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 In this project, we study groups of matrices. In particular, we try and determine the possible orders of 

matrices of finite order in the group ),( ZnGL  , the group of nn matrices with determinant 1 . We 

prove certain results due to Minkowski regarding the torsion of the groups ),( ZnGL   and ),( QnGL  . 

We then proceed to determine the possible order of elements in these groups.  
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INTRODUCTION – 

The role of group theory is immensely central not only to mathematics but also in other sciences viz. 

physics, chemistry etc. Whenever there is symmetry, often there is a group in the background. 

Historically, study of groups started as permutations of finitely many objects, however at a later stage 

this contributed to the development of an abstract theory beyond the groups of finite numbers. As such, 

analyzing an abstract group in diverse ways as a group of matrices (representation theory) threw light in 

various fields of science – the representation theory plays crucial role in quantum mechanics, number 

theory etc., even Langland’s conjecture is stated in the language of representation theory. 

In our present report we have dealt with finite groups represented as matrices whose entries are 

integers. Under this project titled ``Finite groups occurring as groups of integer matrices”, we study 

finite subgroups of ),( ZnGL  , the group of all invertible matrices which have integer entries and whose 

inverses also have integer entries. 

One of the famous classical theorems due to Minkowski tells us that, infinite groups like the group 

),( ZnGL  admits only finitely many possibilities of finite order for elements or subgroups of the group. 

This leads us to investigate the nature of these possible orders and how they might vary with n . Due to 

the fact that there exists a finite number of them, therefore there must exist some maximal possible 

finite order of subgroups. 

We start by recollecting the basics of group theory. 

Lagrange’s theorem [4]:  

If a finite group G has a subgroup H, then the order of the subgroup H is a divisor of the order of G. 

A map HG :  is said to be a homomorphism from the group ( ),G  to the group ),( H , if and 

only if, )()()( yxyx   . If a homomorphism   is a bijection (one-one and onto), it is said to be 

an isomorphism. The image of a homomorphism to H is a subgroup of Hand the kernel of a 

homomorphism (the elements mapping to the identity element) from a group G is a normal subgroup of 

G. 

Under group isomorphisms, group-theoretic properties are preserved.  

A group homomorphism from a group G to a group H which is one-one makes it possible to identify G 

isomorphically with a subgroup of H. In particular, the following result shows that every finite group can 

be regarded as a group of permutations.  

 

Cayley’s Theorem [4]: 

 Every group of order n is isomorphic to a subgroup of the group of permutations or the group nS . 
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Let us now look at groups of matrices under matrix multiplication. 

The group ),( RnGL  is the set of all matrices with real number entries and non-zero determinant, 

considered under the operation of matrix multiplication. All elements of the group have inverses under 

multiplication since they are all invertible and the identity under multiplication is the identity matrix nI . 

Similarly, the group ),( QnGL  is the group of all matrices with rational entries and non-zero 

determinant.  

One defines the group ),( ZnGL  to be the group of all matrices with integer entries and determinant 1 

or -1. Note that each matrix in this set has an inverse which is also an integer matrix. In fact, an integral 

matrix has an inverse matrix which also has integer entries if and only if, the determinant of the matrix is 

±1.  If an integer matrix A has an inverse matrix B, then the determinants of A and of B are integers 

whose product  is 1; this implies that the determinant must be 1 or -1. Conversely, if the determinant of 

an integer matrix is 1 or -1, the inverse of a matrix A is given by dividing all the entries of its adjoint 

matrix by the determinant of A. 

)(
11

Aadj
A

A 


 

Note that the adjoint matrix of A, if A has integer entries, will also have integer entries.   

 

Now we can prove that any finite group can be regarded as a subgroup of ),( ZnGL  for some n. 

 
 
Theorem: 

 Any group of order n is isomorphic to a subgroup of ),( ZnGL  , for the same n. 

 

PROOF : 

 

Cayley’s Theorem states that any finite group G of order n can be embedded in the group nS . Thus, to 

show that the group G embeds in the group ),( ZnGL  , it is sufficient to show that nS embeds in the 

group ),( ZnGL  . 

