
Die ganzen zahlen hat Gott gemacht

Polynomials with integer values

B.Sury

A quote attributed to the famous mathematician L.Kronecker is ‘Die Ganzen
Zahlen hat Gott gemacht, alles andere ist Menschenwerk.’ A translation
might be ‘God gave us integers and all else is man’s work.’ All of us are
familiar already from middle school with the similarities between the set
of integers and the set of all polynomials in one variable. A paradigm of
this is the Euclidean (division) algorithm. However, it requires an astute
observer to notice that one has to deal with polynomials with real or rational
coefficients rather than just integer coefficients for a strict analogy. There
are also some apparent dissimilarities - for instance, there is no notion among
integers corresponding to the derivative of a polynomial. In this discussion,
we shall consider polynomials with integer coefficients. Of course a complete
study of this encompasses the whole subject of algebraic number theory, one
might say. For the most of this article (in fact, with the exception of 2.3,2.4
and 4.3), we stick to fairly elementary methods and address a number of
rather natural questions. To give a prelude, one such question might be
”if an integral polynomial takes only values which are perfect squares, then
must it be the square of a polynomial ?” Note that for a natural number n,

the polynomial

(

X
n

)

= X(X−1)···(X−n+1)
n(n−1)···1 takes integer values at all integers

although it does not have integer coefficients.

§ 1 Prime values and irreducibility

The first observation about polynomials taking integral values is the

Lemma 1.1

A polynomial P takes Z to Z if, and only if, P (X) = a0 + a1

(

X
1

)

+ · · · +

an

(

X
n

)

for some ai in Z.

Proof: The sufficiency is evident. For the converse, we first note that
any polynomial whatsoever can be written in this form for some n and
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some (possibly nonintegral) a′
is. Writing P in this form and assuming that

P (Z) ⊂ Z, we have

P (0) = a0 ∈ Z

P (1) = a0 + a1 ∈ Z

P (2) = a0 + a1

(

2
1

)

+ a2 ∈ Z

and so on. Inductively, since P (m) ∈ Z∀m, we get ai ∈ Z ∀i.

Corollary 1.2

If a polynomial P takes Z to Z and has degree n, then n!P (X) ∈ Z[X].

Lemma 1.3

A nonconstant integral polynomial P (X) cannot take only prime values.
Proof: If all values are composite, then there is nothing to prove. So,
assume that P (a) = p for some integer a and prime p. Now, as P is non-
constant, lim

n→∞
|P (a+np)| = ∞. So, for big enough n, |P (a+np)| > p. But

P (a + np) ≡ P (a) ≡ 0 mod p, which shows P (a + np) is composite.

Remark 1.4

Infinitely many primes can occur as integral values of a polynomial. For
example, if (a, b) = 1, then the well-known (but deep) Dirichlet’s theorem
on primes in progression shows that the polynomial aX + b takes infinitely
many prime values. In general, it may be very difficult to decide whether
a given polynomial takes infinitely many prime values. For instance, it is
not known if X2 + 1 represents infinitely many primes. In fact, there is no
polynomial of degree ≥ 2 which takes infinitely many prime values.

Lemma 1.5

If P is a nonconstant, integral-valued polynomial, then the number of prime
divisors of its values {P (m)}m∈Z , is infinite i.e. not all terms of the sequence
P (0), P (1), · · · can be built from finitely many primes.
Proof: It is clear from the note above that it is enough to prove this for

P (X) ∈ Z[X], which we will henceforth assume. Now, P (X) =
n
∑

i=0
aiX

i

where n ≥ 1. If a0 = 0, then clearly P (p) ≡ 0 mod p for any prime p. If
a0 6= 0, let us consider for any integer t, the polynomial

P (a0tX) =
n

∑

i=0

ai(a0tX)i = a0

{

1 +
n

∑

i=1

aia
i−1
0 tiXi

}

= a0Q(X).
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There exists some prime number p such that Q(m) ≡ 0 mod p for some m
and some prime p, because Q can take the values 0,1,-1 only at finitely many
points. Since Q(m) ≡ 1 mod t, we have (p, t) = 1. Then P (a0tm) ≡ 0 mod p.
Since t was arbitrary the set of p arising in this manner is infinite.

