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Abstract

Combinatorial Design Theory is a branch of combinatorial mathematics which
underlines the study of existence, construction and properties of finite sets
whose arrangements satisfy some generalized concepts of balance and sym-
metry.We focus primarily on Balanced Incomplete Block Designs.

In this report, we deal with three chapters of which the first chapter
deals with introduction to block designs and we mainly see the definition and
properties of a particular kind of design, Balanced Incomplete Block Designs
or BIBD’s. Secondly, we shift our focus to explore a particular kind of BIBD,
called symmetric BIBD’s and we see the necessary and sufficient conditions
for the existence of the same using the results from number theory. Finally
we study the concept of difference sets and how it is related to symmetric
BIBD’s. We conclude the report with the proof of the multiplier theorem
which uses results from algebra.

Through these three chapters we get an idea of block designs and its
various properties. An interesting application of the same is construction
and properties of sudoku.
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Chapter 1

Balanced incomplete block
designs

1.1 Design theory

What is design theory and what are its applications? Combinatorial design
theory deals with questions about whether it is possible to arrange elements
of a finite set into subsets such that certain balance properties are satisfied.
There are different types of designs like balanced incomplete block designs
(BIBD), pairwise balanced designs, orthogonal Latin squares and so on. The
fundamental questions in this area are those of existence and construction of
certain kind of designs. Designs have many other applications in mathemat-
ical biology, scheduling lotteries, cryptography and so on.
Here we will explore a special kind of design called balanced incomplete block
design or BIBD.

1.2 Basic Definitions And Properties

Definition 1.2.1 Design

A design is a pair (X,A) such that the following properties are satisfied:

1. X is a set of elements called points.

2. A is a collection(i.e a multiset) of nonempty subsets of X called blocks.

3



If two blocks in a design are identical then it is called repeated blocks.
Hence A is a multiset of blocks rather than a set. To list the elements of
a multiset , [] notation is used. If a design contains no repeated blocks, it
is called a simple design. Here all the elements of the multiset has mul-
tiplicity one and hence is a set. For example, [1, 2, 3, 4] = {1, 2, 3, 4} but
[1, 2, 3, 4, 3] 6= {1, 2, 3, 4, 3} = {1, 2, 3, 4}. Order of elements is irrelevant in a
multiset as with a set.
Now, we will see a particular kind of design which is called a balanced in-
complete block design which we will further study.

Definition 1.2.2 Balanced Incomplete Block Design(BIBD)

Let v, kand λ be positive integers such that v > k ≥ 2. A (v, k, λ)-balanced
incomplete block design or (v, k, λ)-BIBD is a design (X,A) such that the
following properties are satisfied:

1. |X| = v

2. Each block contains exactly k points.

3. Every pair of distinct points is contained in exactly λ blocks.

The third property in the definition is called the ”balance” property. It is
called incomplete block design since k < v and hence all blocks are incom-
plete. Thus a block design is not merely a collection of subsets of a set, but
is an array of objects and blocks with a relation telling which objects belong
to which blocks. A design may contain repeated blocks if λ > 1.

Example 1.2.3 (7, 3, 1)-BIBD

X = {1, 2, 3, 4, 5, 6, 7} , and

A = {123, 145, 167, 246, 257, 347, 356}

The blocks can be represented as six lines and a circle.

Example 1.2.4 (9, 3, 1)-BIBD

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and

A = {123, 456, 789, 147, 258, 369, 159, 267, 348, 168, 249, 357}
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The blocks of this BIBD can be represented as eight lines and four triangles.
The blocks can also be separated as four sets of three, where each of these
four sets covers all the points of BIBD.

Example 1.2.5

Let A consists of all k-subsets of X. Then (X,A) is a (v, k,
(
v−2
k−2

)
)-BIBD.

Lets now see two theorems which will give us more basic properties of BIBD.

Theorem 1.2.6 In a (v, k, λ)-BIBD, every point occurs in exactly r = λ(v−1)
k−1

blocks; where r is called the replication number of BIBD.

Proof: Let (X,A) be a (v, k, λ)-BIBD. Let x ∈ X and rx be the number of
blocks containing x. Define a set

I = {(y, A) : y ∈ X, y 6= x,A ∈ A, {x, y} ⊆ A

We compute |I| in two ways.
There are (v − 1) to choose y 6= x ∈ X, and for each y, there is exactly λ
blocks such that {x, y} ⊆ A. Hence,

|I| = λ(v − 1).

Secondly, there are rx blocks x ∈ A. For each A, there are k − 1 ways to
choose y ∈ A and y 6= x. Hence,

|I| = rx(k − 1)

Combining these two equations of |I|, we get

λ(v − 1) = rx(k − 1).

Hence, rx = λ(v−1)
(k−1)

.
We see that rx is independent of x and any element is contained in exactly r
number of blocks. �

Theorem 1.2.7 A (v, k, λ)-BIBD has exactly

b =
vr

k
=
λ(v2 − v)

k2 − k
blocks.
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Proof: Let (X,A) be a (v, k, λ)-BIBD and let b = |A|. Define a set

I = {(x,A) : x ∈ X,A ∈ A, x ∈ A}.

We compute |I| in two ways.
Firstly, there are v ways of choosing an element x ∈ X. For each x, there
are exactly r blocks such that x ∈ A. Hence,

|I| = vr

Secondly, there are b blocks A ∈ A. For each block A, there are k ways to
choose x ∈ A. Hence,

|I| = bk

Combining the two equations we have, bk = vr. Hence,

b =
vr

k

Substituting the value of r from the above theorem ,

b =
vr

k
=
λ(v2 − v)

k2 − k

as desired. �
To record all the five parameters we use the notation (v, b, r, k, λ). Since
b and r are integers, these values will help us conclude that BIBD’s with
certain parameters do not exist.

Corollary 1.2.8 If a (v, k, λ)-BIBD exists, then λ(v − 1) ≡ 0 (mod k − 1)
and λv(v − 1) ≡ 0 (mod k(k − 1)).

Proof: It is clear that b and r must be integers since they indicate the
number of blocks and the replication number respectively.
Since λ(v − 1) = r(k − 1), λ(v − 1) ≡ 0 (mod k − 1).

Similarly, since b = λ(v2−v)
k2−k , λv(v − 1) ≡ 0 (mod k(k − 1)). �

For example, a (8, 3, 1)-BIBD does not exist, since λ(v−1) = 7 6≡ 0 (mod 2).
Also a (19, 4, 1)-BIBD does not exist since λv(v − 1) = 342 6≡ 0 (mod 12).



1.3 Incidence Matrices

Incidence matrices are a convenient way of expressing BIBD’s in a matrix
form.

Definition 1.3.1 Incidence Matrix

Let (X,A) be a design where X = {x1, . . . , xv} and A = {A1, . . . , Ab}. The
incidence matrix of (X,A) is the v × b 0-1 matrix M = (mi,j) defined as

(mi,j) =

{
1 if xi ∈ Aj;
0 if xi /∈ Aj.

From the definition and properties of a BIBD, it is clear that the incidence
matrix M of a (v, b, r, k, λ)-BIBD satisfies the following properties.

1. every column of M contain exactly k ’1’s.

2. every row of M contain exactly r ’1’s.

3. two distinct rows of M contain both ’1’s in exactly λ columns.

Example 1.3.2

The incidence matrix of the (9, 3, 1)-BIBD is a 9× 12 matrix which is repre-
sented as follows:

M =



1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 1 0 0 1
0 1 0 1 0 0 0 0 1 0 1 0
0 1 0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 1 0 1 0 1 0 0
0 0 1 1 0 0 0 1 0 0 0 1
0 0 1 0 1 0 0 0 1 1 0 0
0 0 1 0 0 1 1 0 0 0 1 0



Let In denote the n × n identity matrix, Jn denote an n × n matrix in
which every entry is 1 and let un denote a vector of length n in which every
coordinate is 1. For a matrix M = (mi,j), we define transpose of M , denoted
by MT , to be the matrix whose (j, i) entry is mi,j.
Now we will see a property of incidence matrices of BIBD’s.



Theorem 1.3.3 Let M be a v× b 0− 1 matrix and let 2 ≤ k < v. Then M
is the incidence matrix of a (v, b, r, k, λ)-BIBD if and only if

MMT = λJv + (r − λ)Iv

and uvM = kub.

Proof: Let (X,A) be a (v, b, r, k, λ-BIBD, where X = x1, . . . , xv and A =
A1, . . . , Ab. Let M be its incidence matrix. Then if MMT = B, then the
element bij of matrix B is the inner product of ith row of M with jth row of
M . Every element on the main diagonal , bii of B counts the number of 1’s
in the ith row of M , which gives in how many blocks a particular element is
present, which is r. But if j 6= i, then both the ith and jth rows have a 1 in
the same column if and only if both xi and xj belong to the same column.
And we have any pair of elements is present in exactly λ blocks, so every off
diagonal entry of B is λ. Therefore,

MMT =


r λ . . . λ
λ r . . . λ
...

...
. . .

...
λ λ . . . r

 = λJv + (r − λ)Iv (1.1)

uvM is a 1×b matrix whose ith entry counts the number of 1’s in ith column,
which is k. Hence, uvM = kub.
Conversely, suppose that M is a v × b 0 − 1 matrix such that MMT =
λJv + (r − λ)Iv and uvM = kub. Let (X,A) be a design whose incidence
matrix is M . Since M is a v × b matrix, |X| = v and |A| = b. From the
second condition, it follows that every block of A contains k points. From
the first condition, it follows that every point occurs in r blocks and every
pair of points occurs in λ blocks. Hence (X,A) is a (v, b, r, k, λ)-BIBD. �

The above relation

MMT = λJv + (r − λ)Iv (1.2)

can also be written as a relation on quadratic forms. Let x1, . . . , xv be the
points, and we associate the linear form Lj to the blocks Aj, and mi,j be the
incidence numbers; where

Lj =
v∑
i=1

mijxi, 1 ≤ j ≤ b
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Let us define x = (x1, . . . , xv) and we will multiply both sides of equation
(1.2) by x on the left and by xT on the right. We can see here that x is a
1× v matrix and both sides of equation (1.2) are v × v matrix.
We first see how LHS will result into after the above operation:

xMMTxT = (xM)(xM)T

xM = (x1m11+x2m21+· · ·+xvmv1, . . . , x1m1b+x2m2b+· · ·+xvmvb) = (L1, . . . , Lb) = L, say

Hence,

xMMTxT = LLT =
b∑

j=1

L2
j .

Now, we see how RHS would look like:

x(λJv + (r − λ)Iv)x
T = λxJvx

T + (r − λ)xxT .

xJv = (
v∑
i=1

xi, . . . ,
v∑
i=1

xi) v coordinates and

λxJvx
T = λ(

v∑
i=1

xi, . . . ,
v∑
i=1

xi)


x1

x2
...
xv


= λ(x1

v∑
i=1

xi + · · ·+ xv

v∑
i=1

xi)

= (x1 + · · ·+ xv)
v∑
i=1

xi

=
v∑
i=1

xi

v∑
i=1

xi

= λ(
v∑
i=1

xi)
2

(r − λ)xxT = (r − λ)
2∑
i=1

x2
i
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Hence equation (1.2) now transforms into

b∑
j=1

L2
j = λ(

v∑
i=1

xi)
2 + (r − λ)

2∑
i=1

x2
i

which is the relation on quadratic forms.
We will use this relation later on in the next chapter when we prove the
necessity and existence conditions.

We will now give the definition of a different kind of design known as
pairwise balanced design.

Definition 1.3.4 Pairwise Balanced Design

A pairwise balanced design or PBD is a design (X,A) such that every pair
of distinct points occur in exactly λ blocks, where λ is a positive integer.
Further, (X,A) is a regular pairwise balanced design if every point in X
occurs in exactly r blocks A ∈ A, where r is a positive integer.

A PBD (X,A) is allowed to contains blocks of any size. If (X,A) con-
sists only of blocks of size |X| (complete blocks), then it is said to be a trivial
pairwise balanced design. And if it contains no complete blocks,it is a proper
pairwise balanced design.
PBD’s are those designs whose incidence matrices satisfy just the first con-
dition of the above theorem , which we will restate here.

Theorem 1.3.5 Let M be a v × b 0 − 1 matrix. Then M is the incidence
matrix of a regular pairwise balanced design having v points and b blocks if and
only if there exist positive integers r and λ such that MMT = λJv+(r−λ)Iv.

Proof: The proof follows from the proof of the above theorem, whose
proof does not require the size of each block. Since size of each block is not
constant, the second condition of the above theorem does not hold here. �

Example 1.3.6
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An example to illustrate the above example: Consider the 6× 11 matrix:

M =


1 0 1 1 1 0 0 0 0 1 0
1 0 0 0 0 1 1 1 0 0 0
1 0 0 0 0 0 0 0 1 1 1
0 1 1 0 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1 0 0 1


This matrix M is the incident matrix of the regular pairwise balanced design

X = 1, 2, 3, 4, 5, 6, and

A = {123, 456, 14, 15, 16, 24, 25, 26, 34, 35, 36}

Here, v = 6, b = 11, r = 4 and λ = 1. The design is not a BIBD because
every block does not have the same size. Also it is easily verified that
MMT = Jv + 3Iv = λJv + (r − λ)Iv and u6M = (3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2)
and u6M 6= kub for any integer k.

Now we will see what a dual design is and give its basic property.

Definition 1.3.7 Dual Design

Suppose (X,A) be a design with |X| = v and |A = b| and let M be the v× b
incidence matrix of (X,A). Then the design having MT as its incidence
matrix is called the dual design of (X,A).
If (Y,B) is the dual design of (X,A),then |Y | = b, |B| = v.

Theorem 1.3.8 Suppose that (X,A) is a (v, b, r, k, λ)-BIBD, and let (Y,B)
be the dual design of (X,A). Then the following properties hold:

1. every block in B has size r

2. every point in Y occurs in exactly k blocks, and

3. any two distinct blocks Bi, Bj ∈ B intersect in exactly λ points.

