , br ∈ Q

∗
are so that an, bn

1 , · · · , bn
r ∈ K.

Then, a ∈ K(b1, · · · , br) if, and only if, there exist b ∈ K∗ and natural num-
bers m1, m2, · · · ,mr such that

a = b
r∏

i=1

bmi
i .

Proof.
The ‘if’ part is easily verified. Let us assume that a ∈ L := K(b1, · · · , br). The
subgroup Ω of L∗ generated by the n-th powers of elements of (K∗) along with
bn
1 , · · · , bn

r satisfies L = K(Ω1/n) by Kummer theory. So, an ∈ (L∗)n∩K∗ = Ω.
Thus, there exists c ∈ K∗ so that

an = cn
r∏

i=1

bmin
i .

Taking n-th roots on both sides and multiplying by a suitable n-th root of
unity (remember they are in K), we get

a = b
r∏

i=1

bmi
i

for some b ∈ K∗. The proof is complete.

The following technical result from Galois theory which uses the above propo-

sition is crucial in the denesting of

√
1 + 3

√
β/α over Q. Although this result

is not difficult to prove, we shall not go into the details of the proof. We give
a sketch for the cognoscenti; others may skip it.

Theorem 2.
Let c be a rational number which is not a perfect cube. Let δ ∈ Q( 3

√
c)

and let G denote the Galois group of the Galois-closure M of Q(
√

δ) over
Q. Then, the nested radical

√
δ can be denested over Q if, and only if, the

second commutator group G′′ of G is trivial. Further, these conditions are
equivalent to the existence of f ∈ Q∗ and some e ∈ Q(δ) so that δ = fe2.
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Sketch of Proof.
The essential part is to show that when G′′ is trivial, then there are f ∈ Q∗

and e ∈ Q(δ) with δ = fe2.
We consider the field K = Q(δ, ζ3), the smallest Galois extension of Q which
contains δ. If δ2, δ3 are the other Galois-conjugates of δ in K, the main
claim is that if δ2δ3 is not a square in K, then G′′ is not trivial. To see
this, suppose δ2δ3 (and hence its Galois-conjugates δδ3, δδ2) are non-squares
as well. Then,

√
δδ2 cannot be contained in K(

√
δ2δ3) because of the above

proposition. So, the extension L = K(
√

δδ2,
√

δ2δ3) has degree 4 over K and
is contained in the Galois closure M of Q(

√
δ) over Q. The Galois group

Gal (L/K) is the abelian Klein 4-group V4. Indeed, its nontrivial elements
are ρ1, ρ2, ρ1ρ2 where :
ρ1 fixes

√
δδ2 and sends

√
δ2δ3 and

√
δδ3 to their negatives;

ρ2 fixes
√

δ2δ3 and sends
√

δδ2 and
√

δδ3 to their negatives.
Also, Gal (K/Q) is the full permutation group on δ, δ2, δ3. We also put δ1

instead of δ for convenience.
Suppose, if possible, G′′ = {1}. Now, the second commutator subgroup of
Gal (L/Q) is trivial as it is a subgroup of G′′. In other words, the commutator
subgroup of Gal (L/Q) is abelian.
Consider the action of Gal(K/Q) on Gal (L/K) defined as :

(σ, τ) 7→ σLτσ−1
L

where, for σ ∈Gal (K/Q), the element σL ∈Gal (L/Q) which restricts to K
as σ.
The following computation shows that the commutator subgroup of Gal
(L/Q) cannot be abelian.
If π :Gal (L/Q) →Gal(K/Q) is the restriction map, look at any lifts a, b, c
of (12), (13), (23) respectively. For any d ∈Gal (L/K), the commutator
ada−1d−1 is defined independently of the choice of the lift a since Gal (L/K)
is abelian. An easy computation gives :

aρ2a
−1ρ−1

2 = ρ1

bρ1b
−1ρ−1

1 = ρ1ρ2

c(ρ1ρ2)c
−1(ρ1ρ2)

−1 = ρ2.