Remark 1.6

(a) Note that it may be possible to construct infinitely many terms of the
sequence {P (m)}m∈Z using only a finite number of primes. For example
take (a, d) = 1, a ≥ d ≥ 1. Since, by Euler’s theorem, aϕ(d) ≡ 1 mod d,

the numbers a(aϕ(d)n−1)
d ∈ Z ∀ n. For the polynomial P (X) = dX + a, the

infinitely many values P ( a
d (aϕ(d)n − 1)) = aϕ(d)n+1 have only prime factors

coming from primes dividing a.
(b) In order that the values of an integral polynomial P (X) be prime for
infinitely many integers, P (X) must be irreducible over Z and of content
1. By content, we mean the greatest common divisor of the coefficients. In
general, it is difficult to decide whether a given integral polynomial is irre-
ducible or not. We note that the irreducibility of P (X) and the condition
that it have content 1, are not sufficient to ensure that P (X) takes infinitely
many prime values. For instance, the polynomial Xn + 105X + 12 is irre-
ducible, by Eisenstein’s criterion (see box). But, it cannot take any prime
value because it takes only even values and it does not take either of the
values ±2 since both Xn + 105X + 10 and Xn + 105X + 14 are irreducible,
again by Eisenstein’s criterion.

Lemma 1.7

Let a1, · · · , an be distinct integers.
Then P (X) = (X − a1) · · · (X − an) − 1 is irreducible.
Proof: Suppose, if possible, P (X) = f(X)g(X) with deg .f,deg .g < n.
Evidently, f(ai) = −g(ai) = ±1 ∀1 ≤ i ≤ n. Now, f(X) + g(X) being a
polynomial of degree < n which vanishes at the n distinct integers a1, · · · , an

must be identically zero. This gives P (X) = −f(X)2 but this is impossible
as can be seen by comparing the coefficients of Xn.

Exercise 1.8

Let n be odd and a1, · · · , an be distinct integers. Prove that (X−a1) · · · (X−
an) + 1 is irreducible.

Let us consider the following situation. Suppose p = an · · · a0 is a prime
number expressed in the usual decimal system i.e. p = a0 + 10a1 + 100a2 +
· · · + 10nan, 0 ≤ ai ≤ 9. Then, is the polynomial a0 + a1X + · · · + anXn
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irreducible? This is, in fact, true and, more generally

Lemma 1.9

Let P (X) ∈ Z[X] and assume that there exists an integer n such that
(i) the zeros of P lie in the half plane Re(z) < n − 1

2 .
(ii) P (n − 1) 6= 0
(iii) P (n) is a prime number.
Then P (X) is irreducible.
Proof: Suppose, if possible P (X) = f(X)g(X) over Z. All the zeros of
f(X) also lie in Re(z) < n− 1

2 . Therefore, |f(n− 1
2−t)| < |f(n− 1

2 +t)|∀t > 0.
Since f(n − 1) 6= 0 and f(n − 1) is integral, we have |f(n − 1)| ≥ 1. Thus
|f(n)| > |f(n− 1)| ≥ 1. A similar thing holding for g(X), we get that P (n)
has proper divisors f(n), g(n) which contradicts our hypothesis.