Proof: Since MT is the incidence matrix of (Y,B), 1 holds since every
column of MT has r number of 1’s. 2 holds since every row of MT has k
number of 1’s and 3 holds since every distinct pair of elements is contained
in λ number of blocks. �



1.4 Isomorphisms And Automorphisms

Definition 1.4.1 Isomorphisms of Designs

Suppose (X,A) and (Y,B) are two designs with |X| = |Y |. (X,A) and (Y,B)
are isomorphic if there exist a bijection α : X → Y such that

[{α(x) : x ∈ A}A ∈ A] = B.

If we rename every point x by α(x), then the collection of blocks A is trans-
formed into B. The bijection α is called an isomorphism.
We will now see how the incidence matrices of isomorphic designs are related.

Theorem 1.4.2 Suppose M = (mi,j) and N = (ni,j) are both v×b incidence
matrices of designs. Then the two designs are isomorphic if and only if there
exist a permutation γ of {1, 2, . . . , v} and a permutation β of {1, 2, . . . , b}
such that

mi,j = nγ(i),β(j)

for all 1 ≤ i ≤ v, 1 ≤ j ≤ b.

Proof: Suppose that (X,A) and (Y,B) are designs having v × b inci-
dences matrices M and N respectively. Suppose that X = {x1, . . . , xv}, Y =
{y1, . . . , yv},A = {A1, . . . , Ab},B = B1, . . . , Bv}.
Suppose (X,A) and (Y,B) are isomorphic. Then ∃ a bijection α : X → Y
such that [{α(x) : x ∈ A}A ∈ A] = B. For 1 ≤ i ≤ v, define

γ(i) = j if and only if α(xi) = xj.

Since α is a bijection of X and Y , γ is a permutation of {1, . . . , v}.
Let {α(x) : x ∈ Aj} = Bβ(j). ∴ ∃ a permutation β of {1, . . . , b} for 1 ≤ j ≤ b,
since α is an isomorphism of (X,A) and (Y,B).
Now,

mi,j = 1

⇐⇒ xi ∈ Aj
=⇒ yγ(i) ∈ Bβ(j)

⇐⇒ nγ(i),β(j)

= 1



Conversely, suppose we have permutations γ and β such thatmi,j = nγ(i),β(j)∀i, j.
Define α : X → Y such as α(xi) = xj if and only ifγ(i) = j. Then,

[{α(x) : x ∈ A}A ∈ A] = B

for 1 ≤ j ≤ b. Hence α defines an isomorphism of (X,A and (Y,B). �

A permutation matrix is a 0 − 1 matrix in which every row and every
column contain exactly one entry ′1′.
We will use permutation matrix to give one more theorem relating incidence
matrices of isomorphic designs.

Corollary 1.4.3 Suppose M and N are incidence matrices of two (v, b, r, k, λ)-
BIBDs. Then the two BIBDs are isomorphic if and only if there exists a v×v
permutation matrix, say P , and a b× b permutation matrix, say Q, such that
M = PNQ.

Proof: Let P be the matrix whose (i, γ(i))th entry is 1 and rest entries are
all 0. And let R be the matrix whose (j, β(j))th entry is 1 and rest entries are
all 0. And let RT = Q. Clearly P and Q are permutation matrices. PN is a
rearrangement of rows of N which correspond to the action of the bijection
on points. Post multiplying by Q gives a rearrangement of columns, but no
columns are changed and the structure is preserved. � After defining
isomorphic designs we define when designs are automorphic.

Definition 1.4.4 Automorphism Of Design

Suppose (X,A) be a design. An automorphism of (X,A) is an isomorphism
of this design with itself. Here α is a permutation of X such that

[{α(x) : x ∈ A} : A ∈ A] = A.

A permutation α on a set X can be represented as disjoint cycle represen-
tation. Each cycle has the form

(x, α(x), α(α(x)), . . . )

for some x ∈ X. The cycles thus obtained are disjoint and they have lengths
that sum upto |X|. Order of the permutation α is the least common multiple
of the lengths of cycles in the disjoint cycle representation. A fixed point of
α is the point x such that α(x) = x, which will correspond to those cycles
which have length 1.



The set of all automorphisms of a BIBD (X,A) forms a group under the
operation of composition of permutations. This group is called the automor-
phism group of the BIBD and is denoted Aut(X,A). Aut(X,A) is a subgroup
of the symmetric group S|X|.

1.4.1 Constructing BIBDs with specified automorphisms

Here we finally reach a theorem to show the existence or non existence of a
BIBD having specified automorphisms.
Let Sv denote symmetric group on a V -set. For a positive integer j ≤ v, let(
X
j

)
be the set of all

(
v
j

)
j subsets of X. For Y ⊆ X and for a permutation

β ∈ Sv,let
β(Y ) = {β(x) : x ∈ Y }

Suppose G is a subgroup of Sv. For positive integer j ≤ v, for A,B ∈
(
X
j

)
,

define A ∼j B if β(A) = B for some β ∈ G.

1. Identity permutation fixes A, hence ∼j is reflexive.

2. Let β(A) = B for some β ∈ G, then β−1(B) = A , since β−1 ∈ G.
Hence ∼j is symmetric.

3. Let β1(A) = B and β2(B) = C for some β1, β2 ∈ G. Hence β2◦β1(A) =
β2(B) = C. Since G is a subgroup β2 ◦ β1 ∈ G. Hence transitive.

∴ ∼j is an equivalence relation on
(
X
j

)
. The equivalence classes of this relation

are called j-orbits of X with respect to G. Hence β(A) = B for some β ∈ G
if and only if a and B are in the same orbits of G and the j-orbits form a
partition of the set

(
X
j

)
.

We state the following lemma without proof.

Lemma 1.4.5 (Cauchy-Frobenius-Burnside Lemma) The number of j-
orbits of X with respect to the group G is exactly

1

|G|
∑
β∈G

fix(β)

where for each β ∈ G,

fix(β) =

∣∣∣∣{A ∈ (Xj
)

: β(A) = A}
∣∣∣∣



Let O1, . . . ,On be the k-orbits and let P1, . . . ,Pm be the 2-orbits of X.
The n ×m matrix Ak,2 is defined as :For 1 ≤ j ≤ m, let Yj be a 2-subset.
Then for 1 ≤ i ≤ n, (i, j)th entry of Ak,2denoted by aij is

aij = |{A ∈ Oi : Yj ⊆ A}|.

Lemma 1.4.6 Suppose O1, . . . ,On be the k-orbits and P1, . . . ,Pm be the 2-
orbits of X with respect to the group G. Suppose that Y, Y ′ ∈ Pj for some j
and suppose 1 ≤ i ≤ n. Then

|{A ∈ Oi : Y ⊆ A}| = |{A ∈ Oi : Y ′ ⊆ A}|

Proof: Since Y, Y ′ ∈ Pj,∃β ∈ G such that β(Y ) = Y ′. ∀A ∈ Oi such
that Y ⊆ A, β(Y ) ⊆ β(A) =⇒ Y ′ ⊆ β(A). Since β is a permutation
β(A) 6= β(B) if A 6= B.
∴ ∀A ∈ Oi such that Y ⊆ A, we have A′ = β(A) ∈ Oi such that Y ′ ⊆ A′

and the blocks β(A) are all distinct. Hence,

|{A ∈ Oi : Y ⊆ A}| ≤ |{A ∈ Oi : Y ′ ⊆ A}|

Opposite inequality is attained by interchanging Y and Y ′ and replacing β
with β−1. And the result is obtained by combining these two inequalities.
�
Through the above lemma it can be seen that aij is independent of the orbit
representative Yj chosen.

Theorem 1.4.7 (Kramer-Mesner Theorem) There exists a (v, k, λ)-BIBD
having G as the subgroup of its automorphism group if and only if there exist
a solution z ∈ Zn to the matrix equation

zAk,2 = λum

where z has non negative entries.

Proof: We provide an outline of the proof. Suppose that z = (z1, z2, . . . , zn)
is a non negative integral solution to zAk,2 = λum. Define

A =
n⋃

ı=1

ziOi.
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i.e A is formed by taking zi copies of every block in Oi for 1 ≤ i ≤ n. Hence
(X,A) is a (v, k, λ)-BIBD having G as a subgroup of its automorphism group.
Conversely, suppose that (X,A) is the desired BIBD. Then A must consist
of a multiset union of the orbits Oi, 1 ≤ i ≤ n. Let zi denote the number of
times each of the blocks of the orbit Oi occurs in A; then z = (z1, . . . , zn) is
a non negative integral solution to the zAk,2 = λum. �
The BIBD is simple if and only if the vector z ∈ {0, 1}n.

1.5 New BIBD’s from Old

Here we state two methods of constructing new BIBD’s from old.

Theorem 1.5.1 (Sum Construction) Suppose there exists a (v, k, λ1)-BIBD
and a (v, k, λ2)-BIBD. Then there exists a (v, k, λ1 + λ2)-BIBD.

Corollary 1.5.2 Suppose there exists a (v, k, λ)-BIBD. Then there exists a
(v, k, sλ)-BIBD for all integers s ≥ 1.

Theorem 1.5.3 (Block Complementation) Suppose there exists a (v, b, r, k, λ)-
BIBD, where k ≤ v−2. Then there also exists a (v, b, b−r, v−k, b−2r+λ)-
BIBD.

Proof: Suppose (X,A) is a (v, b, r, k, λ)-BIBD. Then block complementation
is done by replacing every block A ∈ A by X \ A. We will show that
(X, {X \ A : A ∈ A}) is a BIBD. Clearly this design has v points and and b
blocks, and every block has v− k ≥ 2 points and every point occurs in b− r
blocks. We need to show that every pair of points occurs in exactly b−2r+λ
blocks.
Let x, y ∈ X, x 6= y. Define

a1 = |{A ∈ A : x, y ∈ A}|

a2 = |{A ∈ A : x ∈ A, y /∈ A}|

a3 = |{A ∈ A : x /∈ A, y ∈ A}|

a4 = |{A ∈ A : x /∈ A, y /∈ A}|

Now,
a1 = λ, a1 + a2 = r = a1 + a3, a1 + a2 + a3 + a4 = b



Solving these equations gives

a4 = b− 2r + λ

which is the number of blocks every pair of points occur. �

1.6 Fisher’s Inequality

Fishers’s inequality is yet another important property of a BIBD, which
inturn will help us to say BIBD’s certain parameters do not exist.

Theorem 1.6.1 (Fisher’s Inequality) In any (v, b, r, k, λ)-BIBD , b ≥ v.

Proof: Let (X,A) be a (v, b, r, k, λ)-BIBD,where X = {x1, . . . , xv} and
A = {A1, . . . , Ab}.Let M be the incidence matrix of this BIBD and sj be
the jth row of MT .It can be seen that s1, . . . , sb are all v dimensional vector
spaces in Rv.
Define S = {sj : 1 ≤ j ≤ b} and S = span(sj : 1 ≤ j ≤ b). S is the subspace
of Rv spanned by the vectors sj’s;

S =

{ b∑
j=1

αjsj : α1, . . . αb ∈ R
}

S consists of all linear combination of vectors s1, . . . , sb.

For 1 ≤ i ≤ v, let ei ∈ Rv be the vector with 1 in the ith coordinate
and 0 in all the other coordinates. The vectors e1, . . . , ev form a basis of
Rv, so every vector in Rv can be expressed as a linear combination of these
v vectors. It is clear that every vector of S can be expressed as a linear
combination of the above v vectors. Hence S ⊆ Rv.
Now

b∑
j=1

sj = (r, . . . , r) =⇒
b∑

j=1

1

r
sj = (1, . . . , 1) (1.3)

For a particular value of i, 1 ≤ i ≤ v;∑
{j:xi∈Aj}

sj = (r − λ)ei + (λ, . . . , λ) (1.4)
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Since λ(v−1) = r(k−1) and v > k, it follows that r > λ and hence r−λ 6= 0.
Combining equations (1.1) and (1.2), we get

ei =
∑

{j:xi∈Aj}

1

r − λ
sj −

b∑
j=1

λ

r(r − λ)
sj (1.5)

Equation (1.3) expresses ei as a linear combination of s1, . . . , sb. Hence ei ∈
S ∀ 1 ≤ i ≤ v. ∴ Rv ⊆ S
Hence S = Rv; i.e the b vectors in S span the vector space Rv. Since Rv

has dimension v and is spanned by a set of b vectors, it must be that b ≥ v;
which is the desired result.

Fisher’s inequality can also be proved in a different way by calculating
determinant of the matrix in equation (1.1).

detB = det


r λ . . . λ
λ r . . . λ
...

...
. . .

...
λ λ . . . r


Subtracting column 1 from all the others from the above matrix, we get

detB = det


r λ− r . . . λ− r
λ r − λ . . . 0
λ 0 . . . 0
...

...
. . .

...
λ 0 . . . r − λ


Now adding 2, 3, . . . , v-th row to the first row we get,

detB = det


r + λ(v − 1) 0 0 . . . 0

λ r − λ 0 . . . 0
λ 0 r − λ . . . 0
...

...
. . .

...
λ 0 . . . r − λ


Now we can see that, the entries above the main diagonal are all 0. Hence
determinant is product of the main diagonal elements. Hence

detB = (r − λ)v−1(r + λv − λ)



If r = λ, each object occurs in r blocks , and each object paired with every
other object also occurs in r blocks and hence every block contains all the v
elements and the design is trivial.
Else, r > λ and B is non singular. M is of rank atmost b while B is of rank v.
And rank of the product matrix cannot be more than rank of either matrix
and hence b ≥ v and hence r ≥ k, which is the fisher’s inequality proved
using property of incidence matrices. �
We will now see how Fisher’s inequlaity holds for PBD’s.

Theorem 1.6.2 In any nontrivial regular pairwise balanced design, b ≥ v.

