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Consider the following problem: Mr.A has a cube whose 
faces he wants to paint either red or green. He wants 
to know how many such distinct coloured cubes he can 
make. 

Now, since the cube has 6 faces, and he has 2 colours 
to choose from, the total number of possible coloured 
cubes is 2 6 . But, painting the top face red and all the 
other faces green produces the same result (aesthetically 
speaking), as painting the bottom face red and all the 
other faces green. That is why Mr. A is so confused! 

Trial and error is not the best way to solve this problem. 
We want to find a general method. Consider the set of 
all possible coloured cubes (in this case, these are 2 6 
in number). The rotational symmetries transform the 
cube and, evidently, we would consider two colouring 
patterns to be different only if either cannot be obtained 
from the other by a rotation. In fact, we consider two 

coloured cubes to be equivalent precisely if a rotation is 
all that distinguishes them. To find the various possible 

colour patterns which are inequivalent, we shall exploit 
the fact that the rotational symmetries of the cube have 

the structure of a group. 

Let us explain the above in precise terms. Let D de- 

note a set of objects to be coloured (in our case, the 6 
faces of the cube) and R denote the range of colours (in 
the above case {red, green}). By a colouring of D, one 

means a mapping q~ : D --~ R. 

Let X be the set of colourings, l~ G denotes a group of 
permutations of D, we can define a relation on the set 

of colourings as follows: 
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r ~ r if, and only if, there exists some g C G such 
that  r = r 

By using the fact that  G is a group, it is easy to prove 
that  ~ is an equivalence relation on X,  and so it parti- 
tions X into disjoint equivalence classes. 

Now for each g C G, consider the map ~g : X --+ X 
defined as ~g(r -- Cg-1; it is a bijection from X to itself. 
In other words, for each g C G, we have ~rg E Sym X,  
where Sym X -- the group of all permutat ions  on X.  

Let us define f : G --+ Sym X as f ( g )  = rg. 

Now, 

7rg192(r = r  = Cg~lg~l = rgl(r 
= 

Therefore f is a homomorphism from G to the group of 
permutat ions on X i.e., G can be regarded as a group 
of permutat ions of X.  

Recall that  one says that  a group G acts on a set X if 
there is a homomorphism from G to the  group of all per- 
mutat ions of the set X.  It is clear tha t  the orbits of the  
action described above are precisely the  different colour 
patterns i.e., the  equivalence classes under  ,-~. Therefore, 
we need to find the  number of inequivalent colourings, 
i.e. the number  of equivalence classes of ~ ,  i.e. the  
number of orbits of the action of G on X. Note that ,  
like in the example of the cube we shall consider only 
finite sets D, R. The answer will be provided by a fa- 
mous theorem of Polya. Polya's theorem was published 
first in a paper  of J H Redfield in 1927 and, apparent ly 
no one unders tood this paper until  it was explained by 
F Harary in 1960. Polya's theorem is considered one of 
the most significant papers in 20th century ma themat -  
ics. The article contained one theorem and 100 pages 
of applications. Before stat ing this theorem we will re- 
call what  has come to be generally known as Burnside 's  
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lemma and which will be needed in the proof. Appar- 
ently, it is due to Cauchy but attributed to Burnside by 
Frobenius (see [2] for this bit of history). 

Burnside's  Lemma 

Let C be a group of permutations o / a  set X .  Then, 
x 

number of orbits = ~ E IX~l, ~,here X~ = {x  �9 Xlx" 
xEG 

g = x} ,  the set of  points of  X fixed under g. 

Proof .  