Consider any permutation nS . Let nn
QQT :

be the linear transformation defined by

)()( ii eeT   where },,,{ 21 neee  is the canonical basis for
n

Q . 

We define a map, ),( : ZnGLS n   by sending nS  to the matrix corresponding to the 

transformation T with respect to the basis set . 
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We observe that the transformation matrix of each of these T is a matrix where each entry is either 0 

or 1 and with exactly one non-zero entry in each row and column. Such matrices are called permutation 

matrices and the set of all such matrices is denoted by nP  . We also observe that, )( nn SP  . 

The matrix T has determinant equal to the signature of the corresponding permutation. 

We see that  is a homomorphism as it respects the corresponding operations – the composition of 

permutations and the multiplication of matrices. 

We observe now that this is one-one. 

Consider for a given nS21  ,  , nieTeT ii ,,2,1  )()(
21

  , 

niee ii ,,2,1   ))(())(( 21
  ,   niiijiee ji ,,2,1  )()(    iff  21     

Thus, 21    and, ),( : ZnGLSn  is a one-one homomorphism. 

Therefore, nS is embedded in the group ),( ZnGL  . By Cayley’s theorem, we know that the group G is 

embedded in nS . 

Thus, the group G of order n is embedded in the group ),( ZnGL  or in other words, G is isomorphic to a 

subgroup of ),( ZnGL  . 

This completes the proof. 

 

Orders of finite subgroups of ),( ZnGL  : 

We now observe that, in the group ),( ZnGL  , for any given n , there will always exist a subgroup of 

order n  and also a subgroup of order !n such as nS . In fact, we will observe the surprising fact that there 

may also exist subgroups of order greater than n! (!) 

For example – 

Let nC be a subgroup of ),( ZnGL  consisting of all diagonal matrices with 1 diagonal entries.  

Then, 
  



n

n ZZZC 222  . Let nnn PCB  . 

Here, and elsewhere,  

Let 2,1 and  and   where  , 21  iPYCXYXABAA niniiin i
. 

212122112121 YYXXYXYXAAAA  .     )],(     [ 111 ZnGLAAYAYPY n   

nnnn BAABYYXXPYYCXX  2121212121  ,   and  
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Let IAAZnGLABA n 
 1

11
1

11  s.t. ),(  , . 

 
nnn

n

nnn

BAPYCX

ZnGLAAYAYPYYXXYA

PYCXYXABA











1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

111111

    , and  where

 ),(       

  and  s.t.    





 

nnn BIIIPICI    .   and  

Thus, nB is closed over addition, contains the inverse of each of its elements and also contains the 

identity element. Therefore nB is a subgroup of ),( ZnGL  . 

From the previous proof, we can see that, nn SP  . !nSP nn  . Also,  

n
n

n

n CZZZC 2  222 
  

 . Thus, the cardinality of nB is determined by the product of 

nP and nC . !2  nPCB
n

nnn  . 

Thus, there exists a subgroup nB  of ),( ZnGL  with order !2 n
n

. 

 

Structure of finitely generated abelian groups  

A group G is said to be abelian if the group operation is also commutative on all elements of the group. 

An abelian group G is said to be a finitely generated abelian group if there exists a finite subset A of G

such that the smallest subgroup of G containing A is the whole of G; we write AG  . This means that 

every element of G is a finite, integer linear combinarion of elements of A (here, we write the operation 

on G additively). 

 

Fundamental Theorem of finitely generated Abelian groups [2]: 

Let G be a finitely generated Abelian group. Then, 

1. 
snnn

r
ZZZZG  

21
, for some integers snnnr ,,,, 21  satisfying the following 

conditions – 

a. j allfor  2 and 0  jnr  

b. 11 ,  divides 1  sinn ii  

2. The expression in (1) is unique given the conditions (a) and (b). 
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An abelian group G  is said to be free abelian of rank n   if 
n

ZG  , the group of all n-tuples of integers 

under the operation of adding entry-wise. For convenience in working with matrices, we will regard 
n

Z

as column vectors with integer entries. The Fundamental Theorem of Finitely generated Abelian Groups 

implies that an abelian group is free abelian if it is a finitely generated abelian group with no nontrivial 

elements of finite order. It also implies that any subgroup of a free abelian group is free with rank less 

than or equal to n .  

