Introduction to Number Fields

B.SURYy

1. Integral extensions

Definition. An element z of a ring B is integral over a subring A if it
satisfies a monic polynomial with coefficients from A. One says B is integral
over A if all elements of B are so.

Examples. For any n, the n-th roots of unity are integral elements of C
over Z. The two square roots of 1/2 are not integral over Z.

Proposition. For rings A C B, the following are equivalent for an element
z of B:

(a) x is integral over A.

(b) The subring Alz] of B generated by A and x is finitely generated as an
A-module.

(c) There ezists a subring C of B such that Alz] C C and C is finitely
generated as an A-module.

Proof. The assertions (a) = (b) and (b) = (c) are obvious. To prove the
assertion (¢) = (a), start with A-module generators yi,---,y, for C. As
z € C, we can write zy; = }_; a;;y; for certain a;; € A.
This can be rewritten as a matrix equation My = 0 where y is the column
made up of the y;’s and m;; = d;;& — a;;. Multiplying on the left by the
adjoint of M, we get dy; = 0 where d = det(M). As y;’s generate C, we
have dC = 0. In particular, as C is a ring, 1 € C, we have d.1 =d = 0.
But, d = det(d;jx — a;;) is a monic polynomial in z over A. This proves
the proposition.
Corollary. A C B rings. Let z1,---,z, € B. Suppose x1 is integral over A
and x; is integral over Alxi,---,z;i_1] for 2 <i <n. Then, Alz1,---,zy] is
finitely generated as an A-module.

Subcorollary. For rings A C B, the set C of elements of B integral over
A is a subring of B which is integral over A.

Definition. In the notation above, C is referred to as the integral closure
of Ain B. If A is an integral domain, it is said to be integrally closed if it
equals its integral closure in its quotient field.

Examples/Exercises. (a) Any UFD is integrally closed.
(b) For what d is the ring Z[\/d] integrally closed?
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(¢) If C is integral over B and B is integral over A, then C is integral over
A.

(d) If C is the integral closure of A in B, then C is integrally closed in B.
(e) If A C B and B\ A is closed under multiplication then A is integrally
closed in B.

(f) If B is integral over A and I is a non-zero ideal, then IN A is a non-zero
ideal of A and B/I is integral over A/(I N A).

Proposition. (a) If B is integral over A and S C A is a multiplicative
subset, then S™'B is integral over S™1A.

(b) If C is the integral closure of A in B, and S C A is a multiplicative
subset, then S~'C is the integral closure of S™'A in S™'B.

Proof. (a) is clear. For (b), start with any b/s € S~!B which is integral
over S~1A. Write

b ag bl

s $1 gn—1

4o+ = 0in S7IB.

Sn

This means that there exists ¢ € S such that

t((s1++-5pb)™ + a1(s1---8pb) LS9 8y + - o- + apssP st _sP) =0
in B. Multiply by t" ! to conclude that ts;---s,b € C. This proves the
proposition.

Proposition. Let A be an integral domain. Then, the following are equiv-
alent:

(a) A is integrally closed.

(b) For each prime ideal P, the local ring Ap is integrally closed.

(c) For each mazimal ideal M, Aps is integrally closed.

Proof. (b) = (c) is evident. The implication (a) = (b) is immediate from
the above proposition. Finally, we prove (¢) = (a). Since all the A;;’s are
contained in the quotient field of A, it suffices to show that A = Ny A
To prove this latter statement, let us call B = NyyAy. As A C B is a
subring with the property that Ay; € S™'B C Ay where S = A\ M,
we get Apr = ST!B. Therefore, viewing B/A as an A-module, we have
S~Y(B/A) = 0. Now, if 0 # b € B/A, then look at the ideal I = Ann(b) :=
{a € A:ab=0¢€ B/A}. Asb # 0,1 ¢ I. Let M D I be a maximal
ideal of A. As S3; (B/A) = 0, the image of b is zero; in other words, there
exists s € Sy with sb = 0 in B/A. But, then s € I by the very definition
of I. This is a contradiction to the assumption that M D I. The proof is
complete.

Lemma. Let A C B be integral domains such that B is integral over A.
Then, B is a field if, and only if, A is a field.
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Proof. If A is a field, consider any 0 # b € B. Writing b" + a,b" 1 +
-+ +ap = 0 with a,, # 0, we have —a 1 ("1 +a1b" 2 +---+a, 1) =b"1.
Conversely, let B be a field. Let 0 # a € A. As a~' € B, we may write
e +a1a~ ™Y ... 4+ q, =0 for some a; € A. Multiplying by a"~ !, we
get a”! € A.

Corollary. Let B be integral over A. Suppose that Q C B is a prime
ideal. Then, Q N A is a prime ideal of A which is maximal if, and only
if, Q is maximal. Moreover, if Qo D Q s a prime ideal of B such that
QoNA=QnNA, then Q@ = Q-

Proof. The first statement is a restatement of the lemma modulo the exer-
cise (f) above. To prove the final assertion, write P =QNA and S = A\ P.
Then, S™1B is integral over S™1A. Now, N := S71Q C Ny := §71Qq are
prime ideals such that M C NNS™'A C NgNnS~tA C S71A. As SN Qo
is empty, No = S7'Qo # S™!B and so Nyn S™'A = S7'A. As the ring
S~'A is a local ring with the unique maximal ideal S™'P, we must have
M=NnNS1A=NynS1A. As S~!'B is integral over S~'A, the prime
ideals N and Ny must be maximal as M is. But, N C Ny so that N = Ny
and we get Q = Q9. The proof is complete.

Going-up theorem. Let B be integral over A. Then,

(a) for each prime ideal P of A, there exists a prime ideal Q of B lying over
P (i.e. such that QN A= P),

(b) If P, C Py are prime ideals of A and Q1 is a prime ideal of B lying over
Py, then there exists a prime ideal Q2 D Q1 of B lying over Ps.

Proof. (a) Let us localize at P i.e. let S = A\ P. Then S !B is integral
over ST1A. Start with any maximal ideal N C S~'B. Then, NN S~ !A is
a maximal ideal of S—'A. Therefore, it is the unique maximal ideal S—1P
of the local ring S 'A. If Q is the inverse image of N in B, it is a prime
ideal and must lie over P (as the composites 4 — S™1A C S™!B and
A C B — S7!B are equal).

(b) Write A = A/P,,B = B/Q;. Then, B is integral over A. If P, denotes
the image of P, in A, there is (by (a)) a prime ideal Q5 of B lying over Ps.
If ), is the inverse image of Q2 in B, it is a prime ideal of B lying over P,
(as the composites A — A C B and A C B — B are equal).

Definition. The dimension of a ring A is the largest integer d for which
there is a strictly increasing chain of prime ideals Py C P, C --- C Py.