Consider the subset S of X • C consisting of elements 
(x,g) such that  x . g  = x. Then, ISI = ~ IXgl as is 

gcc 
apparent from counting over the various x's correspond- 
ing to a particular g and then summing over the g's. 
Also, counting over the g's corresponding to a particu- 
lar x and then summing over x gives us I SJ = E J C=J, 

xEX 
where C= = {g �9 Gig .  x = x}, the so-called stabiliser 
of x. Note that  each C= is a subgroup. Let the orbits 
in X be X1,)(2, . . .  Xk. But, the stabilizers of elements 
in the same orbit have the same cardinality as they are 
conjugate subgroups. 

k 

Therefore ISl = E E IC=,l. 
i=1  x~EXI 

The assertion on stabilisers holds because, if y = xg, 
then 

Cy = {h e C " yh = y}  = {h e C " xgh = xg}  

= {h �9 C ' x g h g  -1 = x}  = {h �9 C ' g h g  -1 �9 G=} 

= g-lG=g. 

Equating the two expressions for S, we get 

1 k = ~  E IX~l. 
gcG 

To use this lemma for permutation groups, we need the 
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notion of a cycle index. First, recall that any permuta- 
tion a in S,~ has a disjoint cycle decomposition viz., 

O-=(il, ' ' ' , ir~)' ' '(ir~+l, ' ' ' ird+~), 

where the cycles have no index common. 

For instance, in $6, the permutation which interchanges 
1 and 3 and interchanges 2 and 4 can be written as 
(1,3)(2,4)(5)(6). 

Definition: The Cycle Index 

Let G be a group of permutations on a set of n ele- 
ments. Let s l , s2 , . . . , sn  be variables. For g E G, let 
)~i(g) denote the number of/-cycles in the disjoint cy- 
cle decomposition of g. Then, the cycle index of G, de- 
noted by z(G; sl, s2, . . . ,  sn) is defined as the polynomial 
expression 

1 o)'ffg)d'~(g) S~n,~(9) z ( G ; 8 1 , 8 2 , . . . , S n  ) - - j a  I E ~ I  o2 . . .  
gEG 

Examples. 

1. G =  {e,(1 2),(3 4),(1 2)(3 4)}. Then, 

~1 ~ + 2~I~2 + s~ 
z(G; sl, s2, s3, s4) = 4 

2. G =  $ 3 =  {e,(1 2),(1 3),(2 3)(1 2 3),(1 3 2)} 

z(a; ~,  s2, ~3)= !(s~ + 3~1~2 + 2~3) 
6 

In fact, 
z(S~; sl, s 2 , . ,  s~) 

�9 8 k 

= ~ l~Al!2~A2 ! k~Ad Al +2A2+...+kAk=n . . . .  

To see this, look at the number of permutations in S~ 
of the type (A1, A2,. . . ,  Ak). 
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The/-cycles can be arranged amongst themselves in A~! 
ways giving rise to the same permutation. Also, in each 
/-cycle, one can write any one of the i symbols first and, 
therefore, we must also divide by i ~'. 

3. In our example of the cube, G is the group of rotations 
of a cube induced on the set of 6 faces. The rotations of 
the cube which leave it invariant are (see Figure 1): 

(i) 90 degree (clockwise or anti-clockwise) rotations about 
the axes joining the centres of the opposite faces - there 
are 6 such; 

(ii) 180 degree rotations about each of the above axes - 
there are 3 such; 

(iii) 120 degree (clockwise or anti-clockwise) rotations 
about the axes joining the opposite vertices - there are 
8 such; 

(iv) 180 degree rotations about the axes joining the mid- 
points of the opposite edges and; 

(v) the identity. 

The permutations of the 6 .faces induced by these rota- 
tions are as follows. 

zl 
A B 

Figure 1. 

The rotations of type (i) are permutations of the form 
(1, 2, 3, 4) etc. where we have numbered the faces from 
1 to 6. The 6 permutations of this type give the term 
6s~s4 in the cycle index of G. 