Proof: From the above proof, the fact that all the blocks having the same
size is not used in the proof. Hence Fisher’s inequality can be applied to
regular pairwise balanced design in which r > λ. And a regular PBD has
r > λ if and only if it is not a trivial PBD. Therefore Fisher’s inequality is
valid for all regular nontrivial PBDs. �

In this chapter we dealt with balanced incomplete block designs, its prop-
erties and incidence matrices. Also we saw when two designs are said to be
isomorphic and when BIBD with specified automorphisms exist. We will fur-
ther see what symmetric BIBD’s are and see some main results which deals
with necessary and sufficient conditions for the existence of BIBD’s.
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Chapter 2

Symmetric BIBD’s

In the previous chapter we saw what is a BIBD and its properties. In this
chapter we specialize what a symmetric BIBD is. The main section of this
chapter is the Bruck-Ryser-Chawla theorem which deals with the necessary
and sufficient conditions for the existence of a symmetric BIBD.
Let us first see what is a symmetric BIBD.

Definition 2.0.3 Symmetric BIBD

A BIBD in which b = v is called a symmetric BIBD.
Since bk = vr, and b = v for a symmetric BIBD, r = k. Also since λ(v−1) =
r(k − 1) and r = k, for a symmetric BIBD it follows that λ(v − 1) = k2 − k.

2.1 Properties of Symmetric BIBD’s

After looking the definition of symmetric BIBD , now let us see some
fundamental properties of BIBD.

Theorem 2.1.1 Suppose (X,A) be a symmetric (v, k, λ)-BIBD, let A =
{A1, . . . , Av}. Then |Ai

⋂
Aj| = λ ∀1 ≤ i, j ≤ v, i 6= j.

Proof: For the proof of this theorem, we use the notations and equations
used in the fisher’s inequality. We fix a value h such that 1 ≤ h ≤ b = v.

20
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From equations (1.3) and (1.4), we calculate the sum below :∑
{i:xi∈Ah}

∑
{j:xi∈Aj}

sj =
∑

{i:xi∈Ah}

(r − λ)ei + (λ, . . . , λ) from (1.4)

= (r − λ)sh + k(λ, . . . , λ)

= (r − λ)sh +
b∑

j=1

λk

r
sj from (1.3)

We will now compute the above sum in a different way as done below :

∑
{i:xi∈Ah}

∑
{j:xi∈Aj}

sj =
b∑

j=1

∑
{i:xi∈Ah

⋂
Aj}

sj

=
b∑

j=1

|Ah
⋂

Aj|sj

Hence, we have from the above two sum calculations that

(r − λ)sh +
b∑

j=1

λk

r
sj =

b∑
j=1

|Ah
⋂

Aj|sj

Since b = v and r = k in a symmetric BIBD, we have

(r − λ)sh +
v∑
j=1

λk

r
sj =

v∑
j=1

|Ah
⋂

Aj|sj

In the proof of fisher’s inequlaity we showed that S = Rv,and since b = v, S is
a basis of Rv. ∴ coefficients of any sj on the left and right must be the same.
Hence, |Ah

⋂
Aj| = λ∀j 6= h.Since h was chosen arbitrary, |A

⋂
A′| = λ for

any two different blocks. �
So we proved above that in a symmetric BIBD any two blocks have λ objects
in common. In the following theorem we see how PBD’s are related to
symmetric BIBD.

Theorem 2.1.2 Let X,A) be a non trivial PBD with b = v. Then (X,A)
is a symmetric (v, k, λ)-BIBD.
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Proof: Here, we compute
v∑
i=1

∑
{j:xi∈Aj}

sj in two different ways. Firstly,

v∑
i=1

∑
{j:xi∈Aj}

sj =
v∑
i=1

(r − λ)ei + (λ, . . . , λ)

= (r − λ)(1, . . . , 1) + λv(1, . . . , 1)

= (r − λ+ λv)(1, . . . , 1)

=
λ(v − 1) + r

r

b∑
j=1

sj from (1.3)

Secondly,

v∑
i=1

∑
{j:xi∈Aj}

sj =
b∑

j=1

∑
{i:xi∈Aj}

sj

=
b∑

j=1

|Aj|sj

As similar to the above proof, using the fact that b = v and that Sis a basis
of Rv, we obtain fro the above two calculations that

|Aj| =
λ(v − 1) + r

r
∀1 ≤ j ≤ b = v

We see that number of elements in each block is the same. Hence (X,A) is

a symmetric (v, k, λ)-BIBD with k = λ(v−1)+r
r

. �
Let us now see some more properties of symmetric BIBD’s along with their
incidence matrices.

Corollary 2.1.3 If M is the incidence matrix of a symmetric (v, k, λ)-BIBD,
then MT is also the incidence matrix of a symmetric (v, k, λ)−BIBD.

Proof: From Theorem 1.3.8, which tells us the properties of dual design
and using the fact that in a symmetric BIBD, r = k , it is clear that dual
design is also a symmetric (v, k, λ)-BIBD. �
We will now see a converse to Theorem 2.1.1.
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Corollary 2.1.4 Suppose that µ is a positive integer and (X,A) is a (v, b, r, k, λ)-
BIBD such that |A

⋂
A′| = µ ∀A,A′ ∈ A. Then (X,A) is a symmetric BIBD

and µ = λ.

Proof: From theorem 1.3.8, dual design of (X,A) has the properties that
each block has r elements, each element appears in k blocks, number of blocks
is v and the number of points are b and it is given that |A

⋂
A′| = µ. Hence

dual design of (X,A) is (b, v, k, r, µ)-BIBD. Fisher’s inequality for (X,A)
gives b ≥ v and that for the dual design , it gives v ≥ b. Hence we have
b = v, which makes (X,A) a symmetric BIBD. And in a symmetric BIBD,
we have any two blocks have λ objects in common , from which it follows
that µ = λ. � Let us now see another fundamental property of incidence
matrices of symmetric designs .

Theorem 2.1.5 If M is incidence matrix of a symmetric block design, then
M satisfies the following relations.

MMT = B = (k − λ)I + λJ (2.1)

MTM = B = (k − λ)I + λJ (2.2)

MJ = kJ (2.3)

JM = kJ (2.4)

Proof: From equation (1.1) and using the fact that in a symmetric BIBD
r = k, we get equation (2.1).(2.3) tells us that every row of M has k 1’s,
his number being the replication number r = k and (2.4) tells us that each
column of M has k 1’s, which is the case since each block has k objects.
Hence it remains to show (2.2), which can be shown as a consequence of the
other equations. This will be proved in the following theorem.

Theorem 2.1.6 (Ryser Theorem) Let M be a non singular v× v matrix
which satisfies either (2.1) or (2.2) and also either (2.3) or (2.4). Then M
satisfies all the four equations. Further k2 − k = λ(v − 1)

Proof: We have detB = (k − λ)v−1(λv − λ + k). Since M is non singular,
we have k − λ 6= 0 and (λv − λ+ k) 6= 0. Let us first assume (2.1) and (2.3)
holds.

MJ = kJ =⇒ M−1(MJ) = M−1kJ

=⇒ J = kM−1J

=⇒ k 6= 0,M−1J = k−1J



MJ = kJ =⇒ (MJ)T = (kJ)T

=⇒ JTMT = kJT

=⇒ JMT = kJ(∵ JT = J)

We also observe that J2 = vJ . Now we have

MT = M−1MMT = M−1(MMT )

= M−1(k − λ)I + λJ)

= (k − λ)M−1 + λM−1J

= (k − λ)M−1 + λk−1J

kJ = JMT = J((k − λ)M−1) + J(λM−1J)

= (k − λ)JM−1 + λk−1vJ

Therefore JM−1 = (k−λk−1)J
k−λ = mJ , where m is the constant (k−λk−1)

k−λ . Hence
J = mJM .

vJ = J2 = (mJM)J

= (mJ)(MJ) = (mJ)(kJ)

= mkJ2 = mkvJ

=⇒ v = mkv =⇒ mk = 1 =⇒ m = k−1

Now we have,

m(k − λ) = (k − λk−1v) =⇒ k−1(k − λ) = (k − λk−1v)

Multiplying by k gives k − λ = k2 − λv =⇒ k2 − k = λ(v − 1) which is one
of the results. We now see that

JM−1 = mJ = k−1J =⇒ J = k−1JM =⇒ kJ = JM

Again, we have

MT = (k − λ)M−1 + λk−1J =⇒ MTM = (k − λ)I + λk1JM

=⇒ MTM = (k − λ)I + λk1kJ

=⇒ MTM = (k − λ)I + λJ



Now we have proved equations (2.2) and (2.4) and the relation k2 − k =
λ(v − 1)
Now let us assume (2.1) and (2.4) holds.

MMT = (k − λ)I + λJ =⇒ J(MMT ) = (k − λ)J + λJ2

=⇒ (JM)MT = (k − λ)J + λvJ

=⇒ kJMT = (k − λ)J + λvJ

=⇒ kJMT = (k − λ+ λv)J = mJ

=⇒ (kJ)(MTJ) = mJ2

=⇒ mJ2 = (kJ)(JM)T = (kJ)(kJ)T = (kJ)2 = k2J2

=⇒ k2 = m = k − λ+ λv

=⇒ k2 − k = λ(v − 1)

kJMT = mJ = k2J =⇒ JMT = kJ

=⇒ MJ = (JMT )T = (kJ)T = kJ

We now have MJ = kJ = JM . Now,

MTM = M−1(MMT )M = (k−λ)I+λM−1JM = (k−λ)I+λM−1MJ = (k−λ)I+λJ

Now we have proved equations (2.2) and (2.3) and the relation. Now we need
to prove the theorem by assuming (2.2) and either of (2.3) and (2.4). This
can be done by replacing AT by A. And now we have proved all the parts of
the theorem. �
There are some consequence of this theorem which we have already proved
before in this section. If M is the incidence matrix of a symmetric design,
(2.2) implies that any two distinct block have λ objects in common. Also it
says that MT is also incidence matrix of symmetric design, which is corollary
2.1.3.
We will now see two more different types of BIBD.

2.2 Residual And Derived BIBD’s

We saw from an above theorem that any two blocks of a symmetric BIBD
have λ objects in common. Using this fact we construct new BIBD’s which
we will look upon in this section.
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Definition 2.2.1 Residual and Derived BIBD

Let (X,A) be a symmetric (v, k, λ)-BIBD and let A0 ∈ A. Define

Der(X,A, A0) = (A0, {A ∩ A0 : A ∈ A, A 6= A0})

and define

Res(X,A, A0) = (X \ A0, {A \ A0 : A ∈ A, A 6= A0})

as the derived BIBD and residual BIBD repectively.

Derived design is formed by taking a block A0 and then forming new blocks
such that they consist those points common to the old block and A0 and then
deleting A0, while the residual design is constructed by deleting all points in
a block A0.
Let us now look at some of the fundamental properties of residual and derived
BIBD’s.

Theorem 2.2.2 Suppose (X,A) is symmetric (v, k, λ)-BIBD and let A0 ∈
A. Then Der(X,A, A0) is a (k, v − 1, k − 1, λ, λ− 1)-BIBD provided λ ≥ 2,
and Res(X,A, A0) is a (v−k, v−1, k, k−λ, λ)-BIBD provided that k ≥ λ+2.

Proof: Let us first see the case of derived BIBD. Since we choose the points
from a particular block A0 we have the number of points as k. Since we delete
the block A0, number of blocks is one block less than the previous number
b = v. Hence the number of blocks in a derived BIBD is v− 1. Each element
was contained in r = k number of blocks, since we delete the block A0 , we
now have replication number k − 1. Each new block has objects common to
itself and A0. Hence , each block has λ points. Again since we have deleted
one block, any two pair of object is contained in λ− 1 number of blocks.
We have that in a BIBD the number of points in each block is less than the
the number of points. Hence in a derived BIBD with the stated parameters
gives k > λ ≥ 2. But we have (X,A) is a symmetric BIBD, and we have
λ(v − 1) = k(k − 1) and we have v > k which already gives us k > λ, hence
this condition is redundant.

Now lets turn to residual BIBD. By its construction it is clear that number
of points is v − k since it is constructed by deleting all the points in a block
A0 and the number of blocks is v − 1. Each point is still present in r =



k blocks and every block has k − λ points since we delete those common
to A0. Again every pair is present in λ blocks. Hence Res(X,A, A0) is a
(v − k, v − 1, k, k − λ, λ)-BIBD.
Again the stated parameters about the residual BIBD gives us that v − k >
k − λ ≥ 2 by the similar arguments from above; i.e it v > 2k − λ. Now we
prove that in a symmetric BIBD this condition is already present and this
condition is superfluous. Suppose v ≤ 2k − λ, then

k(k−1) = λ(v−1) ≤ λ(2k−λ−1) =⇒ k(k−1)−λ(2k−λ−1) ≤ 0 =⇒ (k−λ)(k−λ−1) ≤ 0

This holds if and only if k = λ or k = λ + 1. But we have assumed that
k ≥ λ+2, and we reach a contradiction. Therefore v > 2k−λ in a symmetric
BIBD and the condition is redundant. �

Let (v− k, v− 1, k, k− λ, λ) residual BIBD be (v′, b′, r′, k′, λ′)-BIBD, then
it can be seen that r′ = k′+λ′. A (v, b, r, k, λ)-BIBD with r = k+λ is called
a quasiresidual BIBD, which can be constructed as the residual design of a
symmetric (v+r, r, λ)-BIBD, provided it exists. Similarly in a derived BIBD
k′ = λ′ + 1. A ((v, b, r, k, λ)-BIBD with k = λ + 1 is called a quasiderived
BIBD, which can be constructed as derived design of a symmetric (b+ 1, r+
1, λ+ 1)-BIBD if it exists.

2.3 Projective Planes And Geometries

In this section we see what projective planes are and then we see its relation
to symmetric BIBD’s. Let us start here with the definition of projective
planes.

Definition 2.3.1 Projective Planes

An (n2 + n + 1, n + 1, 1)-BIBD with n ≥ 2 is called a projective plane of
order n. Here1(n2 + n) = (n + 1)(n), hence projective plane is a symmetric
BIBD. We will now see through the following theorem, for what values of n
the projective plane exists.