Examples/exercises.
(a) Any field is of dimension 0.
(b) Z has dimension 1. In fact, the integral closure of Z in any finite field
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extension of Q is of dimension 1; this follows from the next corollary.
(c) The polynomial ring K[X1,---,X,] over a field K has dimension n.

Corollary. If B is integral over A, then their dimensions are equal.

2. Dedekind domains

Definition. A Dedekind domain is a Noetherian, integrally closed domain
of dimension 1.

Remark. Sometimes one regards fields also as Dedekind domains; in that
case the above definition must be refined to include dimension zero also.
Note that a ring A has dimension 1 if, and only if, it is not a field and all
non-zero prime ideals are maximal.

Examples/exercises.
(a) Any PID is a Dedekind domain (we shall write DD for short).
(b) Z[X] is not a DD (Why?).

Scholium. If L is a finite separable extension of fields, then the ‘trace form’
Tr:Lx L— K;(z,y) = Trk(zy) is non-degenerate.

Proposition. Let A be a DD and let L be a finite, separable extension of
the quotient field K of A. Then, B is a DD.

Proof. We already know that B must have dimension 1 and must be inte-
grally closed. To show that B is Noetherian, we prove the stronger statement
that B is an A-submodule of a free A-module of rank n = [L : K]. If this is
proved, it would follow that B is a Noetherian A-module. Any ideal of B is,
in particular, an A-submodule of B and, therefore, finitely generated as an
A-module (and therefore as a B-module). Thus, it suffices to show that B
is an A-submodule of a free A- module of rank n. To see this, let e1,---, e,
be any K-basis of L lying in B (Why is it possible to choose such a basis?).
Then, if e],---, e}, is its dual basis with respect to the trace form i.e., if
Trk(eie;f) = §;j, then any z € L is of the form ), Tr(ze;)e;. If z € B,
then all the coefficients Tr(ze;) € A as they are integral over A. There-
fore, B C Y, Ae; which is a free A-module of rank n (as e;’s are linearly
independent over K). Thus, the proof is complete.

Remarks. The hypothesis of separability is not needed for the conclusion
above and can be proved in this generality using the so-called Krull-Akizuki
theorem. However, in the proof above, we had the intermediary assertion
that B is a finitely generated A-module and this may not be true in general.

Definition. If A is an integral domain and if K denotes its quotient field,



NUMBER FIELDS 17

one defines a fractional ideal to be a non-zero A-submodule I of K such that
I C d~'A for some d # 0 in A.

Examples/exercises.

(a) Each finitely generated A-submodule of K is a fractional ideal.

(b) If A is Noetherian, each fractional ideal is finitely generated as an A-
module.

(¢) If I, J are fractional ideals, then so are INJ, I+J, I.J. Moreover, IJ = JI
and I(JK) = (IJ)K.

Lemma. Let A be a Noetherian, integrally closed domain, I # 0 an ideal.
Ifr e K\ A, then I ¢ I.

Proof. If z € K is so that I C I, then "I C I for all n. So, Alz] is an
A-submodule of K which satisfies A[z] C d A for some d # 0 in A (in fact,
any d # 0 in I). As A is Noetherian, so is d ' A and thus A[z] is a finitely
generated A-module. This means that z is integral over A ie. z € A.

Proposition. Let A be a DD and let P be a non-zero prime (= mazimal)
ideal. If K denotes the quotient field of A, then the set

P':={z € K:zP C A}

is a fractional ideal of A and properly contains A. Further, P' is the unique
fractional ideal such that PP' = P'P = A.

Proof. It is trivial to see that P’ is an A-module. Moreover, evidently
P' c d7'A for any d # 0 in P. Thus, P’ is a fractional ideal and clearly
contains A. We shall show now that A # P’. For this, we make use of the
following:

Claim: Every non-zero ideal of A contains a finite product of non-zero prime
ideals.

The claim is proved as follows. If there are exceptions to the claim made
above, consider the family of ideals which fail to contain a product as
claimed. As A is Noetherian, there exists a maximal such ideal M. So,
M itself cannot be prime. If ab € M with neither a nor b in M, then the ide-
als M + (a) and M + (b) contain products of prime ideals. As M is contained
in their product, M contains a product of prime ideals, which contradicts
our assumption. Therefore, the claim is indeed true. Now, let a # 0 be in P.
Then, the ideal (a) D P P, - -+ P, with n minimal possible and P;’s non-zero
primes. So, P D P, ---P,. As P is prime, we have P D P; for some i, say
P D P;. As P; are maximal, we obtain P = P,. Writing I = P,--- P, or A
according asn > 1 or n =1, we get I ¢ (a) by the minimality of n. Choose
any b € T\ (a). Then, ba~! ¢ A. Now, PI C (a) = Pb C (a) ie., ba™! € P'.
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Hence, we have shown that A # P’. Further, we have P = PAC PP' C A
so that PP’ is an (actual) ideal of A containing P. It must, therefore, be
either equal to P or to the unit ideal A. If z € P'\ A, we must have
(by the above lemma) zP ¢ P. This means that xP C P'P\ P. Thus,
PP' = A. Finally, if P, is any fractional ideal such that PPy = PyP = A,
then P' = AP' = (PyP)P' = Py(PP') = PyA = Py which proves uniqueness
also.

Notation. One uses the notation P~" instead of P™ for any n. Then, (like
ideals) one has AP™" = P™".

Theorem. Let A be a DD. Then, any fractional ideal I # A can be uniquely
written as [ = P{"* - - P,?’“ where n; are non-zero integers and P; are distinct
prime ideals.

Proof. The uniqueness is easy to prove as follows.

If PP = Q" ---Q™r, then one can shift all the negative pow-
ers on each side to the other side to obtain an equality where all powers
are positive. Then, a simple induction on the sum of the exponents yields
uniqueness.

We prove the existence of the prime ideal decomposition by contradiction.
First, we assume that there is an (actual) ideal I which is not expressible as
a product of prime ideals. By using the fact that A is Noetherien, we obtain
an ideal I which is maximal with respect to this property. Of course, I is not
a prime ideal. If I C P with P maximal, then I = AT c P"'T Cc P~'P = A.
Now, if z € P71\ A, then 2I ¢ I and so zI C P~'I\ I. Hence P~'I is an
(actual) ideal which contains I properly. By the choice of I, we obtain that
P~'T must be a product of prime ideals. Therefore, clearly I itself is such a
product, which manifestly contradicts the choice of I. Therefore, every ideal
in A is, indeed, a product of prime ideals.

Finally, if J is any fractional ideal, there is some d # 0 in A such that
dJ is an ideal of A. So, if (d) = P®---P% and dJ = Q% --- Q" then
J=P " ... P Q... Qb%. This proves the theorem.