Similarly, the types (ii),(iii),(iv) and (v) give the terms 
3sis2,2 2 8s~,2 6s 23 and s~, respectively. Therefore, the cycle 
index of G is 

z(G; . . .  = + + + + 
' ' 2 4  

4. Let G = Cn = cyclic group of order n. 

The cyclic group Cn is regarded as the group of permu- 
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tations of the vertices of a regular n-gon. That  is, it is 
the subgroup of S~ generated by an n-cycle (1, 2 , . . . ,  n). 
Note that ,  for a generator g of S~, the element g~ has 
the same cycle structure as tha t  of g(i,~). Therefore, the  
cycle index is 

�9 . . ~ _  m Sn/d 
n 

_ 1 ~r 
n d/n 

Here, r is Euler 's totient function defined by r  being 
the number of m up to n which are coprime to n. 

5. For n > 2, the dihedral group D~ is defined as the  
group of rotations of the regular n-gon given by n ro- 
tations about  an n-fold axis perpendicular  to the plane 
of the n-gon and reflections about  the n two-fold axes 
in the plane of the  n-gon like the  spokes of a wheel, 
where the angle between consecutive spokes is 2~ or ~-- 

n n 

according as n is odd or. even. It has order 2n. 

It can be regarded as a subgroup of Sn as follows. The  n 
rotations corresponding to the powers of a = (1, 2 , . . . ,  n)  
and the group Dn is the subgroup 

{Id, a , . . . ,  a '~-1, T, TO-,..., Tan-l}, 

where T = (2, n)(3, n -  1 ) . . .  The cycle index of D~ is 

1 n d : { e 2  o.~_ 1 n 
z(D,~;sl, . . . ,s ,~)=~n~-~r 4,OLO2 + s ~ )  

din 

if n is even and 

1 n d 1 ~2 : 
z(D ; s : , . . .  = Tn + 

if n is odd. 

So, the dihedral group D6 is the symmetry  group of the  
hexagon. One can represent it as the  subgroup of 5'6 
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generated by (1,6)(2,5)(3,4)and (1,2,3,4,5,6).  Thus, 
z ( D 0 ) = l  6 ~2 4s~ 2s~ 2s6) "i~(Sl + 3SlS 2 + + + . 

We shall need this later. 

6. The cycle index of the group of symmetries of the 
vertices of the regular octahedron can be obtained as 
for the cube and, is 

2-~ 2 2 8s~ 683 s 6. (68~84 -F 38182 -F + -F 

Note that  this is the same as that  of the group of sym- 
metries of the faces of the cube. 

Now, we are in a position to state Polya's theorem. 

Po lya ' s  T h e o r e m  

Suppose D is a set of m objects to be coloured using 
a range R of k colours. Let G be the group of sym- 
metries of D. Then, the number of colour patterns = 

1 . . . . ~z(C,k,k, ,k). 
Proof .  

As explained before, G acts on X, the set of all pos- 
sible colourings. Clearly, IXI = k'L The number of 
colour patterns is computed using Burnside's lemma as 
the number of orbits of this action. This equals 

1 
Icl  E IX~l 

gEG 

where X~ = {r  ~ x lcg  -- r 

So, now we need to find the number of colourings fixed 
by g. But, a co]ouring is fixed by g precisely when it is 
fixed by all the cycles in the disjoint cycle representation 
of g. Therefore, number of colourings fixed by g equals 

k~l(9) k~2(9) ... k~m(g). 

This is evidently equal to k n(g) where n(g) is the number 
of cycles in g. 
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26 

Therefore, the number of patterns 

1 

- l a l  k <g/ gCG 

1 -la[z(G;k,k,... 
This proves the theorem. 

,k). 

So, in our example of the cube, the number of distinct 
coloured cubes 

= 1126 + 6 . 2  3 J- 8" 2 2 + 3" 22 �9 22 + 6" 22 �9 2] 
24 
1 

= - - •  
24 

There are 10 distinct cubes in all. 

Now, our problem of equivalence of colourings has been 
disposed of. But, a second problem often encountered in 
counting is that  sometimes not all objects are counted 
with same weight. So, for instance, if Mr. A did not 
merely wish to know how many cubes he could paint, 
but how many would have precisely 2 red faces and 4 
green faces, then the above is not good enough. So we 
will proceed to state and explain a more general form 
of Polya's theorem which can handle both the above 
problems. 