The next theorem proves the surprising fact that finite subgroups of ),( QnGL   are essentially already 

subgroups of ),( ZnGL  . More precisely, we prove: 

 

Theorem [1] : 

If G is a finite subgroup of ),( QnGL  , then G is conjugate to a subgroup of ),( ZnGL  . 

PROOF : 

G is a finite subgroup of ),( QnGL  and kG   

Let 
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(1)                                          )( 

  ,,2,1   , 
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GgFFg

FvggkiGggGgg
k

i
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We observe that ),( of subgroup a is    QnGLGGI   . 

Then, 












 




n
kji

k

i

jik ZvviIgvgIvHFH  ,0 ,  | s.t.   
1

1

. Also, we find that,  

   nn
kk ZZvvH  | . 

)2(                                                         FZ
n
  






Gg

n
ZgF )( , Thus, the set of generators for F is found to be – 
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 GgZeegf
n

ii    ,for  basis standard |)(  

Which is a finite set as G is of finite order. Thus, the Fundamental Theorem of Abelian groups ensures 

that F is free. 

Let d be a common denominator for all the generators of F (LCM of all denominators). 

nn
ZdFZdf     i.e., there exists a one-one mapping between f and

n
Z , thus, there exists a 

homomorphism between F  and 
n

Z (property of a free group). We also observe that this 

homomorphism must be one-one. Therefore, F is isomorphic to a subgroup of
n

Z . 

From (2), FZ
n
 we can conclude that, FZ

n
 . 

Let FZ
n
: be such an isomorphism. Now, we define a linear transformation, nn

QQ  :  by 

niee ii ,,2,1for  )()(   with a transformation matrix C with respect to the standard basis s.t. 

n
QvCvv    )( . When restricted to

n
Z ,  . 

1
C gives the transformation matrix for

1
 or 

when restricted to F , it gives n
ZF 


:

1 . 

For some Gg  , 

))(()(

)(

)))((()(

11

11

FgCZgCC

FZC

ZCgCZgCC

n

n

nn











 

From (1), FFg )(   

GgZZgCC

ZFgC

nn

n









   )(

))((

1

1

 

If ),(QA n  then nn
n ZbZbAZA      iff  )( . 

,
1 n

QgCC 
 from the above we can say, GgZgCC

n



  

1  

)(
1

ZGCC n 
 Also, GCC

1
is a subgroup of ),( QnGL   

GCC
1

 is a subgroup of ),( ZnGL   

Any finite subgroup of ),( QnGL  is conjugate to a subgroup of ),( ZnGL  . 

Hence, the theorem is proved. 

 

Reduction mod p homomorphisms 

Let p be a prime number. 
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Consider the set pZ  consisting of the non-negative integers not exceeding p . It is not only a group  

with addition modulo p as the group operation, but it also has another operation which is 

multiplication modulo p. All the non-zero elements have multiplicative inverses. If )( pn Z denotes the 

set of all matrices of size n  and entries from pZ , the matrix multiplication operation involves both the 

addition and multiplication operations of pZ . We consider the group ),( pZnGL  is the group of all 

invertible matrices from )( pn Z ; the matrices in it have determinant which is not zero in pZ . 

Each entry of a matrix with integer entries can be reduced moulo p. With this operation, one may define 

a map )()(: pnnp ZZ  which will be called the reduction mod p for a prime p.  

For example, if p=3, 

































20

22

53

85
  

When restricted to ),( ZnGL  , ),(),(: pp ZnGLZnGL  is a group homomorphism. 

 

The following result goes towards determining a subgroup of finite index in ),( ZnGL   

with no nontrivial matrices of finite order. 

  

Proposition [1] : Let q be a prime and suppose that ),( somefor  ZnGLgIg
q

 . If 2p is a prime, 

and if Igp )( , then Ig  . 

 

PROOF : 

 

Suppose, IgIg p  )( with   . Then we can write 1pHIg  for some non-zero matrix 1H . 

pdHIg  where, d is the gcd of the entries of 1H and the gcd of all the entries of H is 1. 