Examples/Exercises. (a) In any DD, P D P? D P3... is a strictly de-
creasing chain.

(b) Every fractional ideal in a DD can be generated by two elements one of
which can be taken to be any arbitrary element.

Hint: Enough to prove this for ideals I; in this case if ¢ € I and if (a) =
P ... P and I = Plb1 -+« P’ then a; > b; > 0. Use the Chinese remainder
theorem to choose an appropriate element b in I so that I = (a,b).

(c) A DD which has only finitely many prime ideals is a PID.
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Hint : If Py,--- P, are all the prime ideals, use the Chinese remainder theo-
rem to choose z; € P;, x; & Pi2 and z; = 1 mod P; for i # j. Then, P; = (z;).
(d) Use the fact that Z[/=5] is not a PID and (c) above to prove that there
are infinitely many prime numbers (!)

3. Prime decomposition in extension fields

Let A be a DD with quotient field K and let L be a finite, separable
extension of K. Then, we have seen that the integral closure B of A in L is
again a DD. If A = Z, then L is called an algebraic number field and B is
called the ring of integers of L.

Exercises. (a) Show that if K C L are algebraic number fields, then the
ring of integers of L is the integral closure of the ring of integers of K in L.
(b) Find the ring of integers of the field Q(\/d) for any square-free integer
d.

Definition. For a field extension L/K of degree n, and an n-tuple of ele-
ments vy, -+, v, of L, one defines the discriminant of the n-tuple vy,---,v,
to be the element D% (vy,---,v,) = det(M) of K where M;; = Trk(v;v;).
This is an important concept, and let us start with a few easy exercises to
see its use.

Exercises. Let L, K, v; be as above.

(a) Show that DY (vi,--,v,) # 0 if, and only if, vi, -+, v, form a K-basis
of L.

(b) If K = Q and v; form a Z-basis of the ring of integers (this always exists
as we observed), then Dk (vy,---,vy) is an integer which is independent of
the choice of the Z-basis.

(c) If o1, ,0, are the K-embeddings of L in C, then Dk (vy, -, v,) =
det(N)? where Ni; = oi(v;).

Definition. The discriminant Dg of an algebraic number field K is the
discriminant of any Z-basis of its ring of integers. By the exercise (b) above,
it is well-defined. Moreover, it is clear that if {vi,---,v,} are in O and
satisfy Dy = Dg (v1,---,vy), then {v;} form an integral basis (Why?).

Exercise. (a) For a square-free integer d, show that the discriminant of
Q(V4d) is d or 4d according as whether d = 2,3 mod 4 or d = 1 mod 4.
(b) Let K = Q(a) be an algebraic number field. Suppose the minimal
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(monic) polynomial of « is f(X) = [[j=1(X — ;). Then, prove that
Dg(la Q- ,an—l) = H(CZZ - aj)2 = (_l)n(n_l)/QNgfl(a)
1<j

where N denotes the norm map.

(c) Use (b) to show that for any n, and K = Q((,) with {, a primitive n-th
root of unity, one has Dg(l, Cooee, CEMYY divides nd(),

(d) Let K be an algebraic number field and let ay,---,an be a Q-basis of K
contained in O, the ring of integers of K. Then,

Ok C {Z miai/d tmy; € Z,d\m%}

Here d stands for Dg(al, ceeLag).

Hint: Write any o € Ok as > ; tio; with ¢; € Q. Apply the various em-
beddings of K to this equation and solve the system of linear equations by
Cramer’s rule.

(e) If K, L have degrees m,n over Q and if KL has degree mn, then Ok C
éoKOL where d is the GCD of Di and Drp.

Hint: Use the fact (implied by the hypothesis [KL : Q] = mn) that each
embedding of K in C has a unique extension as an embedding of K I which
restricts to the identity on L. Then, use the same idea as for (d).

Lemma. For any positive integer n, consider the field K = Q({) where
¢ = e¥m/™. Then, Ok = Z[(].

Proof. By the exercises (c¢) and (e) above, and the fact that Euler’s phi-
function is multiplicative, it suffices to prove the lemma when n is a power
of a prime.

Let us use the notation disc(«) when we talk about Dg(l, -,
for some number field K = Q(«) of degree m. Let n = p” and { be a primitive
n-th root of unity. From an earlier exercise, we have disc(¢) = disc(1 — ().
Moreover, p = [](p)=1(1 — ¢*) as seen by evaluating the corresponding

mfl)

cyclotomic polynomial at 1. Evidently, 1 — (¥ is an associate of 1 — ¢ for any
k coprime to p. Therefore, p divides (1—¢)?®") in Z[¢]. Now, by an exercise
above, every element of Ok is of the form

Z mz(l - C)iil/da
i<¢(p")

where d = disc({). Note that d is a power of p. If Og # Z[1 — (], then there
exists an element z € Ok for which not all m; are divisible by d. If all the
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m;’s are divisible by p, we can divide them all by p and proceeding this way
we finally arrive at an element in Ok of the form z = 37,5 ;m;(1 — O/p
with 7 > 1 and m; not a multiple of p. Now, we noted in the beginning of the
proof that p is an associate of (1 —¢)?®") in Z[¢]. This means, in particular,
that p/(1 — ¢)/ € Z[¢] C Ok. Hence, we have zp/(1 — ()/ € Ok. Hence,
we get from the expression for = that m;/(1 — ¢) € Ok. So, Ng(l - )
divides Ng (mj) = m;-b(p " i.e., plm;, which is a contradiction. This proves
the lemma.

Definition. Let A be a DD, K its quotient field and L a finite, separable
extension. Let B denote the integral closure of A in L. For any non-zero
prime ideal P of A, as B is a DD, one can write PB = P --- Pgeg where all
e; > 0. The integer e; is called the ramification index of F; and sometimes
denoted by e(P;/P) to make its dependence clear. P is said to be unramified
in B if each e; = 1; otherwise it is said to be ramified. P is said to be totally
ramified if g = 1 and e¢; > 1. The primes F; lie over P and these are all the
primes lying over P (Why?). The degree f; (denoted by f(P;/P)) of the field
extension B/P; D A/P is evidently (why?) at the most equal to the degree
of L over K. The finite field A/P (why is it finite?) is called the residue
field of K at P. The field extension B/P; O A/P is called the residue field
extension at P; and f; is called the residue field degree of P;.

Exercises. Answer the three why’s in the above definition.

Proposition. Let A be a DD, K its quotient field and L a finite separa-
ble extension. Let B denote the integral closure of A in L. For a non-zero
prime ideal P of A, writing PB = Pf’l---Pgeg we have Y7, e;f; where
fi = [B/P:: A/P].