Therefore, the whole of Gal (L/K) is contained in the commutator subgroup
of Gal (L/Q). Now (123) = (13)(23)(13)(23) implies that d = bcb−1c−1
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which is in the commutator subgroup of Gal (L/Q) is a lift of (123). Thus,
dgd−1g−1 = Id for any g ∈Gal (L/K) as Gal (L/K) is contained in the
commutator subgroup of Gal (L/Q) (an abelian group). But note that dρ1d

−1

fixes
√

δ2δ3 and hence, cannot be equal to ρ1. Thus, we have a contradiction
to the assumption that G′′ = {1} while δ2δ3 is a nonsquare in K; the claim
follows.
Now, assume that G′′ is trivial. We would like to use the claim proved above
to show that there are f ∈ Q∗ and e ∈ Q(δ) with δ = fe2.
Start with some η ∈ K with δ2δ3 = η2. We would like to show that η ∈ Q(δ).
This will prove our assertion, for then,

δ =
δ1δ2δ3

δ2δ3

=
δ1δ2δ3

η2
= fe2

where f = δ1δ2δ3 ∈ Q and e = η−1 ∈ Q(δ).
Suppose η 6∈ Q(δ). Since the product δ2δ3 ∈ Q(δ), on applying the above
proposition to K = Q(δ, ζ3) = Q(δ,

√−3), we get
√

δ2δ3 =
√−3θ for some

θ ∈ Q(δ); that is,
η2 = δ2δ3 = −3θ2.

Taking norms over Q, we get N(η) = (−3)3N(θ)2 which is a contradiction
since (−3)3 is not a square in Q. Therefore, η indeed belongs to Q(δ) and
we are done.

4 Existence of Denesting

In this section, we determine conditions under which elements e, f as in
theorem 2 exist. For any non-zero α, β in Q, the polynomial

Fβ/α(t) = t4 + 4t3 + 8
β

α
t− 4

β

α

plays a role in determining the denestability of the nested radical
√

3
√

α + 3
√

β
over Q.

Lemma 3.
Let α, β ∈ Q∗ such that α/β is not a perfect cube in Q. Then,

√
3
√

α + 3
√

β
can be denested if and only if the polynomial Fβ/α has a root in Q.
Proof.
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Now
√

3
√

α + 3
√

β can be denested if and only if

√
1 + 3

√
β/α can be denested.

By the theorem, this happens if and only if there exists f, x, y, z ∈ Q with

1 + 3

√
β/α = f(x + y 3

√
β/α + z 3

√
β2/α2)2 · · · · · · ♦

Assume that denesting can be done. The elements 1, 3

√
β/α, 3

√
β2/α2 are

linearly independent over Q. Thus, we may compare like powers of 3

√
β2/α2

in ♦ to get

1/f = x2 +
2yzβ

α

0 = y2 + 2xz

1/f =
βz2

α
+ 2xy

After a simple calculation, it is easy to see that z 6= 0 and that y/z is a root
of Fβ/α.
Conversely, suppose Fβ/α has a rational root s. Then, working backwards, a
denesting is given as :

√
3
√

α + 3

√
β = ± 1√

f
(−s2 3

√
α2

2
+ s 3

√
αβ + 3

√
β2)

where f = β − s3α. The proof is complete.

Examples 4.
For α = 5, β = −4 we get s = −2 to be the rational root of F−4/5(t) =
t4 + 4t3 − 32

5
t + 16

5
= 0. Thus, f = −4 + 40 = 36 and we have

√
3
√

5− 3
√

4 =
1

6
(−2

3
√

25− 2 3
√−20 +

3
√

16)

=
1

3
(− 3
√

25 +
3
√

20 +
3
√

2).

Similarly, for α = 28, β = 27, we have s = −3 and f = 272 and we get
√

3
√

28− 3
√

27 = − 1

27
(−9

2
3
√

282 − 3 3

√
(−27)(28) +

3
√

272)

= −1

3
(− 3
√

98 +
3
√

28 + 1).
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5 Connection with Ramanujan’s denesting

We saw that denesting of
√

3
√

α + 3
√

β involved the rational root of a certain
related polynomial. The connection with Ramanujan’s denesting comes while
trying to characterize the α, β for which the polynomial Fβ/α has a root in
Q. This is easy to see as follows :

Lemma 5.
Let α, β ∈ Q∗ where the ratio is not a cube. Then

√
3
√

α + 3
√

β can be denested
over Q if, and only if, Fβ/α has a root s in Q which is if, and only if, there
are integers m,n so that

α

β
=

(4m− 8n)m3

(4m + n)n3
.