Theorem 2.3.2 For every prime power q ≥ 2, there exists a symmetric
(q2 + q + 1, q + 1, 1)-BIBD , i.e a projective plane of order q.
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Proof: We prove here that a projective plane of order q exists whenever
q is prime power. Suppose q is a prime power. Let Fq be the finite field of
order q and let V be the three dimensional subspace. Let V1 consists of all
the one dimensional subspace of V and V2 consists of all the two dimensional
subspaces of V . For each B ∈ V2, define a block

AB = {C ∈ V1 : C ⊆ B}

and define
A = {AB : B ∈ V2}.

We can see that number of elements in each one dimensional subspace is q ,
hence |C| = q. and (0, 0, 0) ∈ C ∀C ∈ V1. Hence the sets C \ {(0, 0, 0)} form
a partition of V \ {(0, 0, 0)} whose cardinality is q3 − 1. Hence

|V1| =
q3 − 1

q − 1
= q2 + q + 1.

Now let B ∈ V2, we have the cardinality of each two dimensional subspace
is q2, hence |B| = q2. The sets C \ {(0, 0, 0)} such that C ∈ V1 and C ⊆ B
from a partition of B \ {(0, 0, 0)}. Hence

|AB| =
q2 − 1

q − 1
= q + 1.

Finally there is unique two dimensional subspace B containing two distinct
one dimensional subspaces. This subspace determines the block AB con-
taining the two distinct one dimensional subspace. Hence , there exists a
projective plane (V1,A) of order q, ie(q2 + q + 1, q + 1, 1)-BIBD. �
We saw above that projective plane of order of a prime power q exists, but
existence of projective planes of non prime power order is still an open ques-
tion. But we will see later that projective planes of certain non prime power
orders does not exist.

Definition 2.3.3 Affine Plane

Let n ≥ 2. An (n2, n2 +n, n+ 1, n, 1)-BIBD is called an affine plane of order
n.

Theorem 2.3.4 For every prime q ≥ 2 , there exists an affine plane of order
q i.e a (q2, q, 1)-BIBD.



Proof: From theorem 2.3.2, ∃ a (q2 + q+ 1, q+ 1, 1)-BIBD and the residual
design from this is (q2, q2 + q, q+ 1, q, 1)-BIBD(from theorem 2.2.2) which is
an affine plane or order q. �
Warning :The derived design of a projective plane has block size 1 and hence
is not a BIBD.
The projective palnes we have constructed above are regarded as projective
geometries and is denoted by PG2(q). We now generalize theorem 2.3.2 to
higher dimensions and by taking V = (Fq)d+ 1. We now state this result as
a theorem (without proof).

Theorem 2.3.5 Suppose q ≥ 2 be a prime power and d ≥ 2 be an integer.

Then there exists a symmetric

(
qd+1−1
q−1

, q
d−1
q−1

, q
d−1−1
q−1

)
-BIBD.

The points and blocks of this BIBD would represent the points and hyper-
planes of d dimensional projective geometry PGd(q). Now we will see a
corollary to this theorem, which tells us the derived and residual BIBD’s
constructed from the above BIBD.

Corollary 2.3.6 Suppose q ≥ 2 be a prime power and d ≥ 2 be an integer.

Then there exists a

(
qd, qd−1, q

d−1−1
q−1

)
-BIBD and a

(
qd−1
q−1

, q
d−1−1
q−1

, q(q
d−2−1)
q−1

)
-

BIBD.

Proof: From the above theorem there exists a

(
qd+1−1
q−1

, q
d−1
q−1

, q
d−1−1
q−1

)
-BIBD.

Now from theorem 2.2.2 we can construct derived and residual BIBD from
this. The residual BIBD will have the first parameter

qd+1 − 1− qd + 1

q − 1
=
qd(q − 1)

q − 1
= qd

The second parameter is as follows:

qd − 1− qd−1 + 1

q − 1
=
qd(1− 1

q
)

q − 1
=
qd

q
= qd−1

And the third parameter is qd−1−1
q−1

. Hence there exists a

(
qd, qd−1, q

d−1−1
q−1

)
-

BIBD.
Now let us see how the derived BIBD would look like. It will be a(

qd − 1

q − 1
,
qd−1 − 1

q − 1
,
qd−1 − 1

q − 1
− 1

)
− BIBD.
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Let us now examine the third parameter

qd−1 − 1

q − 1
− 1 =

qd−1 − 1− q + 1

q − 1
=
q(qd−2 − 1)

q − 1

which is the desired result. �
We will now look at the most fundamental theorem on the existence of sym-
metric BIBD, which we will explore in the next section.

2.4 Bruck-Ryser-Chowla Theorem

Bruck-Ryser-Chowla theorem is the most fundamental theorem which talks
about the conditions for the existence of symmetric designs. This theorem
has two parts which will look upon one by one.

Theorem 2.4.1 (Bruck-Ryser-Chowla Theorem,v even) Suppose there
exists a symmetric (v, k, λ)-BIBD. If v is even,then k−λ is a perfect square.

Proof: Let M be the incidence matrix of symmetric (v, k, λ)-BIBD. In a
symmetric design, we have b = v and r = k.Since M is a square matrix,
detMMT = det(M)2 = detB = (k − λ)v−1(vλ− λ+ k).
Since λ(v − 1) = k(k − 1), we have vλ− λ + k = k(k − 1) + k = k2. Hence
we have det(M)2 = (k − λ)v−1k2. This implies that (k − λ)v−1 is a square ,
and since v is even, it must be the case that k − λ is also a square, which is
the desired result . �
Now we will see what happens when v is odd. Before stating the theorem
we will need some results to prove it, which we will state here without the
proof.

Lemma 2.4.2 (Lagrange’s Theorem) Every positive integer ncan be rep-
resented as the sum of squares of four integers, i.e n = a2

1 + a2
2 + a2

3 + a2
4.

Lemma 2.4.3 Suppose that C =


a0 a1 a2 a3

−a1 a0 −a3 a2

−a2 a3 a0 −a1

−a3 −a2 a1 a0

 and let n = a2
0+

a2
1 + a2

2 + a2
3.Then C−1 = 1

n
CT .

Now let us see the case when v is odd:
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Theorem 2.4.4 (Bruck-Ryser-Chowla Theorem,v odd) Suppose there
exists a symmetric (v, k, λ)-BIBD with v odd. Then there exist integers x, y,

and z(not all 0) such that x2 = (k − λ)y2 + (−1)
v−1
2 λz2.

Proof: First let us suppose v ≡ 1 mod 4 and we denote v = 4w + 1.
Let M be the incidence matrix of 9v, k, λ)-BIBD. In the previous chapter we
saw how relation (1.2) can be written as a relation on quadratic forms. Let
x1, . . . , xv be the indeterminates, and for 1 ≤ j ≤ v, let Lj be as defined
before. We have the relation

v∑
j=i

L2
j = λ(

v∑
i=1

xi)
2 + (k − λ)

v∑
i=1

x2
j . (2.5)

We now transform variables x1, . . . xv to new variables y1, . . . , yv such that
each yi is an integral linear combination of xj’s. Since k − λ is a positive
integer , from lagrange theorem , we can express k − λ = a2

0 + a2
1 + a2

2 + a2
3,

where a0, a1, a2, a3 are integers. Let C be the matrix as defined above. Then
for 1 ≤ h ≤ w, let

(y4h−3, y4h−2, y4h−1, y4h) = (x4h−3, x4h−2, x4h−1, x4h)C

and let yv = xv . Finally, let y0 = x1 + · · ·+ xv.
Now for 1 ≤ h ≤ w, we have

y4h−3
2 + y4h−2

2 + y4h−1
2 + y4h

2 = (y4h−3, y4h−2, y4h−1, y4h)(y4h−3, y4h−2, y4h−1, y4h)
T

= ((x4h−3, x4h−2, x4h−1, x4h)C)((x4h−3, x4h−2, x4h−1, x4h)C)T

= (x4h−3, x4h−2, x4h−1, x4h)CC
T (x4h−3, x4h−2, x4h−1, x4h)

T

= (x4h−3, x4h−2, x4h−1, x4h)(k − λ)I4(x4h−3, x4h−2, x4h−1, x4h)
T

= (k − λ)(x4h−3
2 + x4h−2

2 + x4h−1
2 + x4h

2)

Since v = 4w + 1, we have

v−1∑
i=1

y2
i = (k − λ)

v−1∑
i=1

x2
i

Therefore we now obtain,

v∑
j=i

L2
j = λy2

0 +
v−1∑
i=1

y2
i + (k − λ)y2

v
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We here observe that Lj’s were defines as integral linear combination of xj’s.
We can now express xj as a rational linear combination of y1, . . . , yv and y0

as a rational linear combination of y1, . . . , yv. So, the equation we obtained
above can be seen as an identity in indeterminates y1, . . . , yv with rational
coefficients. We can breakdown this expression further by expressing any
of the indeterminate as a rational linear combination of the other indeter-
minates and the new expression will still be an identity in the remaining
indeterminates with rational coefficients.
Let L1 = c1y1 + · · ·+ cvyv. If c1 = 1, let y1 = −L1 and if not let y1 = L1. By
this scheme we have expressed y1 as a rational linear combination of y2, . . . , yv
such that L2

1 = y2
1. And hence the above relation will now become,

v∑
j=2

L2
j = λy2

0 +
v∑
i=2

−1y2
i + (k − λ)y2

v .

We proceed in this fashion eliminating the indeterminates y2, . . . , yv one at a
time by expressing each yi as rational linear combination of yi+1, . . . , yv such
that y2

i = L2
i ∀i. So finally we will get

L2
v = λy2

0 + (k − λ)y2
v

where Lv and y0 are rational multiples of yv. Hence let us suppose that
Lv = syv and y0 = tyv where s, t ∈ Q. Let yv = 1, and then the equation
becomes

s2 = λt2 + (k − λ)

. Now we write s = m
n

and t = p
q

where m,n, p, q ∈ Z and n, q 6= 0. Now
incorporating these into the equation, it now becomes,

(mq)2 = λ(np)2 + (k − λ)(nq)2.

Let x = mq, y = nq, z = np. It is clear that x, y, z ∈ Z. Hence we have an
integral solution to the equation x2 = (k−λ)y2+(−1)

v−1
2 λz2. Note that since

v is odd and v = 4w+1, v−1 = 4w and v−1
2

is always even and (−1)
v−1
2 = 1.

Now we need to look the case when v ≡ 3 mod 4.W e denote v = 4w − 1.
Here we introduce a new indeterminate xv+1 and we add (k−λ)x2

v+1 to both
sides o equation (2.5). We now have

v∑
j=1

L2
j + (k − λ)x2

v+1 = λ(
v∑
i=1

xi)
2 + (k − λ)

v+1∑
i=1

x2
i .
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For 1 ≤ h ≤ w, let

(y4h−3, y4h−2, y4h−1, y4h) = (x4h−3, x4h−2, x4h−1, x4h)C.

and let y0 = x1 + · · ·+ xv and we have

y4h−3
2 + y4h−2

2 + y4h−1
2 + y4h

2 = (k − λ)(x4h−3
2 + x4h−2

2 + x4h−1
2 + x4h

2).

And since v = 4w − 1, we have

v+1∑
i=1

y2
i = (k − λ)

v+1∑
i=1

x2
i .

Therefore our equation now becomes

v∑
j=1

L2
j + (k − λ)x2

v+1 = λy2
0 +

v+1∑
i=1

y2
i .

Now proceeding as in the above case , we obtain

(k − λ)x2
v+1 = λy2

0 + y2
v+1 =⇒ y2

v+1 = (k − λ)x2
v+1 − λy2

0

Hence we have obtained integral solution to the equation x2 = (k − λ)y2 +

(−1)
v−1
2 λz2. Here since v = 4w′+ 3, v−1 = 4w′+ 2 and v−1

2
= 2w′+ 1 which

is odd. Hence (−1)
v−1
2 = −1,which is the desired result. �

As an application of this theorem we will show that a (43, 7, 1)-BIBD does
not exist.
If this BIBD exist , then there must exist integer solutions to the equation
x2 +z2 = 6y2. Let x+y+z be as small as possible. This equation is possible
only when both x and z are both odd or both even. If both x and z are both
odd, then we have x2 ≡ 1 mod 8 and z2 ≡ 1 mod 8 and hence x2 + z2 ≡ 2
mod 8. But if y is odd, 6y2 ≡ 6 mod 8 and if y is even 6y2 ≡ 0 mod 8.
Hence LHS and RHS does not satisfy each other and we discard the case.
Then , x and z are both even. Since 4 divides LHS, 4 should divide RHS as
well and hence y is also even. Then we can replace x, z and y by 2r, 2s and
2t. Hence the equation now becomes r2 + s2 = 6t2. Hence r, s, t satisfy the
same relation which implies they integer solutions of the same equation. But
r + s + t = x+y+z

2
< x + y + z , which is a contradicts our choice of x, y, z.

Hence the equation has no integer solutions and therefore (43, 7, 1)-BIBD
does not exist.
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Next we analyze the conditions of the theorem in a projective plane of
arbitrary order n. Firstly, let n ≡ 0, 3 mod 4. Here v = n2 + n + 1k =
n + 1, λ = 1. When n = 4w, v = n2 + n + 1 = 16w2 + 4w + 1, v − 1 =
16w2 +4w, v−1

2
is even. And when n = 4w+3, v = n2 +n+1 = 16w2 +28w+

13, v−1 = 16w2 +28w+12, v−1
2

is even. Hence it should satisfy the equation
x2 = ny2 + z2, which always have a non trivial solution x = 1, y = 0, z = 1.
Hence when n ≡ 0, 3 mod 4, the theorem does not yield any non existent
results for (n2 + n+ 1, n+ 1, 1)−BIBD.
Now let us analyse the case when n ≡ 1, 2 mod 4. When n = 4w+ 1, v−1

2
=

n2+n
2

= 16w2+12w+2
2

is odd . And when n = 4w+2, v−1
2

= n2+n
2

= 16w2+20w+6
2

is
odd. Hence, we need to get integer solutions for the equation x2 + z2 = ny2.
We need to see the conditions when this equation have non zero integral
solutions. Though we dont give a proof here, it is shown that the equation
yield solutions if and only if x2 + z2 = n has integral solution (x, z).
We use some results from number theory without proof to analyze when the
above equation yields solutions of the required type.