§ 2 Irreducibility and congruence modulo p

For an integral polynomial to take the value zero at an integer or even to
be reducible, it is clearly necessary that these properties hold modulo any
integer m. Conversely, if P (X) has a root modulo any integer, it must itself
have a root in Z. In fact, if P (X) ∈ Z[X] has a linear factor modulo all
but finitely many prime numbers, the P (X) itself has a linear factor. This
fact can be proved only by deep methods viz. using the so-called Ćebotarev
density theorem. On the other hand, (see lemma ..) it was first observed
by Hilbert that the reducibility of a polynomial modulo every integer is
not sufficient to guarantee its reducibility over Z. Regarding roots of a
polynomial modulo a prime, there is following general result due to Lagrange
:

Lemma 2.1

Let p be a prime number and let P (X) ∈ Z[X] be of degree n. Assume that
not all coefficients of P are multiples of p. Then the number of solutions
mod p to P (X) ≡ 0 mod p is, at the most, n.
The proof is obvious using the division algorithm over Z/p. In fact, the
general result of this kind (provable by the division algorithm again) is that
a nonzero polynomial over any field has at the most its degree number of
roots.

Remark 2.2
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Since 1, 2, · · · , p − 1 are solutions to Xp−1 ≡ 1 mod p, we have

Xp−1 − 1 ≡ (X − 1)(X − 2) · · · (X − (p − 1)) mod p

For odd p, putting X = 0 gives Wilson’s theorem that (p− 1)! ≡ −1 mod p.

Note that we have observed earlier that any integral polynomial has a root
modulo infinitely many primes. However, as first observed by Hilbert, the
reducibility of a polynomial modulo every integer does not imply its re-
ducibility over Z. For example, we have the following result:

Lemma 2.3

Let p, q be odd prime number such that ( p
q ) = ( q

p) = 1 and p ≡ 1 mod 8.

Here (p
q ) denotes the Legendre symbol defined to be 1 or −1 according as p is

a square or not modulo q. Then, the polynomial P (X) = (X 2−p−q)2−4pq
is irreducible whereas it is reducible modulo any integer.
Proof:

P (X) = X4 − 2(p + q)X2 + (p − q)2

= (X −√
p −√

q)(X +
√

p +
√

q)(X −√
p +

√
q)(X +

√
p −√

q).

Since
√

p,
√

q,
√

p±√
q,
√

pq are all irrational, none of the linear or quadratic
factors of P (X) are in Z[X] i.e. P (X) is irreducible. Note that it is enough
to show that a factorisation of P exists modulo any prime power as we
can use Chinese reminder theorem to get a factorisation modulo a general
integer.
Now, P (X) can be written in the following ways:

P (X) = X4 − 2(p + q)X2 + (p − q)2

= (X2 + p − q)2 − 4pX2

= (X2 − p + q)2 − 4qX2

= (X2 − p − q)2 − 4pq.

The second and third equalities above show that P (X) is reducible modulo
any pn and any qn. Also since p ≡ 1 mod 8, p is a quadratic residue modulo
any 2n and the second equality above again shows that P (X) is the difference
of two squares modulo 2n, and hence reducible mod 2n.

If ` is a prime 6= 2, p, q, let us show now that P (X) is reducible modulo ln

for any n.
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At least one of ( p
` ), (

q
` ) and (pq

` ) is 1 because, by the product formula for
Legendre symbols, ( p

` ) · (
q
` ) · (

pq
` ) = 1. According as ( p

` ), (
q
` ) or (pq

` ) = 1, the
second, third or fourth equality shows that P (X) is reducible mod `n for
any n.

We end this section with a result of Schur whose proof is surprising and
elegant as well. This is:

Schur’s theorem 2.4

For any n, the truncated exponential polynomial En(X) = n!(1 + X + X2

2! +
· · · + Xn

n! ) is irreducible over Z.