Proof.
Of course, we need to prove only the second ‘if and only if’ and, even there,
it suffices to prove the ‘only if’ part as the other implication is obvious. Now
s4 + 4s3 + 8sβ/α− 4β/α = 0 implies (on taking s = n/m) that

β

α
=

s3(s + 4)

4− 8s
=

(4m + n)n3

(4m− 8n)m3
.

Remarks.

This is not quite the same as Ramanujan’s denesting formula although the
ratio β/α is the same. Ramanujan’s theorem is :

√
m 3
√

4m− 8n + n 3
√

4m + n =

±1

3
( 3

√
(4m + n)2 + 3

√
4(m− 2n)(4m + n)− 3

√
2(m− 2n)2).

If we apply this to denest
√

3
√

α + 3
√

β where β
α

= n3(4m+n)
m3(4m−8n)

, we would get

√
3
√

α + 3

√
β =

1√
m

6

√
α

4m− 8n

√
m 3
√

4m− 8n + n 3
√

4m + n.

This formula looks quite awkward and the natural question arises as to
whether it is true that for integers α, β there exist integers m,n with α =
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m3(4m− 8n) and β = n3(4m + n).
It turns out that this is not always the case. For example, if α = −4, β = 5,
the integers m = n = 1 work whereas for the other choice α = 5, β = −4,

there are no such integers (!) Thus, when we are denesting
√

3
√

α + 3
√

β, we

are actually denesting

√
1 + 3

√
β/α and it is better to use the method we

discussed.
The asymmetry between m and n in Ramanujan’s formula can be explained
as follows. If one changes m to m′ = − n√

2
and n to n′ = m

√
2, it turns out

that
4(m− 2n)m3 = (4m′ + n′)n′3

(4m + n)n3 = 4(m′ − 2n′)m′3.

Thus, we have the same denesting !

6 Denesting nested square roots

As mentioned in the beginning, using Galois theory, one may investigate the
denesting of any nested radical in principle. However, it is not clear how
to do in general. When the nested radical consists only of nested square
roots, some nice results can be proved. We merely state two of them due to
Borodin, Fagin, Hopcroft and Tompa :

Theorem 6.
Let K have characteristic 0 and a, b, r ∈ K with

√
r 6∈ K. Then,

(a)
√

a + b
√

r ∈ K(
√

r,
√

a1, · · · ,√an) for some ai ∈ K ⇔ √
a2 − b2r ∈ K;

(b)
√

a + b
√

r ∈ K( 4
√

r,
√

a1, · · · ,√an) for some ai ∈ K ⇔ either
√

a2 − b2r

or
√

r(−a2 + b2r) is in K.

Theorem 7.
Let K ⊂ R and a, b, r ∈ K with

√
r 6∈ K. Let a1, · · · , an ∈ K be positive

and let r1, · · · , rn ≥ 1. If
√

a + b
√

r ∈ K( r1
√

a1, · · · , rn
√

an), then
√

a + b
√

r is

already in K( 4
√

r,
√

b1, · · · ,
√

bn) for some b1, · · · , bn ∈ K.

These theorems also provide an algorithm for denesting. We do not go into
it and proceed to the last section where we discuss certain values of the
Rogers-Ramanujan continued fractions as nested radicals.
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7 Rogers-Ramanujan continued fraction as nested

radicals

The Rogers-Ramanujan continued fraction is the function

R(z) =
q1/5

1+

q

1+

q2

1+
· · ·

defined on the upper half plane (where q = e2iπz). It is a holomorphic function
and is also given by the product

R(z) = q1/5
∞∏

n=1

(1− qn)(n
5
)

where n
5

here denotes the Legendre symbol. We had mentioned at the be-
ginning Ramanujan’s beautiful formula which he wrote in his first letter to
Hardy :

e−2π/5

1+

e−2π

1+

e−4π

1+

e−6π

1+
· · · =

√
5 +

√
5

2
−
√

5 + 1

2
.