.)(
qq

pdHIg  Applying Binomial theorem, 


























pd
HpdHpdH

qq
qH

pdHHdp
qq

qpdHII

pdHHdp
qq

qpdHIg

q

q

qqq

by  dividing and

 mscommon ter cancellingAfter 
    0)(

2

)1(

)(
2

)1(

)(
2

)1(

12

222

222







 

 

In the above equation, we find that p divides each term, therefore p must divide qH . 

Hpqp  divides  OR  divides    
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All entries of H have no common factor. qp  divides   

qp   primes areBoth    
 

Now, dividing each term by either p or q we get, 

0
2

)1( 122





 qqq
HdpdH

pp
H 

 

Similarly as above, we can say that p must divide H . This is a contradiction gcd of H is 1 H  is the 

zero matrix. 

Ig   

 

Hence, proved. 

 

Now, we can prove a beautiful, classical result due to Hermann Minkowski. 

 

Minkowski’s Theorem [1]: 

 

If G is a finite subgroup of ),( ZnGL  , then G is isomorphic to a subgroup of ),( pZnGL  for all primes

2p . In particular, the group ),( ZnGL   contains, upto isomorphism, finitely many finite subgroups. 

PROOF : 

Let  IG  be a finite subgroup of ),( ZnGL  . For some prime 2p , let p be a map defined as 

above. Suppose that  IKerG p  )( . 

IxGx p  )( s.t.    and Ix
y
 where Ny  is the order of x  and Ix   

y may either be composite or prime. If it is composite, then there must exist some prime q s.t. 

yq  divides . 

GgxGx
qy

     as all powers of x must belong to G , G being a subgroup. 

npropositio  thefrom    )( and prime is   where s.t.  

)()()(

 

IgIgqIgGg

IIxxIx

Ig

p
q

qyqy
p

qy
pp

q









  

Ix
qy
   and y is not the order of x . This is a contradiction. 

If y was prime, then from the proposition we conclude that Ix  , again a contradiction. 

 

Therefore,  IKerG p  )( . Thus, the map p is injective when restricted to the subgroupG . 

In other words, G is isomorphic to a subgroup of ),( pZnGL  . 
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Being a finite group, ),( pZnGL  has only a finite number of subgroups. 

Therefore, the group ),( ZnGL   contains, upto isomorphism, finitely many finite subgroups. 

 

We immediately deduce: 

 

Corollary : 

Upto isomorphism, ),( QnGL  contains only finitely many finite subgroups. 

 

POSSIBLE ORDERS OF ELEMENTS OF ),( ZnGL  : 

 
The above proofs show us that there are only finitely many possibilities for orders of elements or 

subgroups of ),( ZnGL  and ),( QnGL  . Then, we try to find what these possible orders are and how they 

vary with n . Due to the finiteness of these possibilities we can also say that there must exist a maximal 

possible order for subgroups of ),( ZnGL  . 

For example : 

Consider the matrix  





























38350

1354

0021

13162

A  

The matrix A is a 44 matrix with order 12. Thus, we can say that ),4( ZGL  has an element and a 

subgroup of order 12. We will later verify that 12 is the maximal order of subgroups in ),4( ZGL  . 

 

 

 

Cyclotomic Polynomials 

Consider a matrix A of order k; this implies that A satisfies the equation 01 
k

x .  

The roots of this polynomial are the thk roots of unity. Since A satisfies the given polynomial,  the 

eigenvalues of A must also satisfy the given polynomial. Thus, the eigenvalues of k are thk roots of 

unity. 

Minimal polynomial of an element is the monic polynomial of the smallest degree which when 

evaluated at the given element gives zero. The minimal polynomials of the roots of unity are called the 

cyclotomic polynomials. 
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The roots of the equation 01 
m

x , the thm roots of unity, are given by- 

    mk
m

ki
m

ke
mik

m ,,2,1:2sin2cos
2     

The above set of roots forms a cyclic group under multiplication of complex numbers. The generators of 

this group are called the primitive thm roots of unity. The primitive thm roots of unity are given by 

reducing the set of roots of unity by allowing only those values of k  which are co-prime to m – 

dm    

    Zkmkmk
m

ki
m

ke
mik

d   ,1 ,1),(:2sin2cos
2    

The number of primitive thm roots of unity is given by  m  , where  m  is the Euler’s  -function; 

 m gives the number of positive integers lesser than or equal to m which are relatively prime to m. 