Theorem 2.4.5 A positive integer n can be expressed as the sum of two
integral squares if and only if there does not exist a prime p ≡ 3 mod 4 such
that the largest power of p that divides n is odd.

Using this theorem we obtain the following result.

Theorem 2.4.6 Suppose that n ≡ 1, 2 mod 4, and there exist a prime p ≡ 3
mod 4 such that the largest power of p that divides n is odd, then a projective
plane of order n does not exist.

Proof: Since there exit a prime p ≡ 3 mod 4 such that the largest power
of p that divides n is odd, n cannot be expressed as the sum of two integral
squares, and by the above discussion a projective plane of order n does not
exist . �
We now look at the case of arbitrary λ to see when BIBD of certain values
does not exist. To analyze this we introduce the concept of quadratic residues
and we also use a theorem for the same.

Definition 2.4.7 Quadratic residue

Suppose m ≥ 2 is an integer and a is any integer , then a is quadratic residue
modulo m, if x2 ≡ a mod m has a solution x ∈ Zm \ {0}.
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Theorem 2.4.8 (Euler’s criterion) An integer a is quadratic residue mod-

ulo the odd prime p if and only if a
p−1
2 ≡ 1 mod p.

Definition 2.4.9 Square-free integers

A positive integer is called square free if it is not divisible by j2 for any
integer j > 1. Any positive integer n can be written uniquely as n = A2n1,
where A is a positive integer and n1 is square free. n1 is called the square
free part of n.
We will now see the theorem which tells us the conditions when a BIBD does
not exist.

Theorem 2.4.10 Suppose that v, k, λ are positive integers such that λ(v −
1) = k(k − 1)where v > k ≥ 2.Let λ1 be the square free part of λ and n1 be
the square free part of k−λ. Suppose that p is an odd prime such that n1 ≡ 0
mod p, λ1 6≡ 0 mod p and (−1)

v−1
2 λ1 is not a quadratic residue modulo p.

Then there does not exist a (v, k, λ)-BIBD.

Proof: To prove this we will show that the equation x2 = (k − λ)y2 +

(−1)
v−1
2 λz2 does not have integral solution (x, y, z) 6= (0, 0, 0). Let us assume

the equation have a non zero integral solution. We can replace k−λ by A2n1

and λ by B2λ1. Then the equation will be x2 = n1(Ay)2 + (−1)
v−1
2 λ1(Bz)2.

Letting y1 = Ay, z1 = Bz, the equation will be

x2 = n1y
2
1 + (−1)

v−1
2 λ1z

2
1 . (2.6)

And this will have non zero integral solution (x, y1, z1). We can assume
without loss of generality that gcd(x, y1, z1) = 1(Since if gcd = d > 1, then
we can divide by d to get a solution whose gcd = 1. )
Let z1 ≡ 0 mod p. Since n1 ≡ 0 mod p, x ≡ 0 mod p. But if both z1 and x
are divisible by p, then z2

1 andx2 are both divisible by p2 and therefore n1y
2
1

must be divisible by p2. Since n1 is sqaure free, n1 is not divisible by p2.
Hence p2 divides y2

1 and p divides y1. Therefore gcd(x, y1, z1) ≥ p which is a
contradiction. Hence z 6≡ 0 mod p. We consider (2.5), and going modulo p,
and since n1 ≡ 0 mod p, λ1 6≡ 0 mod p, we get

x2 ≡ (−1)
v−1
2 λ1z

2
1 mod p =⇒ (xz−1

1 )2 ≡ (−1)
v−1
2 λ1 mod p.

This gives us (−1)
v−1
2 λ1 is a quadratic residue modulo p, which is a contra-

diction. Hence (v, k, λ)-BIBD does not exist. �
As an application of this theorem we derive theorem 2.4.6 as a corollary of
this theorem.



Example 2.4.11

Suppose that n ≡ 1, 2 mod 4 and there exist a prime p ≡ 3 mod 4 such
that the largest power of p that divides n is odd. We need to show using
the above theorem that (n2 + n+ 1, n+ 1, 1)-BIBD does not exist. We have
λ1 = λ = 1 6≡ 0 mod p, k − λ = n. Since the largest power of p that divides
n, say α is odd,

n

pα
=
A2n1

pα
=

(
A

p′

)2
n1

p
=⇒ n1 ≡ 0 mod p.

Now the conditions of the theorem are satisfied. So according to the theorem
we need to show that (−1)

v−1
2 is not a quadratic residue modulo p. (−1)

v−1
2 =

(−1)
n2+n

2 = −1(∵ n ≡ 1, 2 mod 4. If −1 is a quadratic residue modulo p,

then (−1)
p−1
2 ≡ 1 mod p. But (−1)

p−1
2 = (−1)2w+1 = −1 6≡ 1 mod p(∵

p = 4w + 3). Hence (−1)
v−1
2 is not a quadrartic residue modulo p.Hence

projective plane of order n does not exist in the given conditions.

We have for a symmetric BIBD, MMT = (k−λ)I +λJ . And we saw that
in quadratic forms it is of the form, it takes the form

L2
1 + · · ·+ L2

v = (k − λ)(x2
1 + · · ·+ x2

v) + λ(x1 + · · ·+ xv)
2 (2.7)

where Lj =
v∑
i=1

aijx1.

We saw above that Bruck-Ryser-Chowla theorem gives necessary conditions
for the existence of matrix M satisfying incidence equation, or for the exis-
tence of rational linear forms Lj satisfying equation (2.7) . We will see that
these conditions are infact sufficient for the rational solution of incidence
equation and equation (2.7). This require Hasse-Minkowski theorem for its
proof which we will see in the next section.But some cases can be proved
directly which we will see here .

Firstly, if k − λ is a square, then we need to prove that there exist
a matrix M with rational entries such that MMT = (k − λ)I + λJ . Let
M = pI + qJ . If there should exist such a matrix then it should satisfy the
above incidence equation. Note that MT = pI + qJT = pI + qJ = M . Hence

MMT = M2 = (pI+qJ)2 = p2I+q2vJ+2pqJ = p2I+(q2v+2pq)J = (k−λ)I+λJ.
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And we obtain
p2 = k − λ =⇒ p =

√
k − λ.

Also,

q2v+2pq = λ =⇒ vq2+2pq−λ = 0 =⇒ q =
−2p+

√
4p2 + 4vλ

2v
=⇒ q =

−p+
√
p2 + vλ

v
.

p2 + vλ = k − λ+ vλ = k + λ(v − 1) = k + k2 − k = k2.

Hence q = −(
√
k−λ)+k
v

. Hence the matrix M takes the form

M =
√
k − λI +

−(
√
k − λ) + k

v
J.

Also we have Lj = aijxi =
√
k − λx1 + −(

√
k−λ)+k
v

(x1 + · · ·+ xv).
This proves the sufficiency of first condition of Bruck Ryser-Chowla theo-
rem, when v is even. Also it includes the cases when v is odd and k − λ
happens to be a square. To prove the sufficiency of second condition of
Bruck-Ryser-Chowla theorem for rational solution of (2.7) we need Hasse-
Minkowski theorem which we will look upon in the next section.

2.5 Statement Of Hasse-Minkowski And Ap-

plications

We will first see some definitions and state some theorems from number
theory which we will use to state Hasse-Minkowski theorem and also to prove
the rational converse.

In the previous section we saw what are quadratic residues. Let p be an
odd prime. The integers a 6≡ 0 mod p can be divided to quadratic residues
and quadratic non residues if x2 ≡ a mod p have or does not have a solution
x mod p. This can be expressed by Legendre Symbol which is described
below. (

a

p

)
= 1 if a is a quadratic residue modulo p(

a

p

)
= −1 if a is not a quadratic residue modulo p

We now state some theorems of quadratic residues and non residues.
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Theorem 2.5.1 If p is an odd prime , then

a ≡ b mod p =⇒
(
a

p

)
=

(
b

p

)
(2.8)

a
p−1
2 ≡

(
a

p

)
mod p (2.9)(

ab

p

)
=

(
a

p

)(
b

p

)
(2.10)(

−1

p

)
= (−1)

p−1
2 (2.11)

In the next theorem, we will see the deeper relations concerning two odd
primes. This theorem along with the previous one makes the evaluation of
legendre symbol easier.

Theorem 2.5.2 (Law of quadratic reciprocity) If p and q are two odd
primes, then (

2

p

)
= (−1)

p2−1
8 (2.12)(

p

q

)(
q

p

)
= (−1)( p−1

2
)( q−1

2
) (2.13)

We will now look at theorem which deals with congruence modulo powers of
a prime p.

Theorem 2.5.3 Let p be a prime and let b = pab1, where p does not divide
b1. Then for arbitrary high powers of p , the congruence x2 ≡ b mod pn if

and only if a is even,

(
b1
p

)
= 1, for p odd and b1 ≡ 1 mod 8 if p = 2.

Let us now see a definition and a theorem from which we will lead to the
main theorem in this section, the Hasse-Minkowski theorem.

Definition 2.5.4 Hilbert Norm Residue symbol

The hilbert norm residue symbol, denoted by (b, c)p takes the value +1 or
−1 accordingly as bx2 + cy2 ≡ z2 mod pm does or does not have integer
solutions x, y, z , not all multiples of p for arbitrarily high powers of p. The
case when p = ∞ is decided accordingly as bx2 + cy2 = z2 does or does not
have real solutions x, y, z not all zero. Hence (b, c)∞ = 1 unless both b and c
are negative.
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Theorem 2.5.5 The equation bx2 +cy2 = z2 has solutions in integers x, y, z
not all zero if and only if (b, c)p = 1 for all primes p including p =∞.

Hasse-Minkowski theorem gives us the conditions for rational equiva-
lence of any two rational quadratic forms which are expressible in terms of
the hasse symbol cp(f) defined for a quadratic form

f =
m∑

i,j=1

bijxixj; bij = bji

and primes p including p = ∞. We define for r = 1, . . . ,m,the rth leading
principal minor of B = (bij), as

Dr = det(bij) i, j = 1, . . . , r.

Here, we shall suppose that b′s are all integers andD1, . . . , Dm are all different
from 0. Now we will define cp(f) for those f which takes the form above and
all primes p, as

cp(f) = (−1, Dm)p

m−1∏
i=1

(Di,−Di+1)p.

Having stated all the requirements, we will now see the major Hasse-Minkowski
theorem.

Theorem 2.5.6 (Hasse-Minkowski Theorem) If f1 and f2 are integral
quadratic forms in m variables, none of whose leading principal minors van-
ishes, then a necessary and a sufficient condition that f1 and f2 are rationally
equivalent is that cp(f1) = cp(f2) for all odd primes and p =∞.

The following theorem makes the computation of hilert norm residue symbol
easier.

Theorem 2.5.7 Hilbert norm residue symbol has the following properties:
∞∏

∀primes

(b, c)p = 1 (2.14)

(b, c)p = (c, b)p (2.15)

(b1, b2, c)p = (b1, c)p(b2, c)p (2.16)

(bd2, ce2)p = (b, c)p (2.17)

(b,−b)p = 1 (2.18)

(b2, c)p = 1 (2.19)
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If p is an odd prime,

(b, c)p = 1, if b and c are prime to p. (2.20)

(b, b)p =

(
b

p

)
, if b 6≡ o mod p. (2.21)

(p, p)p = (−1, p)p (2.22)

(b1, c)p = (b2, c)p, if b1 = b2 6≡ 0 mod p. (2.23)

We have excluded p = 2 in the Hasse-Minkowski theorem whose reason we
will see now. We have

∞∏
p=2

cp(f) =
∞∏
p=2

(−1, Dm)p

m−1∏
i=1

(Di,−Di+1)p

=
∞∏
p=2

(−1, Dm)p

∞∏
i=1

m−1∏
i=1

(Di,−Di+1)p

=
∞∏
p=2

(−1, Dm)p

m−1∏
i=1

∞∏
i=1

(Di,−Di+1)p

=
∞∏
p=2

1
m−1∏
i=1

∞∏
i=1

1 from (2.14)

= 1

If cp(f1) = cp(f2) for all primes starting from 3, then
∏
p≥3

cp(f1) =
∏
p≥3

cp(f2).

Also we have
∏∞

p=2 cp(f) = 1.from these we get

∞∏
p=2

cp(f1) =
∞∏
p=2

cp(f2) =⇒ c2(f1)
∏
p≥3

cp(f1) = c2(f2)
∏
p≥3

cp(f2) =⇒ c2(f1) = c2(f2).

Hence we can exclude p = 2 from consideration in Hasse-Minkowski theorem.

Having stated the Hasse-Minkowski theorem, we will now see the rational
converse of the second condition of Bruck-Ryser-Chowla theorem. We saw
above that the incidence equation (1.2) is equivalent to equation (2.5). Thus
the existence of a rational matrix M satisfying (1.2) is equivalent to the
existence of a rational transformation taking the form x2

1 + · · · + x2
v to the



form (k − λ)(x2
1 + · · · + x2

v) + λ(x1 + · · · + xv)
2. Now we have to show that

the rational solution of (2.5), when v is odd is equivalent to the existence of

integers x, y, z not all zero satisfying the equation (k−λ)x2+(−1)
v−1
2 λy2 = z2.

Here the rational forms are

f1 = (k − λ)(x2
1 + · · ·+ x2

v), f2 = x2
1 + · · ·+ x2

v.

For f1, for r = 1, . . . , v, (letk − λ = n), we have from the definitions above,

Dr = det


n+ λ λ . . . λ
λ n+ λ λ
...

. . .
...