Proof. The trick is to localize at P i.e. consider S~'A and S—!'B where S =
A\ P. Now S~ !B is the integral closure of S~'A4 in L, and S"1A/S ! P =
A/P. Note also that PS™!B = Q' ---Qg° where Q; = P;S™'B and that
S~'B/Q; = B/P; Thus, to prove the proposition we may replace A, B by
S~1A,S71B. In this case, A, B are PIDs as they are DDs with only finitely
many primes! Therefore, B which is a submodule of a free A-module is,
itself, free of rank n (the rank is n as B contains a K-basis of L). Let
v1,--+, VU, be an A-basis of B. If 7; denotes the image of v; modulo PB, we
have B/PB = Y i* (A/P)v;. Moreover, if > 7", a;u; = 0 in B/PB, then
Yiqav; € PB. This forces each a; to be in P since v;’s form a basis
of B. Thus, 01,---,0, is a basis of the A/P-vector space B/PB. Thus,

dimy,pB/PB = n. Let us count this same dimension in another way. By
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the Chinese remainder theorem, one has B/PB = B/[[ P/ = @B/FP" as
rings as well as as A/P-vector spaces. We need to count the dimension of
each B/Pf". Now, since P C P;, we have PP] C PZ-’"+1 for all » > 1. Hence,
P’/ PZ-’"+1 is an A/P-vector space. Thus, as A/P-vector spaces, we have

B/PieigB/Pi@Pi/PZ?@_”@Pieifl/Piei

Further, as B is a PID, one can write P, = (m;). Then, for each r, the
multiplication by 77 gives an A/P-isomorphism from B/P; onto P! /P!
Hence, we have dim,,pB/ Pf" = e;f; which gives that n =" ¢; f;.

Definition. With A, B as before, a maximal ideal P of A is said to split
completely in B if e;, =1 = f;; so PB is a product of n distinct primes.

Examples/Exercises. (a) Show that the e’s and the f’s multiply in towers.
(b) Let p be a prime, ( = e*™/P and K = Q(C). Then, p is totally ramified
n K.

Hint: Show that p = Hf;ll(l — (%) and that each 1 — ¢ is a unit times 1 — (.

Corollary. Let the notations be as in the above proposition. Assume, in
addition, that L/K is a Galois extension. Then, all the e;’s are equal and
all the f;’s are equal. Hence n = efg for some positive integers e, f, g.

Proof. We shall show that the Galois group Gal(L/K) acts transitively on
the set {P,---,P,}. If it does not, then there exist ¢ # j such that gP; # P;
for all g € Gal(L/K). Then, choosing by the Chinese remainder theorem,
an element b € Pj,b = 1 mod gF; for each g € G. But then the element
a = Ni(b) = [, 9(b) is in A on the one hand, and is in P; on the other.
As AN P; = P, this means that [[,g(b) € P C P; i.e. some g(b) € P,
which contradicts the choice of b. Hence, it follows that the Galois group
acts transitively. Then, if gP; = P;, the observation PB = ¢g(PB) along
with the uniqueness of decomposition into prime ideals in B yields e; = e;.
Therefore, all the e;’s are equal. Finally, if g(P;) = P;, then g induces an
A/ P-isomorphism from B/P; to B/P; and so f; = f;. The corollary is
proved.

Definitions. With notations as above, the decomposition group of P; is
the subgroup Dp, := {g € Gal(L/K) : g(P;) = P;}. The Galois group
induces a natural homomorphism 6p, from Dp, to Gal((B/P;)/(A/P)). The
kernel Tp, is called the inertia group of P;. If the inertia group Tp, is trivial,
one defines the Frobenius element Frp, at P; as the inverse image under
the isomorphism 6p, of the Frobenius automorphism ¢ t#(A/P) which
generates Gal((B/F;)/(A/P)).
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Exercises.

(a) Show that the above homomorphism from Dp, to Gal((B/F;)/(A/P)) is
surjective.

Hint: Use the Chinese remainder theorem.

(b) Show that the Dp,’s are mutually conjugate and that #Dp, = ef, #Tp,
=e for all 1.

Hint: Dp, is the stabiliser at P; for the action of Gal(L/K) on the set
{Piyeee Py},

Definition. For any algebraic number field K and a non-zero ideal I, the
norm N(I) of I is defined to be the cardinality of the finite ring Ok /I.

Corollary. Let K be an algebraic number field. Then,

(a) if I,J are non-zero ideals, N(IJ) = N(I)N(J).

(b) if P is a mazimal ideal, N(P) = p/ where p is the prime number lying
below P and f = f(P/p).

(c) if L/ K is an extension of degree n, then for any non-zero ideal I of Ok,
N(IOg)=N(I)".

(d) if a £ 0 is in Ok, N((a)) =| N&(a) |

Examples/exercises. Let K = Q(V/d) where d is a square-free integer.
For any odd prime p, denote by (a/p) the Legendre symbol. Then,

(a) if pld, p is (totally) ramified i.e. pOx = P? where the prime ideal
P = (p,Vd),

(b) if p is odd and coprime to d, it is unramified and splits completely or
remains a prime according as whether (d/p) =1 or not,

(b) if d = q is a prime = 1 mod 4, and p is an odd prime, prove that
(q/p) = 1 & the polynomial X% — X + 14;'1 has a solution mod p < Q(,\/q)
is fized by the Frobenius Fr, < (p/q) = 1.

(c) if d is odd, 2 is ramified if d = 3 mod 4, splits completely if d =1 mod 8
and remains a prime if d =5 mod 8.

(d) Prove the whole of quadratic reciprocity law by proving a corresponding
version of (b) for primes =3 mod 4.

Remarks. The exercise above provides a nice criterion to decide when a
prime splits completely in a quadratic extension. The criterion is in terms of
some congruences. One of the principal aims of ramification theory (in fact,
of algebraic number theory itself!) is to give a ‘nice’ criterion for a prime to
split completely in a given extension; one often calls such a criterion to be
a reciprocity law. The reason that one is interested in a criterion to decide
which primes split completely is that given K, the set of primes of K which
split in L determine L uniquely. The last fact mentioned is deep and the
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proof requires the so-called class field theory.
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An interesting exercise - Why is Fermat’s last theorem not trivial
to prove?

(a) Let p be an odd prime and ( = €*7™/P. Show that the element S =
Ef:_ll(i/p)gi of K = Q(() satisfies S> = (—1/p)p. Hence conclude that
every quadratic extension of Q is contained in a cyclotomic extension.

(b) Let K = Q(v/=23),L = Q(¢) where { = €7/ Show that Oy, is not a
PID.

Hint : K C L by (a). Also, 20, = PP where P = (2,“’2@) and
P = (2, ﬂ) If a prime Q in L lying over P is principal, then P/ is
principal where f = f(Q/P). As P is not principal and P3 = (=3£y=23),
P/ cannot be principal as f divides [L : K].