In other words, as z = i gives q = e−2π, we have

R(i) =

√
5 +

√
5

2
−
√

5 + 1

2
.

Actually, this follows from a reciprocity theorem for R(z) that Ramanujan
wrote in his second letter to Hardy and which was proved by Watson. There
are several other such identities written by Ramanujan like :

R(ei
√

5) =

√
5

1 +
5

√
53/4

√
(
√

5−1
2

)5 − 1

−
√

5 + 1

2
.

Each of these and many others can be proved using eta-function identities
which were known to Ramanujan. Two such are :

1

R(z)
−R(z)− 1 =

η(z/5)

η(5z)
· · · · · · · · · (♥)

1

R(z)5
−R(z)5 − 11 = (

η(z)

η(5z)
)6 · · · · · · · · · (♠)
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Here, the Dedekind eta function η(z) = q1/24 ∏∞
n=1(1− qn) where q = e2iπz as

before. Note that η(z) is essentially the generating function for the sequence
p(n) of partitions of a natural number n. Further, η(z)24 is the discriminant
function (sometimes called Ramanujan’s cusp form) ∆(z) = q

∏∞
n=1(1−xn)24

which is the unique cusp form (upto scalars) of weight 12 and its Fourier
expansion ∆(z) = (2π)12 ∑∞

n=1 τ(n)e2iπnz has Fourier coefficients τ(n), the
Ramanujan tau function. Thus, this is familiar territory to Ramanujan.
But, keeping in mind our focus on nested radicals, we shelve a discussion
of proofs of these - there are proofs due to Berndt et al. in the spirit of
Ramanujan and other ones by K.G.Ramanathan using tools like Kronecker
limit formula which were unfamiliar to Ramanujan. For readers interested
in these, there is a Memoir by Andrews, Berndt, Jacobsen and Lamphere in
Memoirs of the AMS 477 (1992). We go on to briefly discuss in the modern
spirit how values of R(z) at imaginary quadratic algebraic integers z on the
upper half-plane can be expressed as nested radicals. This will involve class
field theory, modular functions and the theory of complex multiplication. In
order to be comprehensible to a sufficiently wide audience, we merely outline
this important but rather technical topic.

What is the key point of this procedure ?
The discussion below can be informally summed up as follows. The values of
‘modular functions’ (functions like R(z)) at an imaginary quadratic algebraic
integer τ on the upper half-plane generate a Galois extension over Q(τ) with
the Galois group being abelian. This is really the key point. For, if we
have any abelian extension L/K, one has a standard procedure whereby one
could express any element of L as a nested radical over a field L′ with degree
[L′ : K] < [L : K]. Recursively, this leads to a nested radical expression over
K. Let us make this a bit more formal now.

Modular functions come in.
A meromorphic function on the extended complex upper half-plane H ∪
P1(Q) which is invariant under the natural action of Γ(N) := Ker(SL2(Z) →
SL2(Z/NZ)) is known as a modular function of level N . One has :
The Rogers-Ramanujan continued fraction R(z) is modular, of level 5.
Now, a modular function of level N (since it is invariant under the transfor-
mation z 7→ z + N) has a Fourier expansion in the variable e2iπz/N = q1/N .
Those modular functions of level N whose Fourier coefficients lie in Q(ζN)
form a field FN . In fact, in the language of algebraic geometry, FN is the

14



function field of a curve known as the modular curve X(N) (essentially, the
curve corresponding to the Riemann surface obtained by compactifying the
quotient of the upper half-plane by the discrete subgroup Γ(N)). Moreover,
FN is a Galois extension of F1 with Galois group GL2(Z/NZ)/{±I}. The
classical modular j-function generates F1 over Q and, hence, induces an iso-
morphism of X(1) with P1(Q). Let us briefly define it.
For τ on the upper half-plane, consider the lattice Z + Zτ and the functions

g2(τ) = 60
′∑

m,n

1

(m + nτ)4

(
=

(2π)4

12

(
1 +

∞∑

n=1

σ3(n)e2πinτ

))

g3(τ) = 140
′∑

m,n

1

(m + nτ)6

(
=

(2π)6

12

(
1 +

∞∑

n=1

σ5(n)e2πinτ

))
.