λ λ . . . n+ λ


= (n+ λ− λ)r−1(rλ− λ+ n+ λ)

= nr−1(k + (r − 1)λ) from the calculation used in the previous chapter

Hence we have Di = ni−1(k + (i − 1)λ). Since all the D′s are positive and
since (b, c)∞ = 1 unless both b and c are negative we have c∞(f1) = −1.
For f2, for r = 1, . . . , v, Dr = detIr = 1.

c∞(f2) = (−1,−1)∞

v−1∏
i=1

(1,−1)∞ = −1.1 = −1. Hence we have c∞(f1) =

c∞(f2).
Now,

cp(f2) = (−1,−1)p

v−1∏
i=1

(1,−1)p

= (−1,−1)p1 from (2.18)

= 1 from (2.20)

So for f1 and f2 to be rationally equivalent we need to further show that
cp(f1) = 1 for all odd primes . Let us now evaluate cp(f1). We have cp(f1) =

(−1, Dv)p

v−1∏
i=1

(Di,−Di+1)p.

Let Ei = k + (i − 1)λ ∀i = 1, . . . , v.. We have Ev = k + (v − 1)λ =
k + k(k − 1) = k2.. And since v is odd, nv−1 is a square. Hence we have

(−1,−Dv)p = (−1,−nv−1k2)p = (−1.1,−1.nv−1k2)p = (−1,−1)p = 1from (2.17,2.20).
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Now,

cp(f1) =
v−1∏
i=1

(Di,−Di+1)p

=
v−1∏
i=1

(ni−1Ei,−niEi+1)p

=
v−1∏
i=1

(ni−1,−ni)p(ni−1, Ei+1)p(Ei, n
i)p(Ei,−Ei+1)p from (2.16)

When i is even, (ni−1,−ni)p = (ni−2n,−1.ni)p = (n,−1)p. and if i is odd ,

(ni−1,−ni)p = (1,−n)p = 1, from (2.19). Hence
v−1∏
i=1

(ni−1,−ni)p = (n,−1)
v−1
2

p .

v−1∏
i=1

(ni−1, Ei+1)p =
v−1∏
i=1

(n2ni−1, Ei+1)p

=
v−1∏
i=1

(ni+1, Ei+1)p

= (nv, Ev)p

v∏
j=2

(nj, Ej)p

= (nv−1n, k2)p

v∏
j=2

(nj, Ej)p = (n, 1)p

v−1∏
j=2

(nj, Ej)p

= 1
v−1∏
j=2

(nj, Ej)p =
v−1∏
i=2

(ni, Ei)p



Therefore, we now have

cp(f1) = (n,−1)
v−1
2

p

v−1∏
i=2

(ni, Ei)p(E1, n)p

v−1∏
i=2

(Ei, n
i)p

v−1∏
i=1

(Ei,−Ei+1)p

= (n,−1)
v−1
2

p (E1, n)p

v−1∏
i=2

(ni, Ei)p

v−1∏
i=2

(ni, Ei)p

v−1∏
i=1

(Ei,−Ei+1)p

= (n,−1)
v−1
2

p (E1, n)p

v−1∏
i=2

((ni, Ei)p)
2

v−1∏
i=1

(Ei,−Ei+1)p

= (n,−1)
v−1
2

p (k, n)p

v−1∏
i=2

(n2i, Ei)p

v−1∏
i=1

(Ei,−Ei+1)p

= (n,−1)
v−1
2

p (k, n)p1
v−1∏
i=1

(Ei,−Ei+1)p

= (n,−1)
v−1
2

p (k, n)p

v−1∏
i=1

(Ei,−Ei+1)p

Now we need to evaluate
∏v−1

i=1 (Ei,−Ei+1)p = P , say.
Let pa be the highest power of p dividing both k and λ so that k = pak1 and
λ = paλ1 and p - (k1, λ1). We have k1 + (v − 1)λ1 = k1 + (v − 1)p−aλ =
k1 + k(k − 1)p−a = k1 + k1p

a(k1p
a − 1)p−a = k1 + k1(k1p

a − 1) = k2
1p
a.

We also have Ei = (k + (i− 1)λ) = pa(k1 + (i− 1)λ1. Therefore we get

P =
v−1∏
i=1

(pa(k1 + (i− 1)λ1),−pa(k1 + iλ1))p

=
v−1∏
i=1

(pa,−pa)p(pa, k1 + iλ1)p(k1 + (i− 1)λ1, p
a)p(k1 + (i− 1)λ1,−(k1 + iλ1))p



We have from (2.18) that (pa, p−a)p = 1. Computing the second term will
yield

v−1∏
i=1

(pa, k1 + iλ1)p =
v−2∏
i=1

(pa, k1 + iλ1)p(p
a, k1 + (v − 1)λ1)p

= (pa, k1 + (v − 1)λ1)p

v−1∏
i=2

(pa, k1 + (i− 1)λ1)p

= (pa, k1 + (v − 1)λ1)p

v−1∏
i=2

(k1 + (i− 1)λ1, p
a)p

Hence substituting these in the compuatation of P , we have

P = (pa, k1 + (v − 1)λ1)p

v−1∏
i=2

(k1 + (i− 1)λ1, p
a)p

v−1∏
i=2

(k1 + (i− 1)λ1, p
a)p(k1, p

a)p

v−1∏
i=1

(k1 + (i− 1)λ1,−(k1 + iλ1))p

= (k1, p
a)p(p

a, pak2
1)p

v−1∏
i=2

((k1 + (i− 1)λ1, p
a)p)

2

v−1∏
i=1

(k1 + (i− 1)λ1,−(k1 + iλ1))p

= (k1, p
a)p(p

a, pa)p1
v−1∏
i=1

(k1 + (i− 1)λ1,−(k1 + iλ1))p

= (k1, p
a)p(p

a, pa)p

v−1∏
i=1

(k1 + (i− 1)λ1,−(k1 + iλ1))p

We will take two cases and show that in both the cases P has the same value.
Let us first suppose p|λ1. Now we have k(k−1) = λ(v−1) =⇒ k1(k1p

a−1) =
λ1(v − 1) =⇒ k(k1p

a − 1) = λ(v − 1) = k(k − 1) =⇒ k1p
a = k =⇒ a =

0, k1 = k. Hence p - k and p|λ. Also we have p - k − λ, p - k + iλ ∀i.
Hence we have k1 + (i− 1)λ1 and −(k1 + iλ1) are coprime to p. So we obtain
v−1∏
i=1

(k1 + (i− 1)λ1,−(k1 + iλ1))p =
v−1∏
i=1

1 = 1. Therefore in this case we have

P = (k1, p
a)p(p

a, pa)p = (k, 1)p(1, 1)p = 1.



Also using the fact that k2 − k ≡ 0 mod p, we get

(k, k − λ)p(λ, k − λp) = 1(λ, k − λ)p(from (2.20))

= (λ, k)p(from (2.23)

= (λ, (k2 − k) + k)p

= (λ, k2)p = 1

Hence we have P = (k, k − λ)p(λ, k − λ)p in this case.
Let us take the next case when p - λ1. Then atmost one of k1 + (i− 1)λ1 or
k1 + iλ1 is divisible by p. If neither is, then (k1 + (i−1)λ1,−(k1 + iλ1))p = 1.
Let 0 ≤ r ≤ v − 1 such that k1 + rλ1 ≡ 0 mod p. If 1 ≤ r ≤ v − 2, then
there are exactly two terms in the product P containing k1 + rλ1 and the
product will look like ,

(k1 + (r − 1)λ1,−(k1 + rλ1))p(k1 + rλ1,−(k1 + (r + 1)λ1))p

= (−λ1,−(k1 + rλ1))p(k1 + rλ1,−λ1)p

= (−λ1,−(k1 + rλ1))p(−λ1, (k1 + rλ1))p

= (−λ1,−(k1 + rλ1)2)p

= (−λ1,−1)p = 1

Therefore we have P = (k1, p
a)p(p

a, pa)p unless one or both of k1 or k1 +
(v − 1)λ1 is divisible by p (the cases when r = 0 and r = v − 1). When
a = 0, k1 = k, k1 + (v− 1)λ1 = k2 and p divides neither of these. In this case,
P = 1 and since p - k and p - λ, we have (k, k − λ)p(λ, k − λ)p = 1.1 = 1, if
p - k − λ.

If p|k − λ, we get (k, k − λ)p(λ, k − λ)p = (k, k − λ)2
p = 1, since both k and

λ are coprime to p. Hence when a = 0, we conclude P = (k, k−λ)p(λ, k−λ)p.

We now need to see the case when a > 0, then k1 + (v − 1)λ1 = k1 +
k1(k1p

a−1) = k2
1p
a. If p|(k1 +(v−1)λ1), (k1 +(v−2)λ1,−(k1 +(v−1)λ1))p =

(−λ1,−k2
1p
a)p = (−λ1, p

a)p = (−1, pa)p(λ1, p
a)p = (pa, pa)p(λ1, p

a)p.
If p - k1, we get P = (k1, p

a)p(p
a, pa)p(p

a, pa)p(λ1)(pa)p = (k1, p
a)p(λ1, p

a)p.
If p|k1, we have to include the term (k1,−k1−λ1)p in P which will now take
the form P = (k1, p

a)p(λ1, p
a)p(k1,−k1 − λ1)p.



Now

(k, k − λ)p(λ, k − λ)p = (pak1, p
a(k1 − λ1))p(p

aλ1, p
a(k1 − λ1))p

= (p2ak1λ1, p
a(k1 − λ1))p

= (k1λ1, p
a(k1 − λ1))p

= (k1λ1, p
a)p(k1λ1, (k1 − λ1))p

= (k1, p
a)p(λ1, p

a)p(k1, k1 − λ1)p(λ1, k1 − λ1)p

If p|k1, then (λ1, k1−λ1)p = 1. Hence P = (k1, p
a)p(λ1, p

a)p(k1, k1−λ1)p which
is the same as above calculation. And when p - k1, if p - k1−λ1, (k1, k1−λ1)p =
(λ1, k1 − λ1)p = 1 and hence P = (k1, p

a)p(λ1, p
a)p; else p|k1 − λ1, (k1, k1 −

λ1)p = (λ1, k1 − λ1)p. Hence P = (k1, p
a)p(λ1, p

a)p.
Hence we have P = (k1, p

a)p(λ1, p
a)p in every case. Substituting this in

cp(f1), we have

cp(f1) = (k − λ,−1)
v−1
2

p (k, k − λ)p(k, k − λ)p(λ, k − λ)p

= (k − λ,−1)
v−1
2

p (k, k − λ)2
p(λ, k − λ)p

= (k − λ,−1)
v−1
2

p (λ, k − λ)p

= (k − λ, (−1)
v−1
2 )pλ)p

Hence we proved that cp(f1) = (k − λ, (−1)
v−1
2 )pλ)p = 1 for all finite odd

primes . Since k − λ is posiive, (k − λ, (−1)
v−1
2 )pλ)∞ = 1. By using (2.14),

we obtain (k−λ, (−1)
v−1
2 )pλ)2 = 1. Thus by theorem 2.5.5, we conclude that

the rational equivalence of f1 and f2 is equivalent to the existence of integers
x, y, z not all zero satisfying (k − λ)x2 + (−1)

v−1
2 λy2 = z2. Therefore this

becomes not only a necessary but also a sufficient condition for the rational
solution of (2.7). Hence we have proved the Bruck -Ryser-Chowla theorem
and its rational converse. �

In this chapter we have dealt with symmetric BIBD’s in a great detail.
We saw its properties and also the necessary and sufficient conditions for the
existence of symmetric BIBD’s, the Bruck-Ryser-Chowla theorem, one of the
main results in this concept.
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Chapter 3

Difference Sets

Having learnt about symmetric designs and necessary condition for the
existence of symmetric designs, we will now look at an important construction
method for symmetric BIBD’s.

3.1 Difference Sets and Automorphisms

Definition 3.1.1 Difference Set

Suppose (G,+) is a finite group of of order v in which identity element is
denoted by 0. Let k and λ be positive integers such that 2 ≤ k ≤ v. A
(v, k, λ)-difference set in (G,+) is a subset D ⊆ G that satisfies

1. |D| = k

2. the multiset [x− y : x, y ∈ D, x 6= y] contains every element in G \ {0}
exactly λ times.

From (ii), λ(v − 1) = k(k − 1) if a (v, k, λ)- difference set exists.

Example 3.1.2

A (21, 5, 1)-difference set in (Z21,+) where D = {0, 1, 6, 8, 18} :
Computing differences of distinct elements modulo 21, we get from each pair
of distinct elements:
0-1 =20 1-0=1 6-0=6 8-1=8 18-0=18
0-6=15 1-6=16 6-1=5 8-1=7 18-1=17
0-8=13 1-8=14 6-8=19 8-6=2 18-6=12
0-18=3 1-18=4 6-18=11 8-18=11 18-8=10

47
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So we get every element of Z21 \ {0} exactly once as a difference of two ele-
ments in D.

Difference sets can be used to construct symmetric BIBD’s.To go into this
we will first see some definitions which we will require for the same.

Definition 3.1.3 Translate of D

Let D be a (v, k, λ)-difference set in a group (G,+). For any g ∈ G,define
D + g = {x+ g|x ∈ D}. Any set D + g is called translate of D.

Definition 3.1.4 Development of D

The collection of all v translates of D is called the development of D, denoted
by Dev(D).
Let us now see the relation between symmetric BIBD and difference sets.

Theorem 3.1.5 Let D be a (v, k, λ)-difference set in an abelian group (G,+).
Then (G,Dev(D)) is a symmetric (v, k, λ)-BIBD.

Proof: Suppose x, y ∈ G, x 6= y. Since in a symmetric BIBD every pair of
points is contained in λ blocks,we first prove that there are exactly λ elements
g ∈ G such that {x, y} ⊆ D + g.
Let us frist denote x − y = d. By the definition of difference set there are
exactly λ ordered pairs (x′, y′) such that x′, y′ ∈ D, x′ 6= y′, x′ − y′ = d. We
denote these ordered pairs by (xi, yi), 1 ≤ i ≤ λ. ∀1 ≤ i ≤ λ, we define
gi = −xi + x. Then g1 = −y1 + y and {x, y} = {xi + gi, yi + gi} ⊆ D + gi.
gi’s are distinct since xi’s are distinct hence there are atleast λ values of g
such that {x, y} ⊆ D + g.
Conversely suppose that there are exactly l values of g such that {x, y} ⊆
D + g. let us denote g = h1, . . . , hl. We have shown above that l ≥ λ. Note
that (x−hi)+(hi−y) = (x−y) = d ∀1 ≤ i ≤ l. Therefore {xi−hi, hi−yi} ⊆
D ∀1 ≤ i ≤ l. The hi’s are distinct ,so we have found l ordered pairs
(x′, y′) ∈ D such that x′ − y′ = d.By definition there are exactly λ such
ordered pairs. Hence l ≤ λ. And so we get l = λ. Hence each ordered pair
is contained in λ number of D + g. Since |G| = v we have v points . The
number of blocks is |Dev(D)| = v. Since |D| = k, |D + g| = k for all g. So
the collection of v blocks D + g, g ∈ G is a symmetric (v, k, λ)-BIBD. �
Let us now see a corollary of this theorem.
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Corollary 3.1.6 Suppose D is a (v, k, λ) difference set in an abelian group
(G,+). Then Dev(D) contains v distinct blocks.