Theorem (A Cyclotomic reciprocity law). Let n be a positive integer and
p be a prime not dividing n. Denote by ( a primitive n-th root of unity.
Then, p is unramified in K = Q(C) and splits into ¢(n)/f primes where f
is the order of p in the unit group of Z/n and ¢ is Euler’s phi function. In
particular, p splits completely in K if, and only if, p =1 mod n.

Proof. We already know that p is unramified as the minimal polynomial of ¢
(indeed, its multiple X™ —1 itself) has distinct roots mod p. Let P be a prime
in K which lies over p. First, we observe that the powers (*,0 < i < n—1 are
distinct modulo P. This is a consequence of the identity n = [J7='(1 — ¢%)
and the observation that n ¢ P; these imply that 1 — (* ¢ P. Now, the
Frobenius element Fr, of Gal(K/Q) satisfies Fry(z) = z? mod P for all
z € Ok. But, Fry(¢) is obviously again an n-th root of unity. In view of the
observation made above, it follows that Fr,(¢) = ¢P. ;jFrom this, it follows
easily that the order f(P/p) of Fr, is just the order f of p in (Z/n)*.

Remarks. When K is the quotient field of a DD A, and L is a finite,
separable extension of K and B the integral closure of A in L, the following
theorem of Kummer provides a way to read off the decomposition of a prime
ideal in terms of the decomposition of the minimal polynomial of & modulo
P. Here L = K(a) and @ € B and the theorem is valid under a mild
assumption.

Theorem (Kummer). Let A,K,L = K(a), B, P, f be as above. Assume,

in addition, that B = Ala]. Write f = p{' - -pg’ where P; are irreducible

polynomials in (A/P)[X] and f denotes the image of f mod P. Then,
PB=Pfi... Pt

where P;’s are prime ideals and f(P;/P) = deg(p;). Indeed, P; = PB +
(pi(c)) where p;’s are arbitrary lifts of p;’s.
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Before proving the theorem, let us look at its applications to see really how
powerful it is.

Applications of Kummer’s theorem
I. Prime decomposition in quadratic fields

As we saw earlier, if K = Q(v/d) with d square-free, then Ox = Z[a] where
a=+dor 14'2—‘/3 according as d = 2,3 mod 4 or d =1 mod 4. The minimal
polynomial f is X? — d in the first case and X? — X + % in the second. If
d=2or 3 mod 4, f(X) = X?—dis a square modulo any prime p dividing d
and also modulo 2. Thus, 2 and primes dividing d are (totally) ramified. If
an odd prime p does not divide d, then f modulo p is reducible or irreducible
according as whether d is a square modulo p or not. Thus, these primes,
respectively, split completely and remain inert. Similarly, one can argue for
the case X? — X + 11_(1 corresponding to d = 1 mod 4.

II. Discriminant criterion for ramification

Theorem. Suppose K = Q(«) is an algebraic number field and assume that
Ok = Z[a] for some a. Then, a prime p ramifies in K if, and only if, p
divides Disc(K).

Proof. Let f(X) = [[;(X — «;) be the minimal polynomial of «. We have
seen that disc(K) = disc(f) = £[];,;( — ;). By Kummer’s theorem, a
prime ramifies in K if, and only if, f has a multiple root modulo p. This is
so if, and only if, disc(f) = 0 mod p i.e. if, and only if, p divides disc(f).
Here f denotes the reduction of f modulo p.

Proof of Kummer’s theorem. Consider the ring homomorphisms
A[X] — (A/P)[X] — (A/P)[X]/(pi(X))

Call the composite map ¢;. Note that (A/P)[X]/(pi(X)) = (A/P)[e;] for
any root «; of p;. Therefore, Ker(¢;) is a maximal ideal as ¢; is evidently
surjective. Moreover, it is clear that P C Ker(¢;) and p;(X) € Ker(¢;)
for any arbitrary p; € A[X] which maps to p;. Further, it is clear from the
definition of ¢; that Ker(¢;) is the ideal generated by P and p; in A[X]. Now,
by the hypothesis, f = p¢' - -- pg° which implies that f € (P,p;) = Ker(¢;).
Therefore, ¢; factors through (f) to give a surjective homomorphism 6; :
AlX]/(f) = (A/P)[X]/(p:(X)). Note that we have assumed that B = A[a]
which gives that A[X]/(f) = B where X maps to a. So, we have obtained
0; : B - (A/P)[X]/(p;(X)) which is surjective and has kernel Ker(6;) =
PB + pi(a)B. Thus, P; :== PB + p;(a) B = Ker(0;) are maximal ideals in
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B. As they contain P, they lie over P. Note that f(P;/P) = [B/P;: A/P] =
dim,,p(A/P)[X]/(Pi(X)) = degp;. We shall prove now that P; exhaust all
the maximal ideals of B lying over P and have ramification indices equal to
€;.

Note first that the assumption f = p{'---pg? gives, on comparing degrees
that >, e;fi = deg(f) = [L : K]. The same thing also gives for arbitrary
lifts p; that f — p{' ---py’ € P[X] which, in turn gives, on evaluation at c,
that pi(a)® -+ pg(a)® € PAla] = PB. So, if Q is any prime ideal of B
lying over P, we have pi(a)® ---py(a)® € PB C Q. Then, p;(a) € Q for
some i. But then, P, = PB + p;(a) C @ and, as both are maximal ideals,
they must be equal.

Finally, let PB = P! ---Pgdg. Then,

PPy = (Ppy(0)” - (Popy(0))
C PB+(pi(a) -+ pyla)s) = PB = P .

Thus, e; > d;. As Y e;fi = [L: K] =) d;f;, this forces d; = e;. The proof
is complete.

The last application was generalised by Dedekind to the situation when
the base field is the quotient field K of any DD A and when the integral
closure B of A in a finite, separable extension L may not satisfy the condition
B = Ala] for any a.

The following example shows that the condition B = A[«] may not hold for
any a.

Example. Let K denote the unique subfield K of L = Q((31) of degree 6
over Q. Then, Ok # Zla] for any a.

Reason: In general, if F/F is a finite Galois extension, and D is the decom-
position group at some prime @) of E, then, P = Q) N Of splits completely
in EP (Why?).

Returning to our situation, look at the prime 2 which is unramified. As the
order of 2 modulo 31 is 5, 2 splits in Oy, into ¢(31)/5 = 6 primes. Therefore,
the decomposition group D at any prime of L lying over 2 has order 5. As
Gal(L/Q) is cyclic, it has a unique subgroup of order 5 (indeed, of order
any divisor of 30). Thus the fixed field L? is of degree 6 over Q and must
be K. By the observation made in the beginning, it follows that 2 splits
completely (into 6 primes) in K. Hence, if Og were of the form Z[a], it
would follow by Kummer’s theorem that the minimal polynomial of a would
split modulo @ N'Z into six distinct linear factors. However, over Z/2, there
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are only two linear polynomials! This contradiction establishes the validity
of the example.

