
Absolute Values and Completions
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This article is in the nature of a survey of the theory of complete fields.
It is not exhaustive but serves the purpose of familiarising the readers with
the basic notions involved. Hence, complete (!) proofs will not be given here.
It is no surprise that algebraic number theory benefits a lot from introducing
analysis therein. The familiar notion of construction of real numbers is just
one aspect of this facility.

§ 1. Discrete valuations

Definition 1.1. Let K be any field. A surjective map v : K∗ → Z is called
a discrete valuation if:

v(xy) = v(x) + v(y),

v(x + y) ≥ Inf(v(x), v(y))

Here, for notational purposes, one also defines v(0) = ∞. Note also that one
must have v(1) = 0 = v(−1).

Premier example 1.2. For each prime number or, more generally, for any
non-zero prime ideal P in a Dedekind domain A, one has the P -adic valuation
vP given by the prescription vP (x) = a where the fractional principal ideal
(x) = P aI with I coprime to P . This is a discrete valuation on the quotient
field K of A.

Lemma 1.3. (a) If v is a discrete valuation on a field K, then Av := {x ∈
K : v(x) ≥ 0} is a local PID. Its maximal ideal is Pv = {x ∈ K : v(x) > 0}.
( Av is called the valuation ring of v).
(b) For a discrete valuation v on a field K, if kv denotes the residue field
Av/Pv and Ui = 1+P i

v for i > 0, then A∗v/U1
∼= k∗v and Ui/Ui+1

∼= P i
v/P i+1

v
∼=

k+
v .

(c) If A is a Dedekind domain, v a discrete valuation on its quotient field K
and, A ⊂ Av, then P := A ∩ Pv is a non-zero prime ideal of A. Moreover,
v = vP , PAv = Pv, A/P ∼= Av/Pv.

Proof. Quite easy.

Exercise 1.4. Let v be a discrete valuation on a number field K. Then
OK ⊆ Av.
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Proposition 1.5. On a number field K, the map P 7→ vP sets up a bijection
between non-zero prime ideals of OK and discrete valuations.
Indication of proof. The proof follows from the easily proved step: If
A ⊆ B are discrete valuation rings with the same quotient field K. Then
A = B.

Proposition 1.6. Let F be any field and K = F (X), the function field in
one variable over F . Define v∞(f/g) = deg(g)− deg(f). Then,
(a) v∞ defines a discrete valuation on K which is zero on F ∗,
(b) vP , as P runs through the prime ideals of F [X] along with v∞ exhaust
all the possible discrete valuations on K that are trivial on F ∗,
(c) (Product formula) For each f ∈ K∗, one has

v∞(f) +
∑

P

fP vP (f) = 0

where P runs through the non-zero prime ideals of F [X] and fP = [F [X] : P ]
is the degree of any polynomial generating P .
Proof. (a) is obvious.
(b) Let v be any discrete valuation on K which is trivial on F ∗. First, suppose
that v(X) ≥ 0. Then, v(f) ≥ 0 ∀ f 6= 0 ∈ F [X]. As v surjects onto integers,
there is some monic irreducible polynomial f such that v(f) > 0. If v(g) > 0
for another monic, irreducible polynomial g, then v(1) = v(sf + tg) > 0,
which is a contradiction. Thus, v(g) = 0 for all monic irreducible polynomials
g 6= f . Thus, writing any h ∈ F [X] as a product of irreducibles, one gets
v(h) ∈ v(f)Z. As v is surjective, v(f) = 1 i.e., v = vf . Therefore, we have
shown that if v(X) ≥ 0, then v = vP for some non-zero prime ideal P .

If v(X) < 0, it is easy to see by induction on the degree that v(h) =
v(X)deg(h) for any h ∈ F [X]. By surjectivity again, one gets v(X) = −1
and so v = v∞.
(c) Finally, writing any f ∈ K∗ as f = u

∏
i p

vpi (f)
i and comparing degrees,

one gets the product formula.

§ 2. Absolute values

Definition 2.1. On a field K, an absolute value is a function | |: K → R≥0

such that
(a) | x | = 0 ⇔ x = 0,
(b) | xy | = | x || y |, and
(c) | x + y | ≤ | x | + | y |.
Remarks and examples 2.2. (a) Clearly, an absolute value on a field
defines a metric on it.
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We shall always omit from consideration the trivial absolute value which is
≡ 1 on K∗.