Just for this proof, we need some nontrivial number theoretic facts. A
reader unfamiliar with these notions but one who is prepared to accept at
face value a couple of results can still appreciate the beauty of Schur’s proof.
Here is where we have to take recourse to some very basic facts about prime
decomposition in algebraic number fields. Start with any (complex) root α
of f and look at the field K = Q(α) of all those complex numbers which
can be written as polynomials in α with coefficients from Q. The basic
fact that we will be using (without proof) is that any nonzero ideal in ‘the
ring of integers of K’ (i.e., the subring OK of K made up of those elements
which satisfy a monic integral polynomial) is uniquely a product of nonzero
prime ideals and a prime ideal can occur only at the most the ‘degree’
times. This is a good replacement for K of the usual unique factorisation
of natural numbers into prime numbers. The proof also uses a fact about
prime numbers observed by Sylvester but is not trivial to prove.
Sylvester’s theorem

If m ≥ r, then (m + 1)(m + 2) · · · (m + r) has a prime factor p > r.
The special case m = r is known as Bertrand’s postulate.

Proof of Schur’s theorem

Suppose, if possible, that En(X) = f(X)g(X) for some nonconsant, irre-
ducible integral polynomial f . Let us write f(X) = a0 + a1X + · · · + Xr

(evidently, we may take the top coefficients of f to be 1).
Now, the proof uses the following observation which is interesting in its own
right:
Observation: Any prime dividing the constant term a0 of f is less than
the degree r of f .
To see this, note first that N(α), the ‘norm of α’ (a name for the product of
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all the roots of the minimal polynomial f of α) is a0 upto sign. So, there is a
prime ideal P of OK so that (α) = P kI, (p) = P lJ where I, J are indivisible
by P and k, l ≥ 1. Here, (α) and (p) denote, respectively, the ideal of OK

generated by α and p. Since En(α) = 0, we have

0 = n! + n!α + n!α2/2! + · · · + αn

We know that the exact power of p dividing n! is

hn = [n/p] + [n/p2] + · · · · · ·

Thus, in OK , the ideal (n!) is divisible by P lhn and no higher power of
P . Similarly, for 1 ≤ i ≤ n, the ideal generated by n!αi/i! is divisible by
P lhn−lhi+ki. Because of the equality

−n! = n!α + n!α2/2! + · · · + αn,

it follows that we cannot have lhn − lhi + ki cannot be strictly bigger than
lhn which is the exact power of P dividing the left hand side. Therefore,
there is some i so that −lhi + ki ≤ 0. Thus,

i ≤ ki ≤ lhi = l([i/p] + [i/p2] + · · ·) <
li

p − 1

Thus, p − 1 < l ≤ r i.e., p ≤ r. This confirms the observation.
To cotinue with the proof, we may clearly assume that the degree r of f at
most n/2. Now, we use Sylvester’s theorem to choose a prime q > r dividing
the product n(n−1) · · · (n−r+1). Note that we can use this theorem because
the smallest term n− r + 1 of this r-fold consecutive product is bigger than
r as r ≤ n/2. Note also that the observation tells us that q cannot divide
a0. Now, we shall write En(X) modulo the prime q. By choice, q divides
the coefficients of X i for 0 ≤ i ≤ n − r.
So, f(X)g(X) ≡ Xn + n! Xn−1

(n−1)! + · · · + n! Xn−r+1

(n−r+1)! mod q.

Write f(X) = a0 + a1X + · · · + Xr and g(X) = b0 + b1X + · · · + Xn−r.
The above congruence gives a0b0 ≡ 0, a0b1 + a1b0 ≡ 0 etc. mod q until the
coefficient of Xn−r of f(X)g(X). As a0 6≡ 0 mod q, we get recursively (this
is just like the proof of Eisenstein’s criterion - see box) that

b0 ≡ b1 ≡ · · · bn−r ≡ 0 mod q

This is impossible as bn−r = 1. Thus, Schur’s assertion follows.

§ 3 Polynomials taking square values
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If an integral polynomial takes only values which are squares, is it true that
the polynomial itself is a square of a polynomial? In this section, we will
show that this, and more, is indeed true.