For integers 














1

0

2

1 ,1
n

m

n
im

n
exxn


, overC . 

The thm cyclotomic polynomial is defined by   


xx)(m , where  ranges over d the set of 

all primitive thm roots of unity. Some properties of cyclotomic polynomials are as follows : 

1. From the definition above, we can see that the degree of )(xm is given by )(m where  is 

defined as above. 

2. From the factorization of  




n

xx
n



1 , we group the factors together such that all s of 

order d are grouped together. By Lagrange’s Theorem, d must always divide n . Since,  has 

order d , therefore  is a primitive d th root of unity. 

  



nd

n

d

xx
|

1



  

Thus, we can also write  

 
nd d

n
xx

|
)(1  

3. The cyclotomic polynomial, )(m x is a monic polynomial over integers [3]. 

 

Proof : 

 

We fix a value for n  

1)(1  xx , from the definition of cyclotomic polynomials. 
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We assume that )(xd is a monic polynomial over integers for all nd  . 

Consider the polynomial, 




ndnd

d xxF

,|

)()( .  

 xZxF )(  and its leading term has co-efficient 1, since )( , xnd d are monic 

polynomials over integers. 

 

By division algorithm, ][)( ),(  xZxrxh  such that )(xh is monic and,  

),()()(1 xrxhxFx
n

 where 0)( xr or ))(deg())(deg( xFxr   

By previous theorem we have )()(1 xxFx n
n

 . Therefore, by uniqueness of quotient and 

remainder over C , )()( xxh n  

Thus,  xZxn  )( and is a monic polynomial. 

 

By principle induction, we can say that any cyclotomic polynomial is a monic polynomial over 

integers. 

 

4. Cyclotomic polynomials are irreducible over Q [3]. Therefore,  
nd d

n
xx

|
)(1 is the 

irreducible factorization of 1
n

x . 
 
 
 

Companion matrices of cyclotomic polynomials 
 

With the help of cyclotomic polynomials we can create matrices of specified orders in ),( ZnGL  . 

 

Consider a positive integer m and the cyclotomic polynomial )(xm .  

We can construct a matrix of order m in the group of )()( mm   matrices. 

Let A be the companion matrix for the cyclotomic polynomial, )(xm . 

Recall that if 01
1

1)( axaxaxxp
k

k
k




   is a polynomial, then its companion matrix is given 

by 

































1

2

1

0

000

010

001

000

ka

a

a

a

C
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It can be checked that, )(xp is the characteristic polynomial of its companion matrix C; so p(C) = 0. 

From the properties of cyclotomic polynomials we can say that the coefficients of )(xm are integers. 

Thus, A is an integer matrix as A is of the form above. Also, since )(xm is an irreducible factor of 

1
m

x , and    0Am
IA

m
 . 

Let us assume that A  has a minimal polynomial, ][)( xZxmA  . By the definition of minimal 

polynomials, )(xmA is a monic polynomial of the smallest degree for which, 0)( AmA . Consider, 

some polynomial  xZxp )( such that, 0)( Ap . By division algorithm of polynomials,   

)()()()( xrxhxmxp A   such that,   ))(deg())(deg(or  0)( and )(),( xmxrxrxZxrxh A . 

Evaluating at A  we get, 0)( Ar . If 0)( xr , it will contradict the fact that )(xmA is the minimal 

polynomial of A . Therefore, 0)( xr , )(xmA is a factor of any such polynomial )(xp  which when 

evaluate at A gives the zero matrix.  

Thus, )(xmA is a factor of )(xm . Since, )(xm  is an irreducible polynomial, )()( xmx Am  . 

Therefore, m is the least degree for which A  satisfies the polynomial, 1
m

x . 

m is the order of A . 

 Now, we have a )()( mm    matrix, A  of order m with integer entries. 

Now, consider the matrix in the previous example. We try and construct that matrix by using a 

cyclotomic polynomial. 