Easy exercise: On a finite field, show that the only absolute value is the
trivial one. What does this give in relation to proposition 1.6?

(b) | | is called a non-archimedean absolute value if

| x + y | ≤ Max(| x |, | y |).

This is stronger than the property 2.1(c).

Trivial exercise: Why is the word non-archimedean used here?
An absolute value which is not non-archimedean is called archimedean!

(c) If v is a discrete valuation on K, then for any fixed positive λ < 1, the
prescription | x |= λv(x) gives a non-archimedean absolute value. Note that
the value group | K∗ | is discrete in R≥0.
Exercise: An absolute value on a field K has a value group | K∗ | which is
discrete if, and only if, it arises from a discrete valuation on K. (Hint: If
| K∗ | is discrete, choose the maximal element λ ∈| K∗ | ∩(0, 1).)

If | | is a discrete absolute value on K, one notes that the corresponding
valuation ring and its maximal ideal are, respectively, {x ∈ K :| x |≤ 1} and
{x ∈ K :| x |< 1}. A generator of P is often called a uniformising parameter.

(d) If K is any field and σ : K → C any embedding, then | x |σ:= | σ(x) |
defines a nontrivial absolute value on K. Here the right side has the usual
absolute value on C. This is archimedean.

(e) The square of the usual absolute value on C is not an absolute value.
However, if | | is a non-archimedean absolute value on a field K, so is | |t
for any positive real t.

Definition 2.3. Two absolute values | |1 and | |2 on K are said to be
equivalent if ∃ t > 0 such that | x |1=| x |t2 for all x ∈ K.

Exercise: Two absolute values are equivalent if, and only if, they define
equivalent topologies.

2.4. Product formula over Q. Let us apply the above generalities to Q.
We have the archimedean absolute value | |∞ coming from the inclusion of
Q in R. For each prime number p, we have the p-adic absolute value which
we normalise as follows. Define | p |p= 1/p i.e., we have taken λ = 1/p in
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2.2(c). Then, we have, for each x ∈ Q∗,

| x |∞
∏
p

| x |p= 1.

That this is a product formula analogous to 1.6(c) for function fields is
justified by the following easy result:

Theorem (Ostrowski) 2.5. Any non-trivial absolute value on Q is equiv-
alent exactly to one of | |∞ or | |p for some prime p.
Sketch of proof. Suppose | | is any absolute value. If | n |≤ 1 for all
integers n, it is easy to prove that | |=| |p for some prime p. This is just
as in the proof of 1.6. Now, suppose that there is a positive integer n with
| n |> 1. Write | n |=| n |t∞= nt for some t > 0. Use the n-adic expansion
to show this holds (with the same t) for any integer in place of n.

Exercise 2.6. (a) An absolute value on a field K is non-archimedean if,
and only if, | Z.1K | is bounded.
(b) If Char(K) > 0, then any absolute value on K is non-archimedean.
(c) Any discrete absolute value is non-archimedean.
(d) The restriction of a nontrivial absolute value on a number field to Q is
again nontrivial.
(e) An absolute value | | is non-archimedean if, and only if, | z | < 1
implies that | 1 + z | < 1.

Corollary 2.7. Any nontrivial absolute value on an algebraic number field
K is equivalent to exactly one of the archimedean ones coming from the var-
ious embeddings of K in C or to a discrete one coming from a prime ideal
of OK .

Proof. This follows from 1.5,2.5 and,2.6(d).

Remarks 2.8. The non-archimedean absolute values have proprties which
look strange in the first instance as we are used to the usual notion of absolute
value coming from the reals which is archimedean. For instance, a series
converges if, and only if, its n-th term tends to 0 (!) Any triangle is isosceles
(!) Every point inside a circle is its centre (!) etc.

§ 3. Completions

Definition 3.1. Let (K, | |) be a field with an absolute value. A completion
of (K, | |) is an absolute-valued field (L, | |L) which is complete as a metric
space and has the property that there is some embedding i : K → L with
the image of K dense and | x |=| i(x) |L for x ∈ K.
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Proposition 3.2. Each (K, | |) has a completion. Further, if (L, | |) and
(L′, | |′) are two completions where i : K → L and i′ : K → L′ are corre-
sponding embeddings, then there is an isomorphism σ : (L, | |) → (L′, | |′)
of absolutely-valued fields such that i′ = σ ◦ i.

The proof will not be given here but the argument is entirely analogous to
the construction of the reals from the rationals in terms of Cauchy sequences.