Before stating and proving Dedekind’s theorem, we introduce the concept of
the discriminant ideal.

Definition. Let A be a DD with quotient field K, L be a finite, separable ex-
tension and B be the integral closure of A in L. The discriminant ideal Dp 4
is defined to be the ideal of A generated by the elements disc(vy,---,vy,) as
{v1,--+,vp} runs through K-bases of L which are contained in L.

Exercise. If B is free over A, then Dpg,4 is the principal ideal generated by
the discriminant of any A-basis of B.

Hint: For any A-basis {e1,---,e,} of B and any K-basis {v1,---,v,} of
L which is contained in A, write v; = ), a;;e; with a;; € A. Then,
disc(vy, - - -, vp) = det(a;;)?disc(er, - - -, en)-

Exercise. For any n, let ®, denote the nth cyclotomic polynomial (i.e.
minimal polynomial of €*™/™ over Q). Note that X" —1 = [Lgn @a(X). Let
p be a prime not dividing n and a € Z. Show that p divides ®,(a) if, and
only if, a has order n in (Z/p)*. Moreover, this happens for some p,a if,
and only if, p =1 mod n. Hence, show that there are infinitely many primes
p =1 mod n.

Exercise. For any n, and any prime p = 1 mod n, show that p splits
completely in the cyclotomic field Q((,) into the prime ideals P; = (p,(n—1),
where i has order n in (Z/p)*.

Exercise. Let K be the quotient field of a DD A, and suppose that L is a
finite, Galois extension of K. Let B denote the integral closure of A in L
and let P C A be a mazimal ideal. If PB = (P;---P,)¢ in B, then show
that there are fields E,F such that K C F C E C L with [L : E] = e,
[E: F] = f, [F: K] =g. Further, prove that such E,F ezist with the
properties: (i) P splits completely in F' into the product of the primes of F
lying below Py,---, Py,

(i) each prime of F lying above P remains a prime in E,

and (iii) each prime of F lying above P totally ramifies in L.

Hint: Look at the fixed fields under the decomposition group and the inertia
group of any P;.

Lemma. Let S C A be a multiplicative subset. Then, Dg-1pjg-14 =
S_I(DB/A). In particular, for a prime P of A and S = A\ P, one has
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P> DB/A = Sil(P) D) DS—l(B)/S—l(A)'

Proof. If {v;} is a K-basis contained in B, then v;’s are also in S~!(B). So,
Dg/a C Dg-1p/5-14. Therefore, S'(Dp;4) C Dg-15/5-14. Conversely,
if {w;} is a K-basis contained in S™!B, then there exists s € S such that
sw; € B for all i. Therefore, disc(swy,--,swy,) = s*"disc(wy,---,w,). As
the left hand side is in Dp/,, it follows that disc(wq,---,wn) € S_l(DB/A)
which proves the other part of the equality asserted.

Theorem (Dedekind). Let A,K,L,B be as before. Assume that every
finite extension of A/P (for any mazimal ideal P) is separable - this is true
when K is an algebraic number field, for then, A/P is a finite field. Then
P ramifies in L if, and only if, P D Dp4.

Proof. By the lemma, one can, without loss of generality, localise at P.
Then, A, B etc. get replaced by S~'A4,S~'B which are PID’s (Why?).
Then, B is A-free with a basis {vi,---,v,} say. As observed earlier, this
means that the images 0; of v; give a basis of the A/P-vector space B/PB.
Claim: If b € B, then Trp k(b)) = tr(b) where b is regarded as an A/P-
endomorphism of B/PB.

To see why this is so, let us look at the endomorphism pp : B — B;x — xb.
Write M for the matrix of p, with respect to the basis {v;}. Then, v;b =
> mijvj. Reading this modulo PB, we get the fact that M is the matrix of
b. This gives tr(b) = 3, my = tr(py) = Try, /K (b) which was claimed above.
Hence, Dp/4 = (disc(v1,---,vn)) C P if, and only if, disc(vi,---,vn) = 0.
Let us write PB = Pf'---P;?; then B/PB = B/P{* ®---® B/P;°. To
prove the theorem, let us first assume that P is unramified in B; then all
the e; are 1. Thus, B/PB is a direct sum of fields B/P; which are sep-
arable by our hypothesis. Choose a new A/P-basis {b1,---,b,} of B/PB
which is compatible with the direct sum decomposition (What does that
mean?). Then, for each b = ) + ... + b9 € B/PB, the matrix of
py consists of diagonal blocks M;,---, M, where M; = pyu. Therefore,
tr(b) = 3, tr® (b)) where tr(*) denotes the trace from B/P; to A/P. Conse-
quently, diSCEﬁ;B(bE, b)) =11 disc]j;?(bgz), e ,bsf)) # 0. Hence, for the
original A/P-basis {#;}, one has disc(v1, - - -, v,) = d?disc(by,---,b,) # 0 in
A/P, where d is the determinant of the change of basis. This proves that
P P Dp/, as observed earlier.

Conversely, suppose that some e; > 1. Then, B/Pf (and so B/PB it-
self) has a nilpotent element, say u;. Extend it to a basis {u1,---,u,} of
B/PB. As uju; is nilpotent, one has tr(uju;) = 0 for all . Therefore,
disc(uq,---,u,) = 0 and so for the other basis too, one has disc(vy,-- -, v,)
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= 0. In other words, P D Dp/4. This completes the proof.

4. Finiteness of class number and Minkowski’s bound

In this section, we shall show that the class group of an algebraic number
field is finite. Its order, called the class number, gives a measure of the
deviation from the unique factorisation property. Although the finiteness is
easy to establish, the easy proof gives a somewhat large bound. A much
better bound was obtained by Minkowski using a geometric method. We
shall discuss Minkowski’s method and in the next section, we shall apply it
to prove a theorem of Dirichlet on the structure of units of a number field.

Theorem. For an algebraic number field K, the class group is finite.

Proof. Fix an integral basis {vi,---,v,} of Ok. Let I # 0 be any ideal
and consider the subset S of Ok consisting of all Y7 ; m;v; with 0 < m; <
N(I)'/". Evidently, # S > N(I) = # (Ok/I). Therefore, there exist
a # b € § such that a —b € I. Notice that a — b = }_, m;v; for some integers
m; which satisfy | m; |< N(I)'/". Let us compute its norm over Q. We
have Ng/q(a —b) =II,; 0i(3°; mjv;) where o;’s are the embeddings of K in
C. Therefore,

| Niala=0) | =T[I X moi(w) | <TIX Imy| la(w))| <NO)C,
% J ]

where C = [[; 3, | 0i(vj) | is a constant independent of the ideal I; it
depends only on K. Now a —b € I = (a — b) = IJ for some non-zero ideal
J. Thus Ng/q(a—b) = N(I)N(J) < N(I)C and we get N(J) < C. As J is
just the inverse of I in the class group, it runs through the class group when
I does. Therefore, we have shown that any element of the class group has a
representative ideal whose norm is at the most the constant C'. As there are
only finitely many ideals with the norm bounded by an absolute constant,
the theorem follows.