Proof: Suppose that D+g1 = D+g2 such that g1 6= g2. Then the symmet-
ric BIBD will contain 2 blocks that intersect in k points. But in a symmetric
BIBD any two blocks intersect in λ points which is a contradiction. Hence
Dev(D) consists of v distinct blocks. �
The next result establishes the existence of non trivial automorphism of sym-
metric BIBD’s constructed from difference sets.

Theorem 3.1.7 Suppose (G,Dev(D)) is the symmetric BIBD constructed
from a (v, k, λ)-difference set D in a group (G,+). Then Aut(G,Dev(D))
contains a subgroup Ĝ ' G.

Proof: For every g ∈ G, define ĝ : G→ G such that ĝ(x) = x+ g x ∈ G.

ĝ(x1) = ĝ(x2) ⇐⇒ x1 + g = x2 + g ⇐⇒ x1 = x2.

Hence ĝ is one-one. Also for every y ∈ G, there exist an x′ ∈ G such that
ĝ(x′) = x′ + g = y ∈ G. Hence ĝ is onto. And so ĝ is a permutation of
G. Define Ĝ = {ĝ|g ∈ G}. Ĝ is a permutation group and is known as the
permutation representation of G.
We will now prove that

1. (G,+) ' (Ĝ, o), where o represent the composition of permutations.

2. (Ĝ, o) is a subgroup of Aut(G,Dev(D)).

To prove the first item, we need to exhibit an isomorphism between (G,+)
and (Ĝ, o). Define α : G→ Ĝ such that α(g) = ĝ ∀g ∈ G.

(α(g)oα(h)) = (α(g)oα(h))(x)

= (ĝoĥ)(x)

= ĝ(ĥ(x))

= ĝ(h+ x)

= g + h+ x = x+ g + h

= ˆg + h(x)

= α(g + h)(x)



holds for all g, h ∈ G. Hence α is a group homomorphism. Clearly α is
surjective. Also,

α(g) = α(h) ⇐⇒ ĝ = ĥ ⇐⇒ ĝ(x) = ĥ(x) x ∈ G ⇐⇒ g+x = h+x∀x ∈ G ⇐⇒ g = h.

hence α is injective .So we get the desired result that α is a bijection and
hence there exists an isomorphism between (G,+) and (Ĝ, o).
Now we need to prove the second assertion.We observe that ,

ĝ(D + h) = {ĝ(x)|x ∈ D + h}
= {x+ g|x ∈ D + h}
= {x+ g + h|x ∈ D}

D + g + h

Hence for any permutation ĝ ∈ Ĝ, and for any block D + h ∈ Dev(D), it
holds that ˆD + h ∈ Dev(D). That is, every ĝ ∈ Ĝ is an automorphism of
(G,Dev(D)). Since Ĝ is a group we get (Ĝ, o) is a subgroup of Aut(G,Dev(D))
which is the desired result . �
The converse of the above theorem holds under suitable conditions.We will
prove a special case of this type for difference sets in cyclic groups.WE will
require some results which we will see now.

Suppose that (X,A) is a symmetric (v, k, λ)-BIBD. Let α ∈ Aut(X,A).
α is a permutation of X and therefore it consists of a union of disjoint cycles
whose lengths sum to v. Cycle type of α is the collection of sizes of cycles
in the disjoint cycle representation of α. Fixed point of α is a point α is a
point x such that α(x) = x.
For example, consider permutation α of {0, . . . , 8} defined as α = (0, 3)(4, 5)(2)(6, 8)(7).
Then the cycle type of α is [1, 1, 2, 2, 3] and the fixed points are 2 and 7.
An automorphism α of (X,A) will permute the blocks in set A. We can
also write the cycle type of this permutation of A induced by α. Fixed
point of this permutation is a block A ∈ A that is fixed setwise by α , i.e
{α(x)|x ∈ A} = A, which we call as fixed blocks.
We will now prove a useful result which we will require later.

Lemma 3.1.8 Suppose (X,A) be a symmetric (v, k, λ)-BIBD and suppose
that α ∈ Aut(X,A) has exactly f points. Then α fixes exactly f blocks in A.
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Proof: Suppose that α fixes exactly F blocks. Define

I = {(x,A)|x ∈ X,A ∈ A, {x, α(x)} ⊆ A}

We compute |I| in two ways. Firstly,

|I| =
∑
x∈X

|{A ∈ A|{x, α(x) ⊆ A}}|

=
∑

{x∈X|α(x)=x}

|{A ∈ A|{x, α(x) ⊆ A}}|+
∑

{x∈X|α(x)6=x}

|{A ∈ A|{x, α(x) ⊆ A}}|

= fk + (v − f)λ

Secondly we compute |I| as follows.

|I| =
∑
A∈A

|{x ∈ X|{x, α(x) ⊆ A}}|

=
∑

{A∈A|α(A)=A}

|{x ∈ X|{x, α(x) ⊆ A}}|+
∑

{A∈A|α(A)6=A}

|{x ∈ X|{x, α(x) ⊆ A}}|

If α(A) = A,α(x) ∈ A ∀x ∈ X =⇒ {x ∈ X|{x, α(x) ⊆ A}} = A.
If α(A) 6= A, {x, α(x)} ⊆ A ⇐⇒ x ∈ A ∩ α−1(A). Since α−1(A) 6=
A, |A ∩ α−1(A)| = λ|.
Hence , |I| = Fk + (v − F )λ.
Therefore we get,

fk + (v − f)λ = Fk + (v − F )λ =⇒ (f − F )k + λ(v − f − v + F ) = 0

= (f − F )k − λ(f − F ) = 0 =⇒ (f − F )(k − λ) = 0

We have k 6= λ ,hence f = F , which is the desired result. �
We will define one more tool required later .

Definition 3.1.9 Mobius Function

Mobius function, denoted as µ,for positive integers is defined as

µ(n) =


1 n = 1
(−1)k n = p1 × · · · × pkwhere Pi’s are distinct primes
0 if n is divisible by p2 for some prime p

Now we will state an important theorem of mobius function(without proof).
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Theorem 3.1.10 (Mobius Inversion Formula) Suppose that f, g : Z+ →
R are functions and suppose that f(j) =

∑
i|j

g(i) holds for every positive in-

eteger j,then for every positive integer i,

g(i) =
∑
j|i

µ(
i

j
f(j).

Having stated the result we will see a theorem which uses the above facts.

Theorem 3.1.11 Suppose that (X,A) is a symmetric (v, k, λ)-BIBD and
α ∈ Aut(X,A).Then the cycle type of permuatation of X induced by α is the
same as cycle type of permutation of A induced by α.

Proof: Suppose a permutation α of a finite set S has exactly ci cycles
of length i, 1 ≤ i ≤ |S|. Let fj denote the number of fixed points of the
permutation αj. A point x ∈ S is fixed by permutation αj if and only if x

lies in a cycle whose length divides j (i|j) in α. This gives us that fj =
∑
i|j

ici.

Set g(i) = ici. Applying mobius inversion formula we get

ici =
∑
j|i

µ(
i

j
)fj =⇒ ci =

1

i

∑
j|i

µ(
i

j
)fj.

Let us now suppose that α is a permutation of symmetric (v, k, λ)-BIBD
(X,A). Foe every j greater than or equal to 1, αj is an automorphism of
(X,A). Hence by the above lemma, the permutation of X and A induced
by αj have the same number of fixed points . Hence from the formula of ci,
both permutations induced by α have the same cycle type. �
We will now prove a converse to theorem 3.1.5 where the symmetric BIBD
has an automorphism which is a single cycle of length v.

Theorem 3.1.12 Suppose that (X,A) is asymmetric (v, k, λ)-BIBD having
an automorphism α that permutes the points in X in a single cycle of length
v. Then there is a (v, k, λ)-difference set in (Zv,+).

Proof: By relabelling the points if necessary , we can assume, without loss of
generality, X = {x0, . . . , xv−1} and α(xi) = xi+1 mod v for0 ≤ i ≤ v−1. We
get α = (x0, . . . , xv−1). We choose any block A ∈ A. We define A0 = A and
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for each integer j ≥ 0, define Aj = {αj(x)|x ∈ A0} = {xj+1 mod v|xi ∈ A0}.
Every block Aj ∈ A ∵ αj ∈ Aut(X,A). From the above theorem, α permutes
the block in A in a single cycle of length v. Hence A0, . . . , Av−1 are all
distinct and A = {Aj|0 ≤ j ≤ v − 1} and α permutes the blocks in A as
α = (A0, . . . , Av−1).
Now, we define D = {i|xI ∈ A0} and we move on to show that D is the
desired difference set. Let g ∈ Zv, g 6= 0. The pair {x0, xg} occurs in exactly
λ blocks inA, say Ai1 , . . . , Aiλ . For each occurence of this pair in Aij , we have
a pair in difference set D, (g−ij)−(−ij) ≡ g mod v, and {−ij mod v, g−ij
mod v} ⊆ D. These λ pairs in D are distinct. Thus the difference g occurs
λ times in the set D for all nonzero g ∈ Zv. All occurences of g are included
by this method. Hence D is the desired difference set. �
We will see a generalisation to the above theorem in the case for arbitrary
finite groups for which we will first see a definition.

Definition 3.1.13 Sharply transitive

Let G ⊆ SV , is a permutation group acting on a set v-set X. G is sharply
transitive if for all x, x′ ∈ X, there exists a unique permutation g ∈ G such
that g(x) = x′. Also |G| = v if G is sharply transitive.
Now we state the theorem which can be proved in a similar procedure of
previous theorem.

Theorem 3.1.14 Suppose (X,A) is a symmetric (v, k, λ)-BIBD such that
G is a sharply transitive subgroup of Aut(X,A). Then there exists a (v, k, λ)-
difference set in the group (G, o).

3.2 Quadratic Residue Difference Sets

We will now see the concept of quadratic residues in a finite field Fq, where
q is an odd prime power. The quadratic residues of Fq are the elements in
the set QR(q) = {z2|z ∈ Fq, z 6= 0}. The quadratic non residues of Fq is
QNR(q) = Fq \ (QR(q) ∪ {0}).
We now characterize the quadratic residues and non residues. We use the fact
that the multiplicative group(Fq \{0}, .) is a cyclic group. A generator of this
group ,say w, is called the primitive element of the field Fq. And therefore
w is a primitive element if and only if {wi|0 ≤ i ≤ q − 2} = Fq \ {0}. It is
clear that the set {w2i|0 ≤ i ≤ q−3

2
} is a subset of QR(q). We can see that



the cardinality of the above set is q−3
2

+ 1 = q−1
2

= |QR(q)|. Hence we have
proven the following result that

Lemma 3.2.1 Suppose q is an odd prime power and w is a primitive element
in Fq. Then QR(q) = {w2i|0 ≤ i ≤ q−3

2
}.

Now we will see a corollary of this lemma.

Corollary 3.2.2 Suppose q is an odd prime power. Then −1 ∈ QR(q) ⇐⇒
q ≡ 1 mod 4.

Proof: Let w ∈ Fq be primitive element and let γ = w
q−1
2 6= 1. Hence

γ2 = wq−1 = 1. So γ 6= 1, γ2 = 1. Hence we get γ = w
q−1
2 = −1. Now

−1 ∈ QR(q) ⇐⇒ w
q−1
2 = z2 ⇐⇒ q−1

2
= 2k ⇐⇒ q − 1 = 4k ⇐⇒ q ≡ 1

mod 4. �
Now we will see a result which provides an infinite class of difference sets.

Theorem 3.2.3 (Quadratic Residue Difference Sets) Suppose q ≡ 3
mod 4 is a prime power.Then QR(q) is a (q, q−1

2
, q−3

4
)-difference set in (Fq,+).

Proof: Let QR(q) = D. We have |D| = q−1
2

. Hence, we only need to

show that every non zero element of Fq occurs q−3
4

times as a difference of 2
elements in D.
For any d ∈ Fq \ {0}, define ad = |{(x, y)|x, y ∈ D, x− y = d}|.
Now, gx − gy = g(x − y) ∀g, x, y. So the number of times any difference d
occurs in D is same as the number of times difference gd occurs in gD =
{gx|x ∈ D}. Suppose g ∈ QR(q). Since product of two quadratic residues is
also a quadratic residue, we have gD = D. And we get ad = agd ∀g ∈ QR(q).
Hence there exists a constant λ such that ad = λ ∀d ∈ QR(q).
Let d ∈ QNR(q), e = −d. WE have −1 ∈ QNR(q). And −1 × d = e ∈
QR(q). ad = ae since x − y = d ⇐⇒ y − x = e. Hence it follows that
ad = λ ∀d ∈ Fq \ {0}. Hence D is a (q, q−1

2
, λ) difference set. We have

λ(v − 1) = k(k − 1), which gives λ =
q−1
2

q−3
2

q−1
= q−3

4
. Hence we get QR(q) is

a (q, q−1
2
, q−3

4
)-difference set in (Fq,+). �

Now we will see construction of difference sets in a different class of elements.

Definition 3.2.4 Quartic residues

For prime power q ≡ 1 mod 4, quartic residue in Fq are the elements of the
set {z4|z ∈ Fq, z 6= 0}.Equivalently, we can also say that quartic residue is
the set {w4i|0 ≤ i ≤ q−5

4
}; where w is the primitive element.