For that, we will make use of the following concepts: 
Consider all maps from D to R as before. But, now 
each r E R has a weight w(r) attached to it. The w(r) 's  
can be thought of as independent variables and poly- 
nomial expressions in them with Q-coefficients can be 
manipulated formally like polynomials. (In other words, 
they are elements f roma commutative algebra over Q). 
The weight of a colouring r : D --+ R is defined as 
w(r = l-I w(r 

dED 

F_, w(r) is called the inventory of R and { ~  w(r : r E 
X} is called the inventory of X. 
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Now, we notice some useful facts about weights, viz." 

Proposition. 
r ] IDI 

(ii) I f  D1, D 2 , . . . ,  Dk partition D and, 

if S = {r e X l r  constant V d E D,,V i}, 

k 
then, E w ( r  H E w(r)  ID'I. 

r  i=1 r E R  

Proof .  

(i) Let D = {d~ ,d2 , . . . , d~} ,  and R =  { r z , r 2 , . . . , r m } .  

Then, the right hand side is (w(rl) + w(r2) + . . .  + 
w(rm))" 

Any term here is of the form w ( r i l ) w ( r i 2 ) " ,  w(ri~). This 
is equal to w(r for that  map r which takes dl to ri~, 
d2 to ri2, and so on. Conversely, any w(r from the left 
side is of the form w(r j~)w(r j~) . . .w(r jn  ) which gives a 
unique term of the right side. This proves (i). 

We prove (ii) now. A term of the right hand side has the 
form w(ril)lDl'w(ri2) ID21.." w(rik) IDkl which is precisely 
the weight of a function which assumes the value ril on 
D1, ri~, on D2 and so on. Conversely, every function has 
such a weight and the result follows. 

Along with these concepts, we will also use the follow- 
ing generalisation of Burnside's lemma known as the 
weighted form of Burnside~s lemma:- 

Suppose G is a finite group acting on a finite set S. 
Let us write sl ~ s2 if, and only if, 3g C G such that 
sl . g = s2. Let a weight function w be defined on S 
with values in a commutative algebra over the rationals. 
Suppose that elements in the same orbit have the same 
weight i.e. sl ~ s~ ~ w(s l )  = w(s2). Let ~ be the set of  
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classes of S. Let w(S) denote the weight of any element 
in the equivalence class S. Then, 

1 

gEG sESg 

Note that, by putting w(s) = 1Vs C S we get the state- 
ment of the earlier form of Burnside's lemma. 

Proof .  

The proof is very similar to the proof of Burnside's 
lemma when we consider the subset Y of S • G, con- 
sisting of elements (s, g) such that  s �9 g -- s. Instead 
of finding the cardinality of Y, we find ~ w(s) pro- 

(g,s)~Y 
ceeding in the same way as the earlier proof and, the 
asserted result follows. 

Our next aim is to obtain a weighted version of Polya's 
theorem. Again, suppose D is a finite set of objects to 
be coloured using a finite range R of colours. As before, 
let X = {r : D --+ R} be the set of all colourings. Then, 
the group G of permutations of D acts on X in the same 
way as explained before. Suppose now that each r c R 
is given a weight w(r) with the property that equivalent 
colourings have the same weight (here, as before, the 

weight of any colouring r is w ( r  l~deD w(r Let 
us write w(O) for the weight of any colouring belonging 
to a particular pattern ~. 

Then, the weighted version of Polya's theorem is: 

Polya's Theorem (weighted form) 

The inventory of patterns is given by 

Proof .  

= z (G;  

Using the weighted form of Burnside's lemma, we get 
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1 g ~  E w( r  

where X g = ( r  e X[r = r 

So, we need to find q~'s that  are fixed by g. Let 9 
split D into cycles D1,D2,...,D,. These are clearly 
disjoint and partition D. An element 9 fixes r pre- 
cisely if all the cycles of g fix 4, i.e., r is constant 
Vd C Di,Vi = 1 , 2 , . . . n .  Therefore, X g , D 1 , D 2 , . . . , D "  
satisfy the conditions of proposition (ii). In fact, we note 
that  

f D i l = l f o r l < i < 2 , l ;  

]Di] = 2 for 2,1 < i < 2,1 + 2,2, etc. 