Example. Let K = Q(v/2). Then, Ox = Z[v/?2] has {1,+/2} as a Z-basis.
The constant C above is C = (1 + 1/2)? = 5.8.... So, every ideal has a
representative I with norm at the most 5. Thus, the prime ideals dividing
must have norm < 5 which means that they are among those lying over 2,3
and 5. Now, 3,5 are unramified and must, therefore, be either inert or split.
As 2 is not a square mod 3, 3 remains prime. So is the case with 5 also.
Finally, 2 is the square of the prime ideal (v/2). Thus, we have shown that
every ideal class contains a representative ideal which is principal. Thus, the
class group is trivial, i.e. Ok is a PID.



NUMBER FIELDS 31

The bound given above is somewhat large. One can do somewhat better;
proceeding as in the proof of the theorem, one can write out the matrix
M of a — b with respect to the basis {v1,--+,v,}. M = Y, m;M; where
M; is the matrix of v; with respect to the same ordered basis. Note that
all the entries of M; are integers whose absolute values are bounded by a
constant depending only on the basis {v;} and not on the ideal I. Then,
by definition, | Ng/q(a —b) | = |det(M)| < CoN(I). This constant
Cy is better than the constant C in the proof of the theorem. For example,
when K = Q(+/-5), we have C = 10, Cy = 6. But, in fact, the method we
shall discuss below, due to Minkowski, gives a much better bound. In this
example, it will give a constant less than 3 which will enable us to conclude
quite easily that the class number is 2.

Definitions. A lattice A in the FEuclidean space R" is the Z-span of an
R-basis of R". Clearly, the group GL,(R) of invertible n x n matrices acts
transitively on the set of all lattices. Thus, any lattice can be identified with
gZ™ for some g € GL,(R). Given a lattice A, a fundamental parallelotope
for it is the set of vectors {}_;tie; : 0 < t; < 1} for any basis {e;} of
A. As any two Z-bases are transforms of each other under a matrix in
GL,(Z) = {y € M,(Z) : det(y) = £1}, the volume of the lattice A = gZ™
is the well-defined non-zero real number | det(g) |. We write Vol(R"/A) for
the volume of A.

Lemma. Let K be an algebraic number field. Let o1, -+ ,0.,T1, ", Ts,
T1,+-+,Ts be the embeddings of K in C. Here, the o;’s take real values and
the 7;’s take nonreal values. Then, the map 6 : 1+

(@1(2), -+, 00 (1), Re(T1(2)), - - - Re(7s(2)), Im(71(£)), - - -, Im(75()))

from K to R"™ embeds Ok as a lattice. Its volume is /| disc(K) |/2%. In
particular, K embeds densely in R™.

Proof. Let vy,---,v, be a Z-basis of Og. We show that 6(v1),---,0(vy,)
are linearly independent. If we write & = (61,---,6,) to mean the obvious,
look at the matrix M with m;; = 6;(v;). Elementary column operations
transform M to the matrix whose i-th row is

(1/23)°(o1(vi), -+, op(v4), 1 (v1), T1 (i), - - -, Ts (Vi), Ts (v3))

This gives the result that the determinant of M is (1/27)%y/disc(K); so
Vol(R" /0(Ok)) = /| disc(K) |/25.

Definition and Remarks. Given a positive integer n and non-negative
integers r,s such that r + 2s = n, define a norm on R™ by N, (z) =
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oy wp(w?y + 225) - (22_; + 22). Thus, in the situation of a number
field K of degree n over Q and r, 5,0 as above, we have N, 5(0(t)) = Ng/q(t)
for all t € Ok.

Theorem (Minkowski). FEwvery lattice A in R"™ contains © # 0 with
Npo(z) < 2 (2)*Vol(R"/A).

We shall give the proof of this important theorem after pointing out some
very useful consequences of it.

Corollary. Let [K : Q] = n and r,s have the usual meaning. Then,
(a) Every non-zero ideal I contains x # 0 with

(é)s | disc(K) | N(I).

n!
N < —
IN@) 1< (2

= pn

(b) Every ideal class contains an ideal I with

Ny < B (ff | disc(K) |.

—nt A\

(c) disc(K) > 1 if K # Q.

(d) If K # Q, then some prime number p ramifies in K.

Proof. Using the lemma above, O can be viewed as a lattice in R™ whose
volume has also been computed. Therefore, both (a) and (b) are direct conse-

quences of Minkowski’s theorem. To prove (c), just observe that the number
nL(Z)* > L(2)m > 1 for n > 1. Finally, (d) follows from Dedekind’s theo-

nt n!
rem which showed that prime numbers which divide the discriminant of K

must ramify in K.

Example/Exercise. Let K = Q(v/—5). Then, the above constant (called
Minkowski’s constant) on the right hand side of (b) shows that each ideal
class contains a representative ideal I of norm N(I) < % < 3. So, one
need only consider the ideals lying above 2 viz., (2,1 4+ +/=5). It is easy to
see that these are not principal and thus it follows that K has class number
2.

Using this fact, show that the equation x> +5 = y3 has no integral solutions.

For the proof of Minkowski’s theorem, one needs the following beautiful
lemma on convex bodies which is of independent interest:

Minkowski’s lemma. Let A be a lattice in R™, E a convex, measurable,
centrally symmetric subset of R"™ such that Vol(E) > 2"Vol(R"/A). Then,
FE contains some non-zero point of A. Further, if E is also compact, then
the strict inequality in the hypothesis can be weakened to >.
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Proof. Let I be a fundamental parallelotope for A. Then, we have R" =
Uyea(z + F). Now, 3E = | |,eA(3E N (z + F)). By the hypothesis,

Vol(F) < Vol(E)/2" = Vol(E/2)

Z Vol(%E’ N(z+F))
€A

- Vol((%E _5)NF)
TEA

Therefore, as z runs over A, the sets (3 E — z) N F are not all disjoint. Thus,
we get x # y in A so that %a—w =f= %b—yforsome a,be E,f € F.
Clearly, then we get 0 # xz —y = %a + %(—b) € ENA. This proves the main
assertion. For the case when E is also compact, one may consider the sets
(1+ %)E and obtain lattice points z,, # 0 as above. Evidently, then all the
Tn, € 2E N A which is a finite set. Thus, for some ng, 5, € (14 1)E for
infinitely many n i.e. z,, € E = E. The proof is complete.