Example : 

4)12(   

If we factor 1
12

x , we find that 1)(
24

12  xxx . The companion matrix of )(12 x is as 

follows- 

















 



0100

1010

0001

1000

C  

By performing a few row operations on the 44  identity matrix, we obtain the following matrix –  



 

 

- 14 - 
 
















































13120

0140

0010

0021

 inverse with and 

1300

0140

0010

0021

1
BB  

B and 1
B are elements of ),( ZnGL  . Consider the matrix, 

1
 BCBA , Conjugate of C in the group 

),( ZnGL  . Given that, IC 
12

 

     

IBIBBBCA

BBCBCBCBBBCBBBCBCBA
n

n

nn









111212

111111

  


 

Thus, the order of A is the same as C , 12. 

On evaluating 
1

 BCBA , 





































































 











































 



















38350

1354

0021

13162

13120

0140

0010

0021

3130

1014

0001

1002

13120

0140

0010

0021

0100

1010

0001

1000

1300

0140

0010

0021

 

We find that A is the same matrix as given in the previous example. 

Remark on coefficients of cyclotomic polynomials: 

Though, for the first 104 integers for n,  the coefficients of )(xn belong only to  0,1 , for 105n , 

)(105 x has two coefficients as -2. In fact, J.Suzuki proved the amazing fact that every integer occurs as 

a coefficient in some cyclotomic polynomial. 

 

Finally, we find a way to determine if for a given integer m there exists a matrix of order m and 

size nn  for a fixed n and thus calculate the maximum possible order of a matrix in ),( ZnGL 

for a fixed n. 

The following theorem is the final result in this direction.  

[1] MAIN THEOREM : 

Let te

t

ee
pppm 21

21 with tppp  21   distinct primes. Then ),( QnGL   - and hence 

),( ZnGL  - has an element of order m if, and only if,  
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1.  




t

i

e

ii npp i

1

1
1)1(

  
for

 21

1 
e

p  

2. npp ie
i

t

i i 



1

1
)1( otherwise

 

 

For the proof of the above theorem, we need the following lemma.  

 We define a map, ZZW : , such that,  for 

te

t

ee
pppm 21

21 with tppp  21  


























otherwise       )1(

2for   1)1(
)(

1

1

11

1 1





t

i

e
ii

et

i

e
ii

i

i

pp

ppp
mW  

 

[1] Lemma: 

If Nm  and if  sddd ,,, 21   is a set of distinct divisors of m such that   mdddlcm s ,,, 21  , 

then  



s

i

idmW

1

)(  .  

Proof : 

Write te
t

ee
pppm 21

21
 .  

Since,   mdddlcm s ,,, 21  , upon separating out the common terms, we can obtain a set of 

integers,  sccc ,,, 21   such that for each ici  , is a divisor of id , mccc s 21  , and gcd   1, ji cc

ji  . 

Since, ic divides id , then )()( ii dc      1                 )(

11





s

i

i

s

i

i dc   

Consider the sets iS , for each si .,2,1  , defined as  ie

j

e

ji cppS
jj

|: . Since all the ic ’s are 

pairwise relatively prime to each other, therefore, ji SS   gives the empty set ji  . Since, 

mccc s 21 , therefore,  te
t

ee
s

i

i pppS ,,, 21

21
1

 



. Thus, sSS ,,1   forms a partition on the set of 
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maximal prime power factors of m . By partitioning this set we ensure that, given any je

jp we can 

always find an unique )( ji such that, je

jp  divides )( jic . 

Without, loss of generality we can assume that 1
1
e

p  divides 1c , as we can always rearrange the terms to 

make it so. Since, )()()( baab    for all 2, ba ,   









i
je

j

j

Sp

e

ji pc   for all 1i . 

Suppose 21

1


e
p , then similar to above,   )(

1

1
j

je

j

e

j

Sp

pc 


  . Thus, 









t

i

e

j

s

i

i mWpc
j

11

)()(  . 

Suppose 21

1


e
p , then we can say   
























11

1
2

1,

1
1

Sp

e

j

jSp

e

j
je

j

j

je

j

j
pp

c
c  . Thus, 
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From the above results and (1), we get, )()(
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Hence, the lemma is proved. 