By propositon (ii) 

r  

n 

- -  H E ~(~)lD, t 
i= l  rER  

(~:(~(~)~))~~ 

Therefore E w ( r  --  E .~.~ ( w(r))i 
q~ gE G i= l 

1 
- i s ( z ( c ; E w ( r ) , E ( w ( r ) )  2 , ) ,  

which completes the proof. 

To illustrate the above, let us come back to the same 
example of the cubes. Let weight (red) = r, w (green) 
= g. Then, 

E ( ~ ( ~ ) )  2 = ~ + g~ 
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30 

Also, we saw in example 3 that 

z(G;Sl,82,...,86)-~- 11861 -~-683 ~-882 -[- 38282 -~-68284] 

Using Polya's theorem, ~ w(O) is 

1 6 ~--~ [(r +g) +6( r  2 +g2)3 +8(r  3 +g3)2 + 3(r +g)2(r2 +g2)2 + 

6(r + g)~(r 4 + g4)] = r 6 + rSg + 2r~g ~ + 2r393+ 

2r2g4 + rg5 + g6. 

So, from the above inventory of patterns, it is easy to 
see that  there are exactly 2 patterns with precisely 2 red 
faces and 4 green faces (the coefficient of r2g4). 

We also note that  on putting r = 1 = g, we get 10, 
i.e. the total number of patterns. Thus, in the weighted 
form of Polya's theorem, by putting w(r) = 1 V r C R, 
we get the total number of patterns. 

Another example: How many distinct circular necklace 
patterns are possible with n beads, these being available 
in k different colours? 

So, we need to find out how many of the k ~ possible 
necklaces are distinct. Clearly, the group G of rotational 
symmetries here is C~, the cyclic group of order n. 

We have already computed 

z(C, ,  sl, 8~,. . .  ,8~) = 1 E  r 
n din 

Special case: n is prime. 

Then, number of patterns = k + k"-k 
n 

Let us consider the case when only white and black 

beads are allowed (i.e. k = 2) and n is prime, say n --- 5. 

~-~w(r = z(Cs;w+b,w 2 +b2 , . . . ,w  5 +b 5) 
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1 = ~ [ ( ~  + b)5 + (~5 + p)]  

= w 5+w4b+2w3b  2+2w2b 3 + w b  4 + b  5. 

In fact, these patterns are shown in the Figure 2 here. 

Yet another very useful form of Polya's theorem uses 
the concept of 'content'. Here, it is convenient to think 
of R not as a range of colours but of 'figures'. Maps 
from D to R are called configurations. Especially, this 
is useful in counting isomers of chemical compounds as 
we shall see. Every figure in R has a 'content' which is 
a non-negative integer. The figure counting series is 

C(X)  : C 0 + ClX Jr- C2 x2  ~- . . . ~- Ck x k  ~- . . . 

where ck is the number of figures in R with content k. 

Content of a configuration is the sum of contents of fig- 
ures which occur as images (taking into account the mul- 
tiplicity) i.e., content of r equals ~ (c(r 

dED 

So, if we introduce some equivalence of maps by the ac- 
tion of a group G on D, (which induces, therefore, an 
action of G on configurations), then equivalent configu- 
rations have the same content. 

The generating function to count all configurations is 
defined as the formal power series 

F(x)  = 1 + Fix  + F 2 x  2 + . . .  + F k x  k + . . . .  , 

where Fk = number of configurations with content k. 

Now, let a figure r E R with content k be considered as 
having weight x k. 