Now we will state a theorem without proof which involves quartic residues.



Theorem 3.2.5 Suppose that p = 4t2 + 1 is prime and t is an odd in-
teger.Then quartic residues in Zp form a (4t2 + 1, t2, t

2−1
4

)-differnce set in

(Zp,+), and the quartic residues in Zp ∪ {0} form (4t2 + 9, t2 + 4, t
2+3
4

)-
difference set in (Zp,+).

Let us now explore some more properties related to difference sets.

3.3 The Multiplier Theorem

3.4 Multipliers of difference sets

We focus on abelian groups in this section and now we define a concept from
which we further move on.

Definition 3.4.1 Multiplier

Let D be a (v, k, λ)-difference set in an abelian group (G,+) of order v. For
an integer m, define mD = {mx|x ∈ D}, where mx is the sum of m copies
of x .Then m is called the multiplier of D if mD = D + g for some g ∈ G.
D is fixed by the multiplier m if mD = D.
We will now see some basic results regarding multipliers.

Lemma 3.4.2 Suppose that m is a multiplier of a (v, k, λ)-difference set in
D in an abelian group (G,+) of order v. Then gcd(m, v) = 1.

Proof: Suppose that gcd(m, v) > 1. Let p be a prime divisor of m and v.
Let d ∈ G have order p. There exists x, y ∈ D suh that x − y = d. Then
mx −my = m(x − y) = md = kpd = k(pd) = 0. So mD contains repeated
elements. Hence we get that mD 6= D+g for any g and m is not a multiplier
of D.Hence it must be the case that gcd(m, v) = 1. �

Lemma 3.4.3 Suppose that m is a multiplier of a (v, k, λ)-difference set in
D in an abelian group (G,+) of order v. Define α : G → G by α(x) = mx.
Then α ∈ Aut(G,Dev(D)).

Proof: We have mD = D+g for some g ∈ G. We apply α to arbitrary block
of (G,Dev(D)). We have α(D+h) = m(D+h) = mD+mh = D+g+mh ∈
Dev(D). Hence α maps any arbitrary block to another block. And we get
the desired result. �



Now we will see an important result known as the multiplier theorem which
establishes the existence of multipliers in difference sets, whose parameters
satisfy certain conditions.

Theorem 3.4.4 (Multiplier Theorem) Suppose there exists a (v, k, λ)-
difference set in an abelian group (G,+) of order v. Suppose that the condi-
tions given are satisfied :

1. p is prime

2. gcd(p, v) = 1

3. k − λ ≡ 0 mod p

4. p > λ

Then p is a multiplier of D.

Applying the multiplier theorem is made easier by the result we will see now.

Theorem 3.4.5 Suppose that m is a multiplier of a (v, k, λ)-difference set
in D in an abelian group (G,+) of order v. Then there exist a translate of
D that is fixed by m.

Proof: Define α(x) = mx for every x ∈ G. Then we have α ∈ Aut(G,Dev(D)).
We can easily see that α(0) = m0 = 0 and therefore α fixes atleast one point.
Then by lemma 3.1.8 α fixes atleast one block og Dev(D). This means that
α fixes atleast one translate of D. α(D + h) = m(D + h) = d + h. Hence
there exists a translate of D that is fixed by m. �
Let us now see a more general result in the case when gcd(v, k) = 1.

Theorem 3.4.6 Suppose there exists a (v, k, λ)-difference set in an abelian
group (G,+) of order v. Then there exists a translate of D that is fixed by
every multiplier m.

Proof: Let us denote s =
∑
x∈D

x. Then we get
∑

x∈D+g

=
∑
x∈D

x+ |D|g = s+kg.

If s+ kg = s+ kh; g, h ∈ G, g 6= h. Then k(g − h) = 0. And we get order of
g − h divides k. However in a finite group, order of any element divides the
order of group. Hence order of g − h divides v. Since gcd(v, k) = 1, order of
g − h = 1 =⇒ g − h = 0 =⇒ g = h which is a contradiction.
Hence we have now shown that the map g 7→ s + kg is one-one. Since this



map is from G into G and G is finite, G is surjective. Hence there exists a

unique g ∈ G such that s+ kg = 0 =⇒
∑

x∈D+g

x = 0.

Let m be any multiplier of D. Then m is also multiplier of the translate
D + g and we have ∑

x∈m(D+g)

x = m
∑

x∈D+g

x = 0.

Since it is for a unique g, D+ g is the unique translate of D whose elements
sum to 0. Hence m(D + g) = D + g and the translate D + g is fixed by any
multiplier m. �
A difference set or a translate of a difference set is said to be normalized if its
elements sum to 0. Hence we showed above that for any (v, k, λ)-difference
set D in an abelian group (G,+) of order v where gcd(v, k) = 1, there is a
unique normalized translate and this translate is fixed by every multiplier of
D.

Before proceeding to the proof of the multiplier theorem, we need to see
some requirements which we need for the proof. Let us take a look at these
now.

3.4.1 Group Ring

The proof of the multiplier theorem uses an algebraic structure called the
group ring. We will see the definition and some properties of the same.

Definition 3.4.7 Group Ring

Let (G,+) be an abelian group.The group ring, Z[G], consists of all formal

sums of the form
∑
g∈G

agx
g; ag ∈ Z, where x is the indeterminate. It is easy

to see that an element of Z[G] is a polynomial in the indeterminate x having
integer coefficients and the exponents are the elements of the group G.
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Let us see some of its properties. Let a(x) =
∑
g∈G

agx
g, b(x) =

∑
g∈G

bgx
g, then

(a+ b)(x) =
∑
g∈G

(ag + bg)x
g

(a.b)(x) =
∑
g∈G

∑
h∈G

(agbh)x
g+h

a(x) ≡ b(x) mod p if ag ≡ bg mod p

These are the operations carried out.We may also make use of the group
ring Zp[G] which is defined as the same way as above, except that here the
coefficients are in Zp.We will now define some more notations.

For any a(x) =
∑
g∈G

agx
g, define

a(xm) =
∑
g∈G

agx
mg

a(x−1) =
∑
g∈G

agx
−g

a(1) =
∑
g∈G

ag1 =
∑
g∈G

ag

Finally, let G(x) =
∑

g∈G x
g and for a difference set D in G, define D(x) =∑

g∈D x
g.

Now let us see some results regarding difference sets and group ring.

Lemma 3.4.8 Suppose D is a (v, k, λ)-difference set in an abelian group G.
Then D(x)D(x−1) = λG(x) + (k − λ)x0.

Proof: We haveD(x) =
∑
g∈D

xg andD(x−1) =
∑
h∈D

x−h. So we get,D(x)D(x−1) =∑
g,h∈D

xg−h. Let g − h = d and define αd = |{(g, h)|g, h ∈ D, g − h = d}|. So

we get D(x)D(x−1) =
∑
d∈G

αdx
d. Clearly, we have

αd =

{
λ if d 6= 0
k if d = 0



Therefore we get, D(x)D(x−1) = λG(x) + (k − λ)x0. �
Now if gcd(m, v) = 1, where m is a positive integer, then we state the result
similar to above in this case.

Lemma 3.4.9 If D is a (v, k, λ) difference set in an abelian group G. Sup-
pose m is a positive integer such that gcd(m, v) = 1, then

D(xm)D(x−m) = λG(x) + (k − λ)x0.

Lemma 3.4.10 Suppose a(x) ∈ Z[G]. Then a(x)G(x) = a(1)G(x).

Proof: We have

a(x)G(x) =
∑
g,h∈G

agx
g+h

=
∑
i∈G

(∑
g∈G

ag

)
xi; g + h = 1

=
∑
i∈G

a(1)xi

= a(1)G(x)

as required. �

Lemma 3.4.11 Suppose p is a prime and a(x) ∈ Z[G]. Then a(x)p ≡ a(xp)
mod p.

Proof: We prove this result by induction on the number of non zero coeffi-
cients in a(x). Suppose that a(x) has no nonzero coefficients, then a(x) = 0
and the result holds trivially. If a(x) has one non zero coefficient, then
a(x) = agx

g for some ag 6= 0. Then computing in Zp[x], we have

a(x)p = (agx
g)p

= apgx
gp

= agx
pg

= a(xp)

Now let us assume the result holds when a(x) has atmost i nonzero coefficients
for some i ≥ 1. Let a(x) have i + 1 nonzero coefficients. Then a(x) =
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ai(x) +agx
g; where ai(x) has i nonzero coefficients and ag 6= 0. Then we get,

a(x)p = ((ai(x) + ag(x))2

= ai(x)p +

p−1∑
j=1

(
p

j

)
ai(x)j(agx

g)p−j + (agx
g)p

= ai(x)p + (agx
g)p ∵

(
p

j

)
≡ 0 mod p ∀1 ≤ j ≤ p− 1

= ai(x)p + agx
pg

= a(xp)

by induction. Hence the result holds for all a(x) ∈ Z[G]. �
Now using all these results let us see the proof of the multiplier theorem.

3.5 Proof of the Multiplier Theorem

In this section we see the result of theorem 3.4.4. Proof: We begin the
proof by computing the product D(xp)D(x−1).

D(xp)D(x−1) = D(x)pD(x−1) by lemma 3.4.11

= D(x)p−1D(x)D(x−1)

= D(x)p−1(λG(x) + (k − λ)x0) by lemma 3.4.8

= λD(x)p−1G(x) + (k − λ)D(x)p−1

= λD(1)p−1G(x) + (k − λ)D(x)p−1 by lemma 3.4.10

= λkp−1G(x) + (k − λ)D(x)p−1 ∵ D(1) = k

= λkp−1G(x) ∵ k − λ ≡ 0 mod p

= λpG(x) ∵ k ≡ λ mod p

= λG(x) ∵ λp ≡ λ mod p

Now we define S(x) = D(xp)D(x−1) − λG(x). Hence we have S(x) ≡ 0
mod p. So all coefficients of S are divisible by p. Since all coefficients of
D(xp)D(x−1) are non negative it follows that all coefficients of S(x) are
greater than or equal to −λ. Since we have p > λ, all coefficients of S(x) are
also non negative.

Note that G(x−1) =
∑
g∈G

x−g. Since every element has a unique inverse, pair
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them up and we get G(x−1 = G(x).
Now we compute S(x)S(x−1).

S(x)S(x−1) = (D(xp)D(x−1)− λG(x))(D(x−p)D(x)− λG(x−1))

= (D(xp)D(x−1)− λG(x))(D(x−p)D(x)− λG(x))

= D(xp)D(x−p)D(x−1)D(x) + λ2G(x)2 − λD(xp)D(x−1)G(x)− λG(x)D(x−p)D(x)

= D(xp)D(x−p)D(x−1)D(x) + λ2G(x)2 − λG(x)(D(xp)D(x−1) +D(x−p)D(x))

Now

D(xp)D(x−p)D(x−1)D(x) = (λG(x) + (k − λ)x0)(λG(x) + (k − λ)x0)

= (λG(x) + (k − λ)x0)2

= λ2G(x)2 + (k − λ)2 + 2λ(k − λ)G(x)

NowG(x)2 = G(x)G(x) = G(1)G(x) = vG(x). Hence we getD(xp)D(x−p)D(x−1)D(x) =
λ2vG(x) + (k − λ)2 + 2λ(k − λ)G(x).
We also have that

−λG(x)(D(xp)D(x−1)+D(x−p)D(x)) + λ2G(x)2

= λG(x)D(xp)D(x−1)− λG(x)D(x−p)D(x) + λ2vG(x)

= −λD(1)G(x)D(x−1)− λD(1)G(x)D(x) + λ2vG(x)

= −λD(1)2G(x)− λD(1)2G(x) + λ2vG(x)

= −2λk2G(x) + λ2vG(x)

Therefore, we get

S(x)S(x−1) = λ2G(x)2 + (k − λ)2 + 2λ(k − λ)G(x)− 2λk2G(x) + λ2vG(x)

= (λ2v + 2λ(k − λ)− 2λk2 + λ2v)G(x) + (k − λ)2

= 2λ(λv + k − λ− k2)G(x) + (k − λ)2

= 2λ(λ(v − 1) + k − k2)G(x) + (k − λ)2

= 2λ(k(k − 1)− k(k − 1))G(x) + (k − λ)2

= (k − λ)2

= (k − λ)2x0

Now let S(x) =
∑
g∈G

sgx
g. We have shown above that sg ≥ 0 ∀ g ∈ G.

Suppose that there exists g, h ∈ G, g 6= h such that sg > 0, sh > 0. Then
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the coefficient of xg−h in S(x)S(x−1) is atleast sgsh > 0, which is a contra-
diction. Hence S(x) = sgx

g for some g ∈ G. Then we get S(x)S(x−1) =
(sgx

g)(sgx
−g) = (sg)

2x0. And we get s2
g = (k − λ)2. Since sg ≥ 0, we get

sg = k − λ and S(x) = (k − λ)xg for some g ∈ G.
Substituting this in the equation S(x) = D(xp)D(x−1)− λG(x), we see that
D(xp)D(x−1) = (k − λ)xg + λG(x). Multiplying both sides by D(x), we get

D(xp)D(x)D(x−1) = D(x)((k − λ)xg + λG(x))

=⇒ D(xp)(λG(x) + (k − λ)x0) = D(x)(k − λ)xg + λG(x)

=⇒ D(xp)λG(x) +D(xp)(k − λ)x0 = D(x)(k − λ)xg + λD(x)G(x)

=⇒ λD(1)G(x) +D(xp)(k − λ)x0 = D(x)(k − λ)xg + λD(1)G(x)

=⇒ D(xp)(k − λ)x0 = D(x)(k − λ)xg

=⇒ D(xp) = D(x)xg

Therefore we proved that pD = D+g for some g ∈ G. Hence we proved that
p is a multiplier of D. �

In this chapter we explored difference sets and how symmetric BIBD’s can
be constructed from difference sets. An important theorem in this chapter
was the multiplier theorem , which establishes the existence of multipliers in
difference sets, which we dealt with a great detail.
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