[Note that p′(z)2 = 4p(z)3−g2(τ)p(z)−g3(τ) where the Weierstrass p-function
on Z + Zτ is given by p(z) = 1

z2 +
∑
w

( 1
(z−w)2

− 1
w2 ).]

It can be shown that ∆(τ)
d
= g2(τ)3 − 27g3(τ)2 6= 0. The elliptic modular

function j : h → C is defined by

j(τ) = 123 · g2(τ)3

∆(τ)
.

Similar to the generation of F1 by the j-function is the fact that the field
F5 also happens to be generated over Q(ζ5) by a single function (in other
words, X(5) also has genus 0). An interesting classical fact is :
The function R(z) generates F5 over Q(ζ5).
The idea used in the proof of this is the following. The j-function can be
expressed in terms of the eta function and on using the two identities (♥)
and (♠), it follows that

j =
(1 + 228R5 + 494R10 − 228R15 + R20)3

(−R + 11R6 + R11
.

From this, one can derive also explicitly the minimal polynomial of R5 over
Q(j), a polynomial of degree 12. Thus, Q(R) has degree 60 over Q(j). In
fact, this minimal polynomial is a polynomial in j with integer coefficients.
In particular, if τ is an imaginary quadratic algebraic integer on the upper
half-plane, R(τ) is an algebraic integer as this is true for j.
If τ is an imaginary quadratic algebraic integer on the upper half-plane,
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one can form the Z-lattice Oτ with basis 1, τ . This is an order (a subring
containing a Q-basis) in the imaginary quadratic field Q(τ). When Oτ is a
maximal order, the ‘class field’ H of Oτ is the ‘Hilbert class field’ of Q(τ)
- a finite extension of Q(τ) in which each prime of Q(τ) is unramified and
principal. More generally, for any N , the field HN generated by the values
f(τ) of modular functions f of level N is nothing but the ‘ray class field’ of
conductor N over Q(τ) when Oτ is a maximal order. We have :
The first main theorem of complex multiplication :
HN is an abelian extension of Q(τ).
The Hilbert class field H is H1 in this notation. That is, H1 = Q(τ)(j(τ))
is Galois over Q(τ) with the Galois group isomorphic to the class group
of Oτ . In general, for any N , one may explicitly write down the action of
Gal(Hn/Q(τ)) on f(τ) for any modular function f of level N . One may use
that and the fact mentioned earlier that R(τ) is an algebraic integer to prove
:
If τ is an imaginary quadratic algebraic integer on the upper half-plane, and
Oτ is the order in Q(τ) with Z-basis 1, τ , the ray class field H5 of conductor
5 over Q(τ) is generated by R(τ).
Let us begin with this data to describe an algorithm to express elements of
HN as nested radicals over Q(τ).

Procedure for expressing as nested radicals
Let L/K be any abelian extension and let w ∈ L. Choose an element σ ∈
Gal(L/K) of order n > 1. Take L′ = Lσ(ζn) where Lσ denotes the fixed field
under < σ >. Now, L′ is an abelian extension of K and

[L′ : K] ≤ φ(n)[Lσ : K] < n[Lσ : K] = [L : Lσ][Lσ : K] = [L : K].

Look at the Lagrange resolvents hi =
∑n

k=1 ζ ik
n w(σk); 0 ≤ i < n of w with

respect to σ. Thus, we have

w =
h0 + h1 + · · ·+ hn−1

n
.