Z w ( r )  = Co + clx + c2x 2 + . . .  = c(~) 

Z [ w ( r ) ]  2 = Co + ~lx ~ + ~ 4  + . . . .  ~ ( ~ )  
?- 

Z [ ~ ( r ) ]  ~ = ~o + ~ + ~ + . . . .  c (~) -  
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Then, given r �9 D --+ R, 

~(r = I I  w(r 
dED 

= I I  x(C~ of r 
aeD 

~ content of 4,(e) 
~ x d  

= xCOntent of 

Therefore the configuration counting series is 

F(x)  -- l + F i x + F 2 x  2 + . . . + F k x  k + . . .  
= ~ ~(~). 

r 

We call F(x), the inventory of all confugurations. 

Therefore a group G acts on that  and, hence on the set 
of configurations, the inventory of inequivalent configu- 
rations, 

w(O) = l + O l x + O 2 z  2 + . . . + o k x  k + . . .  

where Ok = number of in equivalent configurations with 
content k. 

w(o) = z(a; ~:w(r) ,  E[~(r ) ]2 , . . . )  

= z(a; c(x),c(z2),...) 

In other words, we have proved the ' c o n t e n t '  ve r s ion  
of  P o l y a ' s  t h e o r e m :  

Let there be a permutation group G acting on the do- 
main D, and hence, on the set of maps into the set R of 
'figures'. Let the figure counting series be c(x). Then, 
the inequivalent configuration counting series O( x) is ob- 
tained by substituting c(x r) for sr in the cycle index of 
G i.e., O(x)= z(G; c(x)). 
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Examples. 

One of the important applications of the content version 
of Polya's theorem is the finding of different possible 
isomers of a chemical compound. Recall that  isomers 
are chemical compounds with the same chemical formula 
with a different arrangement of the atoms. 

1. Let us find the number of benzene rings with C1 
substituted in the place of H. 

The symmetry group of the benzene ring is D6 (i.e., the 
symmetries of a regular hexagon). 

Now, z(D6) = 1[s6 + 4S 3 + 2S 2 + 3s2s 2 + 2s6]. Here, 
D =  {1,2 ,3 ,4 ,5 ,6} R =  {H, C1}. 

Let content (H)=0, content (C1) =1. So c ( z )  = 1 + z .  

�9 (z) = ~ 2 [ ( l + x )  6 + 4 ( 1 + x 2 )  3 + 2 ( 1  X3) 2 + + 

3(1 + x)2(1 + x2)~ 

= l + x + 3 x  2 + 3 x  3 + 3 x  4 + x  5 + x  6. 

Therefore there are 13 chemical compounds obtained in 
this manner (see the Figure  3). 

2. Similarly, there are two isomers of the octahcdral 
molecule PtBraC12 with Pt  at the centre and Br and C1 
at the vertices. This is proved by using the cycle index 
in example 6, of the vertices of a regular octahedron. 

3. To find the number of (simple, undirected) graphs 
upto isomorphism on a set of n vertices. 

" pairs of vertices. If there is an Here D is the set of (2) 
edge between a pair of vertices, let it have content 1, if 

\ / 

it has no edge, then let it have content 0. 

So, a configuration is a graph, and its content is the 
number of edges. 

Then, c( x ) = 1 + x.  
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Now, two labelled graphs are isomorphic if there exists a 
bijection between the vertices that  preserves adjacency 
(therefore, two graphs are equivalent if if they are iso- 
morphic). Now, the group G of symmetries of the set of 
pairs of vertices is called S (2) and its cycle index is 

z(S(42)) = 1--[s61 + 9s~s~ + 8s32 + 6s2s41. 
24 

Figure 3. 
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Figure 4. 

Counting series for such graphs 

1 = ~-~[(1 + x) 6 + 9(1 + x)2(1 + x2) 2 + 8(1 + x3) 2 + 

6(1 + x~)(1 + x4)] 

= l + x + 2 x  2 + 3 x  3 + 2 x  4 + x  5 + x  6. 

Therefore total number of unlabelled graphs on 4 ver- 
tices = 11. These are shown in the Figure 4. 

For a wealth of information on Polya's theory, the inter- 
ested reader is referred to [1] and [3]. 
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