Lemma 3.1

Let P (X) be a Z-valued polynomial which is irreducible. If P is not a con-
stant, then there exist arbitarily large integers n such that P (n) ≡ 0 and
P (n) 6≡ 0 mod p2 for some prime p.
Proof: First, suppose that P (X) ∈ Z[X]. Since P is irreducible, P and
P ′ have no common factors. Write f(X)P (X) + g(X)P ′(X) = 1 for some
f, g ∈ Z[X]. By lemma 1.5, there is a prime p such that P (n) ≡ 0 mod p
where n can be as large as we want. So, P ′(n) 6≡ 0 mod p as f(n)P (n) =
g(n)P ′(n) = 1. Since P (n + p) − P (n) ≡ P ′(n) mod p2, either P (n + p) or
P (n) is 6≡ 0 mod p2. To prove the result for general P , one can replace P
by m! · P where m = deg P .

Lemma 3.2

Let P (X) be a Z-valued polynomial such that the zeros of smallest multiplic-
ity have multiplicity m. Then, there exist arbitrarily large integers n such
that P (n) ≡ 0 mod pm, P (n) 6≡ 0 mod pm+1 for some prime p.
Proof: Let P1(X), · · · , Pr(X) be the distinct irreducible factors of P (X).
Write P (X) = P1(X)m1 · · ·Pr(X)mr with m = m1 ≤ · · ·mr. By the above
lemma, one can find arbirarily large n such that for some prime p, P1(n) ≡ 0
mod p, P1(n) 6≡ 0 mod p2 and, Pi(n) 6≡ 0 mod p for i > 1. Then, P (n) ≡ 0
mod pm and 6≡ 0 mod pm+1.

Corollary 3.3

If P (X) takes at every integer, a value which is the k-th power of an integer,
then P (X) itself is the k-th power of a polynomial.
Proof: If P (X) is not an exact k-th power, then one can write P (X) =
f(X)kg(X) for polynomials f, g so that g(X) has a zero whose multiplicity
is < k. Once again, we can choose n and a prime p such that g(n) ≡ 0 mod
p, 6≡ 0 mod pk. This contradicts the fact that P (n) is a k-th power.

§ 4 Cyclotomic polynomials

These were referred to already in an earlier article ([1]). It was also shown
there that one could use these polynomials to prove the existence of infinitely
many parimes congruent to 1 modulo n for any n. For a natural number
d, recall that the cyclotomic polynomial Φd(X) is the irreducible, monic
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polynomial whose roots are the primitive d-th roots of unity i.e. Φd(X) =
∏

a≤d:(a,d)=1(X − e2πa/d). Note that Φ1(X) = X − 1 and that for a prime

p, Φp(X) = Xp−1 + · · · + X + 1. Observe that for any n ≥ 1, Xn − 1 =
∏

d/n Φd(X).

Exercise 4.1

(i) Prove that for any d, Φd(X) has integral coefficients.
(ii) Prove that for any d, Φd(X) is irreducible over Q.

Factorising an integral polynomial into irreducible factors is far from easy.
Even if we know the irreducible factors, it might be difficult to decide
whether a given polynomial divides another given one.

Exercises 4.2

(a) Given positive integers a1 < · · · < an, consider the polynomials P (X) =
∏

i>j(X
ai−aj − 1) and Q(X) =

∏

i>j(X
i−j − 1). By factorising into cyclo-

tomic polynomials, prove that Q(X) divides P (X). Conclude that
∏

i>j
ai−aj

i−j
is always an integer.
(b) Consider the n× n matrix A whose (i, j)-th entry is the Gaussian poly-

nomial

[

ai

j − 1

]

.

Compute detA to obtain the same conclusion as in part (a).
Here, for m ≥ r > 0, the Gaussian polynomial is defined as
[

m
r

]

= (Xm−1)(Xm−1−1)···(Xm−r+1−1)
(Xr−1)(Xr−1−1)···(X−1)

. Note that

[

m
r

]

=

[

m − 1
r − 1

]

+

Xr

[

m − 1
r

]

.