Since h0 = trL/Lσ(w) ∈ L′, it is fixed by every element of Gal(L(ζn)/L′).
Furthermore, any element ρ ∈ Gal(L(ζn)/L′) acts by some power of σ on L
and as identity on ζn. Therefore, for i = 1, 2, · · · , n− 1;

hρ
i = ζ−ia

n hi
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where ρ is acting as σa on L.
Hence, we get hn

1h
n
2 · · ·hn

n−1 ∈ L′. Thinking of hi as m
√

hm
i , the expression

w =
h0 + h1 + · · ·+ hn−1

n

is actually an expression as a nested radical over L′. Next, one can apply
this procedure to h0, h

n
1 , h

n
2 , · · · , hn

n−1 in L′ etc.

Returning to our situation, when τ is an imaginary quadratic algebraic inte-
ger, we wish to look at the value R(τ). So, we will work with the ray class
field H5 over Q(τ). Recall the identity

1

R(z)
−R(z)− 1 =

η(z/5)

η(5z)
· · · · · · · · · (♥)

It turns out that the elements 1
R(τ)

and −R(τ) of H5 are Galois-conjugate

over the field Q(τ)(w(τ)) where we have written w(τ) for η(τ/5)
η(5τ)

. Therefore,
we have :
H5 is generated over Q(τ) by w(τ) and ζ5.
Now w(τ) is an algebraic integer as both 1

R(τ)
and −R(τ) are so. Usually,

one works with w(τ) instead of with R(τ) because the former has half the
number of conjugates and also, it is defined in terms of the eta function which
can be evaluated by software packages very accurately. The point is that the
software packages exploit the fact that SL2(Z)-transformations carry z to a
new z with large imaginary part and so the Fourier expansion of η(z) will
converge quite rapidly. Therefore, to obtain expressions for R(τ), one works
with w(τ) and uses (♥).

What τ to choose ?
Analyzing the product expression

R(z) = q1/5
∞∏

n=1

(1− qn)(n
5
)

one observes that R(z) is real when Re(z) = 5k/2 for some integer k. Thus,
keeping in mind that we need algebraic integers τ with the corresponding
order being maximal, we look at :

τn =
√−n if − n 6≡ 1 mod 4;
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τn =
5 +

√−n

2
if − n ≡ 1 mod 4.

Observe that τ1 = i. In general, it is quite easy to show that
√

5 ∈ Q(τn)

and that w(τn)√
5

is an algebraic integer. So, one can generate H5 over Q(τn) by

w̃(τn) = w(τn)√
5

(instead of w(τn)) along with ζ5. Applying the procedure of

finding nested radicals in an abelian extension, one can show (using software
packages) :

w̃(τ1) = w̃(i) = 1.

Unwinding this for w(i) and then for R(i), one gets

R(i) =

√
5 +

√
5

2
−
√

5 + 1

2
!

Similarly, one may obtain formulae like

R(
5 + i

2
) = −

√
5−√5

2
+

√
5− 1

2

Last take on j-function
A romantic story goes that Ramanujan wrote somewhere that eπ

√
163 is ‘al-

most’ an integer ! Whether he did actually write it or not, he could have
known the following interesting fact.
Applying the first theorem of complex multiplication to j(τ) for τ imaginary
quadratic, it follows that j(τ) is an algebraic integer of degree = class number
of Q(τ) i.e, ∃ integers a0, . . . , ah−1 such that j(τ)h+ah−1j(τ)h−1+. . .+a0 = 0.
Now, there are only finitely many imaginary quadratic fields Q(τ) = K which
have class number 1. The largest D such that Q(

√−D) has class number

1 is 163. Since 163 ≡ 3(4), the ring of integers is Z + Z(−1+i
√

163
2

). Thus

j(−1+i
√

163
2

) ∈ Z.
The Fourier expansion of j has integer coefficients and looks like j(τ) =
1
q

+ 744 +
∑

n≥1
cnqn with cn ∈ Z and

q = e2πi(+1+i
√

163
2

) = −e−π
√

163.

Thus −eπ
√

163 + 744− 196884 e−π
√

163 + 21493760 e−2π
√

163 + . . . = j(τ) ∈ Z.
In other words,

eπ
√

163 − integer = 196884 e−π
√

163 + 21493760 e−2π
√

163 . . . ≈ 0!
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To end, we should agree that Ramanujan radically changed the mathemat-
ical landscape !
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