Corollary 3.3. Let (K, | |) be an absolutely-valued field and (K̂, | |0)
its completion. Then, | | is non-archimedean if, and only if, | |0 is so.
Moreover, in this case, the value groups of K and K̂ are the same.

Proof. The proof is a direct consequence of the construction of K̂.

Exercise: Prove this without using the construction.

Theorem 3.4. (Gelfand-Tornheim-Ostrowski) Any field k which is
complete with respect to an archimedean absolute value is isomorphic to R
or C as absolutely-valued fields.

Proof. For a proof, see Cassels’ Local fields.

Proposition 3.5. (Series expansion) Suppose (k, | |) is complete with
respect to a discrete absolute value. Denote by Aand P the corresponding
valuation ring and its maximal ideal. Fix a set of representatives Σ in A for
the residue field A/P . Then, for any uniformising parameter π, elements
α of k admit Laurent series expansions of the form

∑∞
i=−n aiπ

i where the
‘digits’ ai ∈ Σ of α are uniquely determined.
Proof
For any α ∈ k∗, one has πnα ∈ A for some n. So, it suffices to show that
each α ∈ A has an expansion as claimed. By the very definition of Σ, there
is a0 ∈ Σ such that α− a0 ∈ P . So, α = a0 + πα1. Continuing with α1 and
so on, one gets a series expansion. It makes sense as the n-th term tends to
0. Uniqueness is easy to prove.

Example 3.6. Look at the completion Qp of Q with the p-adic absolute
value. Its valuation ring is usually denoted by Zp. One calls Qp and Zp the
p-adic numbers and the p-adic integers respectively. Note that p is a uni-
formising parameter and Σ can be taken to be the finite set {0, 1, · · · , p−1}.
Thus, every p-adic number has a unique expansion as

∑∞
−n aip

i where its
‘digits’ ai are between 0 and p − 1. Note the analogy with the decimal ex-
pansions of real numbers. The only difference here is that there are infinitely
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many positive powers of p and only finitely many negative powers. So, it is
worthwhile to think of p as 1/10.

Lemma 3.7. Suppose (k, | |) is complete with respect to a discrete absolute
value. Denote by A and P the corresponding valuation ring and its maximal
ideal. Then, k is locally compact if, and only if, A is compact which is again
if, and only if, A/P is finite.

Proof. If A is compact, then evidently k is locally compact since k =
∪nπ−nA. Assume k is locally compact. Let C be a compact neighbourhood
of 0. Then, for large enough n, πnA ⊆ C. As πnA is closed, it is compact
also. Thus, we have shown the equivalence of compactness of A and local
compactness of k.
If A is compact, then from the openness of P in k, we get that A/P is
compact as well as discrete and therefore, finite. To prove finally that the
finiteness of A/P implies the compactness of A, it suffices to prove sequential
compactness as A is a metric space. Let {a(n)} be any infinite sequence in
A. Write the series expansion a(n) =

∑
r≥0 an,rπ

r. As n varies, the elements
an,0 run over a finite set (viz., a set of representatives of A/P ). Thus, they
are all equal for infinitely many n. Replace the original sequence with a
subsequence for which the terms an,0 are all the same, say a0. Proceeding
this way, one finally concludes that there is a subsequence of the original
sequence which converges to an element of A.

Hensel’s lemma 3.8. Suppose (k, ||) is complete with respect to a discrete
absolute value. Denote by A and P the corresponding valuation ring and its
maximal ideal. If f(X) ∈ A[X] is a polynomial which factors modulo P into
two coprime polynomials ḡ, h̄, then there exist g, h ∈ A[X] such that f = gh
and deg(g) = deg(ḡ).

Exercises 3.9. (a) Prove Hensel’s lemma.
(b) Find the order and structure of Q∗

p/(Q∗
p)

2.
(c) Prove that the only automorphism of Qp is the identity.

Let K be an algebraic number field. Start with a discrete absolute value on
it (this will come from a prime ideal). Let A be the corresponding valuation
ring and P its maximal ideal. If L is a finite extension of K and B the
integral closure of A in L, one can write PB = P e1

1 · · ·P eg
g . Let Q denote

one of the Pi’s. Let KP and LQ denote the completions of K and L with
respect to the P -adic and the Q-adic absolute values. If Â, B̂ denote their
valuation rings and P̂ , Q̂ their maximal ideals, it is routine to prove:
Exercise 3.10. (a) P̂ = PÂ, Q̂ = QB̂,
(b) P̂ B̂ = Q̂e1,
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(c) [LQ : KP ] = e1f1.