 

Now, using the above lemma we can prove the main theorem - 

PROOF OF THEOREM: 

Recall that 
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To prove the above statement we must show that, ),( QnGL   has an element of order m  if and 

only if nmW )( . 

Case –I: 
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Suppose that, m is a positive integer such that te
t

ee
pppm 21

21
 and 21

1


e
p and nmW )( . For 

each ie
ip  we can construct a matrix iA of order  ie

ip and size )1()1(
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i pppp ii
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i ppp ii . We do this in the same manner as done in the example above. Then, we 

define a matrix B such that, 
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 . Suppose nmW )( , then, BA  is the desired matrix. If, nmW )(

, then, sIBA  ,is the desired matrix where, )(mWns  . 

Case-II: 

Suppose that, 21
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Thus, from the previous case we can see that, given nmW )2/( , there must exist some matrix A of 

order 2/m belonging to ),( QnGL  . Since, 2/m is odd, then, A  has order m . 

Therefore, for any positive integer te
t

ee
pppm 21

21
 , When  nmW )( , then there must exist a 

matrix of order m in the group ),( QnGL  , and hence in ),( ZnGL  . 

Conversely suppose that, ),( QnGLA   has order m  for some te
t

ee
pppm 21

21
 . Let,  xmA  be the 

minimal polynomial of the matrix A . Let the irreducible factorization of  xmA be 

  sf
s

ff
A xmxmxmxm )()()( 21

21  . From the previous results we know that,  xmA  is the factor of 

any polynomial that when evaluated at A  gives the zero matrix. Since, order of A  is m , then IA
m
  

and A  satisfies the polynomial, 1
m

x . Thus,  xmA  is a factor of 1
m

x . Since the irreducible 
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factorization of  
md d

m
xx

|
)(1  gives distinct factors, thus 121  sfff  . By 

comparing these two factorizations, for each si ,,2,1   we get, )()( xxm
idi  , for some id  which 

must be a divisor of m . Since, A  has order m , mdddlcm s ),,,( 21  . By primary decomposition, A  

is similar over Q to a matrix of the form –  
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Where, the minimal polynomial of each iA is )(x
id  for each si ,,2,1  . For each i  let il  be the 

size of each iA . Then,  iii dxml  ))(deg(  for each i . Therefore,   nld
s

i

i

s

i

i 
 11

  

From the above lemma,   nmWdmW
s

i
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)()(

1

 . 

Hence, we have proved the main theorem. 

Here is an amusing corollary. 

Corollary : 

),2( QkGL  has an element of order m, if and only if, ),12( QkGL  does. 

PROOF: 

Consider some positive integer m  such that, ),2( QkGL   has an element of order m . 

kmW 2)(  . But, this also gives the result that 12)(  kmW  

Therefore, given, ),2( QkGL  has an element of order m , then ),12( QkGL  also has an element of 

order m . 

Conversely, suppose ),12( QkGL   has an element of order m . 12)(  kmW . 
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i ppmW i

1

1
)1()( , where te

t
ee

pppm 21

21
  and 21

1


e
p as 12 k is odd. Since each ip  is 

odd, then 1ip  is even for each i . Thus, each term is even, hence )(mW is even. )(mW will never be 

equal to 12 k . 
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Therefore, kmW 2)(  , and ),2( QkGL  has an element of order m , if and only if ),12( QkGL   does. 

Hence, the corollary is proved. 

 

Table with orders of elements 

Using the theorem described above and its following corollaries we can now find the possible orders of 

subgroups for a given n in ),( QnGL   or ),( ZnGL  and thus, we can also find the maximal possible order 

of subgroups in these groups. In a similar manner we can also try and look at finite subgroups of the 

group ),( RnGL  . But in such a case, the possibilities for a finite order need not be finite. 

We conclude this report by observing the maximal finite order of elements in ),( ZnGL   for the first few 

terms of n  [1]. 

 

n maximal 
order 

n maximal 
order 

2 6 4 12 

6 30 8 60 

10 120 12 210 

14 420 16 840 

18 1260 20 2520 

22 2520 24 5040 
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