It seems from looking at Φp(X) for prime p as though the coefficients of
the cyclotomic polynomials Φd(X) for any d are all 0, 1 or −1. However,
the following rather amazing thing was discovered by Schur. His proof uses
a consequence of a deep result about prime numbers known as the prime
number theorem. The prime-number theorem tells us that π(x) ∼ x/log(x)
as x → ∞. Here π(x) denotes the number of primes until x. The reader
does not need to be familiar with the prime number theorem but is urged to
take on faith the consequence of it that for any constant c, there is n such
that π(2n) ≥ cn.
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Proposition 4.3

Every integer occurs as a coefficient of some cyclotomic polynomial.
Proof: First, we claim that for any integer t > 2, there are primes p1 <
p2 < · · · < pt such that p1 + p2 > pt. Suppose this is not true. Then, for
some t > 2, every set of t primes p1 < · · · < pt satisfies p1 + p2 ≤ pt. So,
2p1 < pt. Therefore, the number of primes between 2k and 2k+1 for any k is
less than t. So, π(2k) < kt. This contradicts the prime-number theorem as
noted above. Hence, it is indeed true that for any integer t > 2, there are
primes p1 < p2 < · · · < pt such that p1 + p2 > pt.
Now, let us fix any odd t > 2. We shall demonstrate that both −t + 1 and
−t + 2 occur as coefficents. This will prove that all negative integers occur
as coefficients. Then, using the fact that for an odd m > 1, Φ2m(X) =
Φm(−X), we can conclude that all integers are coefficients.
Consider now primes p1 < p2 < · · · < pt such that p1+p2 > pt. Write pt = p
for simplicity. Let n = p1 · · · pt and let us write Φn(X) modulo Xp+1. Since
Xn − 1 =

∏

d/n Φd(X), and since p1 + p2 > pt, we have

Φn(X) ≡
t

∏

i=1

1 − Xpi

1 − X
≡ (1 + · · · + Xp)(1 − Xp1) · · · (1 − Xpt)

≡ (1 + · · · + Xp)(1 − Xp1 − · · · − Xpt) mod Xp+1

Therefore, the coefficients of Xp and Xp−2 are 1 − t and 2 − t respectively.
This completes the proof. Note that in the proof, we have used the fact that
if P (X) = (1 − Xr)Q(X) for a polynomial Q(X), then Q(X) = P (X)(1 +
Xr + X2r + · · · + · · ·) modulo any Xk.

Exercise 4.4

(a) Let A = (aij) be a matrix in GL(n,Z) i.e., both A and A−1 have integer
entries. Consider the polynomials pi(X) =

∑n
j=0 aijX

j for 0 ≤ i ≤ n.
Prove that any integral polynomial of degree at most n is an integral linear
combination of the pi(X). In particular, if a0, . . . , an ∈ Q are distinct, show

that any rational polynomial of degree at most n is of the form
n
∑

i=0
λi(X+ai)

n

for some λi ∈ Q.

(b) Prove that 1+X+. . .+Xn =
[n
2
]

∑

i=0
(−1)i

(

n − i
i

)

Xi(1+X)n−2i. Conclude

that
∑

i≥0

(

n − i
i

)

= 1+ρ+···+ρn

(1+ρ)n where ρ is either root of X2 + 3X + 1 = 0.

Further, compute
∑

i≥0
(−1)i

(

n − i
i

)

.
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Remark 4.5

It is easily seen by induction that
∑

i≥0

(

n − i
i

)

is just the (n+1)-th Fibonacci

number Fn+1. Thus, exercise (b) provides an expression for Fn+1. This
expression makes it easy to prove the following identities:
(a) Fn + Fn+1 = Fn+2.
(b) Fn+1Fn−1 = F 2

n + (−1)n.
(c)

∑

Fnzn = z
1−z−z2 .

(d) F 2
n + F 2

n+1 = F2n+1.