The next proposition is crucial to many of the results to follow.

Proposition 3.11. (Extensions of valuations over complete fields)
Let (K, | |) be a complete field. If L is a finite extension of K, then there is
exactly one absolute value on L which extends | |. Moreover, L is complete
with respect to it.

Proof. The archimedean case is taken care of by Theorem 3.4. So, we
assume that the absolute value is non-archimedean. Let us first prove the
existence of an extension. Define | x |L=| NL/K(x) | for any x ∈ L. The first
two properties are clear and we only need to prove that if x ∈ L satisfies
| x |L≤ 1, then | 1 + x |L ≤ 1. In other words, if | NL/K(x) |≤ 1,
then | NL/K(1 + x) |≤ 1. Let f(T ) = a0 + a1T + · · · + Tn be the minimal
polynomial of x over K. Now, | a0 | = | NL/K(x) | ≤ 1 i.e., a0 ∈ A, the
valuation ring of K. Now, g(T ) = f(T−1) is clearly the minimal polynomial
of 1 + x over K. Therefore,

| NL/K(1 + x) | = | g(0) | = | f(−1) | = | a0 − a1 + a2 − · · · | .

So, if we show that | ai |≤ 1, it would follow that | NL/K(1 + x) |≤ 1.
Suppose the contrary. Let ar be such that | ar | > 1, that | ar |= M :=
Max (| ai |) and that r is the maximal index i so that | ai |= M . With
this notation, we have a−1

r ∈ A and aia
−1
r ∈ A for all i and aia

−1
r ∈ P

for all i > r, where P is the maximal ideal of A. Thus, the polynomial
a−1

r f(T ) ∈ A[X] reduces modulo P to the polynomial h̄(T ) = Xr+ smaller
degree terms. Applying Hensel’s lemma to the factorisation h̄(T )U(T ) where
U is the constant polynomial 1, we have f = h(T )u(T ) for some lifts such
that h(T ) mod P is h̄(T ). But, as r < n, this means that f is reducible, a
contradiction, which implies that all ai ∈ A. This proves the existence.
We prove the uniqueness when K is locally compact, which is the main case
of interest to us. The general case is not too difficult and one can look at
Cassels’s book (loc. cit.). Let {v1, · · · , vn} be a K-basis of L. We claim that
any extension | |L is equivalent to the sup-norm | |0 with respect to this
basis.

Firstly, | x |L=| a1v1 + · · · + anvn |L≤ n supi(| ai |0) | x |0. Here,
we haven’t used the local compactness but we shall use it for the opposite
implication. By the local compactness of K, there is some y ∈ L such that
| y |L= Min(| x |L:| x |0= 1). Now, let 0 6= x ∈ L. Write x = a1v1+· · ·+anvn.
If | ar |L=| x |0= Max(| ai |L), then x = arz with | z |0= 1.

So, | y |L≤| z |L=| x/ar |L=| x |L / | ar |L= | x |L / | x |0. In other
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words, | x |0≤| x |L (1/ | y |L). This proves that | |L and the sup-norm
| |0 are equivalent and proves the proposition.

Corollary 3.12. (Unramified extensions)
Suppose (k, | |) is complete with respect to a discrete absolute value. Denote
by A and P the corresponding valuation ring and its maximal ideal. Let l be
a finite extension of degree n over k. Let f and F denote the residue fields
of k, l respectively. Then, the association e 7→ (e ∩A) mod P is a bijection
from {e : k ⊂ e ⊂ l and e unramified over k} to {E : f ⊂ E ⊂ F}.

In particular, there is a unique (upto isomorphism) unramified extension
of any degree d viz., the splitting field over k of Xqd −X where q = #f .
The proof is a consequence of Hensel’s lemma (Exercise: What is the polyno-
mial factorisation to which Hensel is applied?) and the fact that over finite
fields there is a unique extension, upto isomorphism, of a given degree.

Definition 3.13. If | | is a discrete absolute value on k, an Eisenstein
polynomial is a polynomial f ∈ k[X] of the form

∑n
i=0 aiX

i with ai ∈ P for
i < n, an a unit and a0 ∈ P \ P 2. It is an easy exercise to show that such a
polynomial is irreducible.