Corollary. Suppose that Q) is a compact, convez, centrally symmetric subset
of R™ such that Vol(2) > 0 and such that | Ny s(a) |[< 1 Va € Q. Then,
every lattice A contains a non-zero vector x with

Vol(R"™/A)
N, <V
[ Nesl2) 1< 2 =70y
The proof is immediate from Minkowski’s lemma applied to the set E = tQ
where t" = 2" 7V0‘l/(fl{(;/)A)
O

Proof of Minkowski’s theorem. Let {2 be the subset of R" defined by
the inequality 337, | z; | +24/(22, + 22,5) + - + 2¢/(z2_, +22) < n.
We shall prove that Q is convex, and that | N, s(a) [< 1V a € . Then, we
shall compute its volume and apply the above corollary.

Step I: Q is convex

;From the definition of €2, it is easy to see that if midpoints of any two points
of Q are in 2, then Q is convex. Let (z1,---,Zp), (Y1, ,Yn) € Q. Then, we

have
Z | @i | +2¢/ (274, +a2,9) +- + 24/ (zp_y +22) <m,

i=1

'8
Dolwil 42/ (Wi +v2o) +- -+ 2y (y2_ +y2) <n.
=1

Adding and using the triangle inequality

V0@ +02) +1/(@ +d2) > /((a+ )2 + (b +d)?)
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one concludes that (25 ... Zutin) ¢ ()

Step II: | Ny s(a) |< 1V a.

This is clear from the usual inequality A.M > G.M.

Step III: Vol(Q) = E0)(x)s,

Let V; 4(t) denote the volume of the set ; defined in a similar fashion to
Q but with n replaced by the real number ¢ > 0. It is easy to see from the

definition that V; 5(t) = V,s(1)t"+25. Now, if r > 0, then

1
Vis(l) = 2/0 Vic1,s(1 —2)dz

L 2
= 2V 14(1) [ (1 —a) " dr =
A T F

Vrfl,s(l)-

Proceeding inductively, one obtains finally that V;. (1) = W
Similarly, if s > 0, then

s = [ Vo1 (1—2y/(@2 +?) ) dady
’ w2+y2<1/4

o r1/2

= /0 | Vo,5-1(1 — 2p)pdpd®.

Once again, iterating inductively, one finally obtains Vj 4(1) = (%)S@
Then, Vol() = t"V;4(1) = t"2"~*7*L, which gives that Vol(Q = Q,) =
n"%ﬁ% = (2;’!)”(%)3. The proof of Step IIT and, along with it, that of
Minkowski’s theorem, is complete.

5. Dirichlet’s unit theorem

In this section, we use Minkowski’s method to find the structure of the
units in any algebraic number field K.

Recall that we embedded Ok as a lattice Ag in R™ by means of 0 : a —
(o1(a),--+,0r(a), Reti(a), Imri(a),- -, Rets(a), Im7s(a)). Here n = [K :
Q| and o4, --,0p, 71,71, -, 7Ts,Ts are the distinct embeddings of K in C.
Clearly, if @ is a unit in Ok, then both v and uw~' map to vectors which
are linearly dependent. Thus, one needs to go to a subspace of R™ to be
sensitive to the units.

Lemma. Consider the composite map L in
O COx\05 Ag\0— R

where the last map is (z1,--+,%y) —
(log(| 1 ), -+, log(] z; |),log(z7 1y + 27 1s), -+, log(zh_y +a7) ). Then,
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(i) the image of L : O — R"*% is contained in the hyperplane H of vectors
(X1, ,Tr+s) such that E:if z; = 0.

(#i) L is a homomorphism.

(iii) Im(L) = Z¢ for some d <r + s — 1.

(i) Ker(L) = pu(K), the group of roots of unity in K and O% = u(K) x Z4
for somed <r+s—1.

Proof. (i) follows since units must have norm +1. (ii) is obvious. To see
that (iii) holds, let R be any bounded region in H C R""* and let L(u) € R.
Then, all the conjugates of u have absolute values bounded by a constant
depending on R. As the coefficients of the minimal polynomial of u are
symmetric functions of the various conjugates of wu, this means that there
are only finitely many polynomials satisfied by units whose images under L
lie in the bounded region R. In other words, R NIm(L) is finite i.e. Im(L)
is discrete in H. Now, (iii) follows by the easy exercise below. The first
assertion of (iv) is trivial and the second one follows because one can check
easily that units u,---,uy mapping under L to a basis of Im(L) have to
generate a free abelian group.

Exercise. Show by induction on n that a discrete subgroup of R™ is iso-
morphic to Z% for some d < m.

Dirichlet’s unit theorem. O} = u(K) x V where V = Z" 571,

In other words, the image of O under L is actually a lattice in H. This
will be seen by actually showing the existence of r + s — 1 units whose images
under L are linearly independent.

Lemma. Fiz any k <r+s. Then, ¥V a # 0 in Ok, there exists B € Ok
with | N(B) |< (2)*y/[ disc(K) | and satisfies B; < o; ¥V i # k. Here o, 3;
denote the co-ordinates of their images under L.

Proof. Let ¢; be constants such that 0 < ¢; < e V ¢ # k and ¢ =
(2)s/Tdisc(K) [/ [L; 2« ci- Then, consider the set & C R™ defined by | z; |<
ci, Vi < rand 22, +22, < cy1,0o0,22 |+ 22 < g VOI(Q) =
(2¢1) -+ 2ep)(mery1) -+ (merys) = 2"Vol(R™/Ap). Applying Minkowski’s
lemma, one gets some t # 0 in 2N Ag. Then, choose 8 € Ok corresponding
to ¢.

Lemma. Fiz any k < r+s. Then, 3u € O} such that L(u) = (u1,- -, Ur4s)
satisfies u; <0V i # k.
Proof. Start with any a1 # 0 in Ok and apply the previous lemma to get

some [ as above; call that ay. Repetitively, one gets a sequence {«a, } in O
such that for all 4 # k, the i-th co-ordinate of L(ayp+1) is less than that of



36 B. SURY

L(ay,). By the lemma, | N(a;,) | are bounded above as n — oco. Therefore,
the principal ideals (o) are only finitely many. Taking any n < m so that
(an) = (aum), we have a,;, = a,u for some unit u. Evidently, u does the job.

The proof of Dirichlet’s unit theorem is completed as follows. Observe
that the units ug,k < r + s, obtained by the previous lemma have the
property that the (r 4 s) x (r 4 s) matrix A = (a;;) whose k-th row is L(uy)
satisfies a;; < 0 for all 4 # j and each row sums to 0. It is an easy elementary
exercise to see that the rank of A must be r+ s — 1.
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