Notice that only (a) seems obvious from the expression Fn+1 =
∑

i≥0

(

n − i
i

)

.

As we remarked earlier, even for a polynomial of degree 2 (like X 2 + 1) it is
unknown whether it takes infinitely many prime values. A general conjecture
in this context is:

Conjecture 4.6 (Bouniakowsky, Schinzel and Sierpinski)
A nonconstant irreducible integral polynomial whose coefficients have no
nontrivial common factor always takes on a prime value.

It is appropriate to recall here that the polynomial X 2 +X +41 takes prime
values at X = −40,−39, . . . , 0, 1, . . . , 39 ([2]). We end with an open question
which is typical of number-theoretic questions - a statement which can be
understood by the proverbial layman but an answer which proves elusive to
this day to professional mathematicians. For any irreducible, monic, integral
polynomial P (X), define its Mahler measure to be M(P ) =

∏

i Max(|αi|, 1)
where the product is over the roots of P . The following is an easy exercise.

Exercise 4.7

M(P ) = 1 if, and only if, P is cyclotomic.

D.H.Lehmer posed the following question:
Does there exist a constant C > 0 such that M(P ) > 1 + C for all noncy-
clotomic (irreducible) polynomials P ?
This is expected to have an affirmative answer and, indeed, Lehmer’s calcula-
tions indicate that the smallest possible value of M(P ) 6= 1 is 1.176280821....,
which occurs for the polynomial

P (X) = X10 + X9 − X7 − X6 − X5 − X4 − X3 + X + 1.

Lehmer’s question can be formulated in terms of discrete subgroups of Lie
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groups. One may not be able to predict when it can be answered but it is
more or less certain that one will need tools involving deep mathematics.

Box item: Eisenstein’s criterion and more

Perhaps the only general criterion known to check whether an integral poly-
nomial of a special kind is irreducible is due to G.Eisenstein, a student of
Gauss and an outstanding mathematician whom Gauss rated above himself.
Eisenstein died when he was 27.
Let f(X) = a0 + a1X + · · · + anXn be an integral polynomial satisfying
the following property with respect to some prime p. The prime p divides
a0, a1, · · · , an−1 but does not divide an. Also, assume that p2 does not divide
a0. Then, f is irreducible.
The proof is indeed very simple high school algebra. Suppose, if possible,
that f(X) = g(X)h(X) = (b0 + b1X + · · · + brX

r)(c0 + c1X + · · · + csX
s)

with r, s ≥ 1. Comparing coefficients, one has

a0 = b0c0, a1 = a0b1 + b0a1, · · · , an = brcs, r + s = n.

Since a0 = b0c0 ≡ 0 mod p, either b0 ≡ 0 mod p or c0 ≡ 0 mod p.
To fix notations, we may assume that b0 ≡ 0 mod p. Since a0 6≡ 0 mod p2,
we must have c0 6≡ 0 mod p. Now a1 = b0c1 + b1c0 ≡ b1c0 mod p; so b1 ≡ 0
mod p. Proceeding inductively in this maner, it is clear that all the bi’s are
multiples of p. This is a manifest contradiction of the fact that an = brcs is
not a multiple of p. This finishes the proof.
It may be noted that one may reverse the roles of a0 and an and obtain
another version of the criterion:
Let f(X) = a0 + a1X + · · · + anXn be an integral polynomial satisfying
the following property with respect to some prime p. The prime p divides
a1, a2, · · · , an but does not divide a0. Also, assume that p2 does not divide
an. Then, f is irreducible.
The following generalisation is similar to prove and is left as an exercise.
Let f(X) = a0 + a1X + · · · + anXn be an integral polynomial satisfying the
following property with respect to some prime p. Let t be such that the prime
p divides a0, a1, · · · , an−t but does not divide an. Also, assume that p2 does
not divide a0. Then, f is either irreducible or it has a nonconstant factor
of degree less than t.
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