Proposition 3.14. (Totally ramified extensions) Suppose (k, | |) is
complete with respect to a discrete absolute value. Let A,P, π have the usual
meaning. Then, an extension of k is totally ramified if, and only if, it is
obtained by attaching a root of an Eisenstein polynomial.

Proof. Suppose that α is a root of an Eisenstein polynomial f(X) =∑n
i=0 aiX

i. Then
∑n

i=0 aiα
i = 0 and so

| αn | = | anαn | = | ∑n−1
i=0 aiα

i | = | a0 | = | π |.
Thus, k(α) is totally ramified extension of k.

Conversely, suppose K is totally ramified over k of degree n. If ΠK is a
uniformising parameter for K, then the powers Πi

K , i < n, must be linearly
independent over k as total ramification forces their absolute values to be in
distinct cosets of the value groups of k in K. Thus, they form a k-basis of
K. Write Πn

K + an−1Πn−1
K + · · ·+ a0 = 0 with ai ∈ k. But, the various roots

of this polynomial give extensions of | | to K and must coincide by the
uniqueness of such an extension. In other words, the roots of this polynomial
have absolute value | ΠK |. As each ai is a sum of roots, we have | ai |< 1
and | a0 |=| product of the roots | = | Πn

K | = | π |. In other words, the
polynomial

∑
aiX

i is an Eisenstein polynomial. The proposition is proved.

Krasner’s lemma 3.15. Suppose (k, | |) is complete with respect to a
discrete absolute value. Let α, β be algebraic over k and suppose that α is
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separable over k(β). Assume that β is ‘very close’ to α in the sense that
| β − α |<| σ(α)− α | for all k-isomorphisms of k(α). Then, k(α) ⊆ k(β).

Proof. By the separability assumption, it suffices to show the conclusion
that each k(β)-isomorphism τ of k(α, β) fixes α. Note that any such τ gives
a new absolute value on k(α, β) by | x |τ= | τ(x) |. By the uniqueness,
this gives that the hypothesis implies | τ(β − α) |<| σ(α) − α |. That is,
| β − τ(α) |<| σ(α) − α |. So, | τ(α) − α |<| σ(α) − α |. In other words,
τ(α) = α. The lemma follows.

Definitions and remarks 3.16 (continuity of roots) With k as before,
let f(X) ∈ k[X] be a monic polynomial of degree n which factorises as∏t

i=1(X − ai)ri in the algebraic closure of k. Let us define | f | to be the
maximum of the absolute values of the coefficients of f . Clearly, if g ∈ k[X]
is close to f i.e., if | f − g | is small, then for any root b of g, the value
| f(b) |=| f(b) − g(b) | is small. In other words, as g comes close to f , any
root of g comes close to some root of f . It is an easy exercise to see that if
g is sufficiently close to f and if b1, · · · , br are the roots (with multiplicity)
of g which come close to a root ai of f , then r = ri.

Corollary 3.17. With k, f as above, if f is irreducible and separable, then
any monic g which is sufficiently close to f is irreducible too. Moreover, if
b is a root of g coming close to a root a of f , then k(a) = k(b) if f, g are
sufficiently close.

Proof. The proof is immediate from 3.15 and 3.16.

Corollary 3.18. Any finite extension k = Qp(α) arises as the closure of a
finite extension K of Q where [k : Qp] = [K : Q].

Proof. The proof is immediate from choosing a polynomial g ∈ Q[X] which
is close in the p-adic topology to the minimal polynomial of α over Qp and
applying 3.17.

Now, we can prove a remarkable theorem (contrast it with the situation
of number fields !)

Theorem 3.19. Any finite extension k of Qp has only finitely many exten-
sion fields (upto isomorphism) of a given degree.

Proof. As there is a unique unramified extension of a given degree over any
finite extension of Qp by Corollary 3.12, it suffices to prove the finiteness of
the number of totally ramified extensions of a given degree n. In this case,
Proposition 3.14 tells us that any such extension arises from an Eisenstein
polynomial of degree n. As such a polynomial has a unit as the top coefficient
and other coefficients coming from the maximal ideal P , we have a mapping
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from the product U ×P × · · ·×P to the set of totally ramified extensions of
degree n. Here, the factor P is repeated n−1 times. The crucial observation
is that by 3.17, a neighbourhood of a point in this product determines fields
which are all isomorphic. By the compactness of U and P , the theorem
follows.
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