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INTRODUCTION —

The role of group theory is immensely central not only to mathematics but also in other sciences viz.
physics, chemistry etc. Whenever there is symmetry, often there is a group in the background.
Historically, study of groups started as permutations of finitely many objects, however at a later stage
this contributed to the development of an abstract theory beyond the groups of finite numbers. As such,
analyzing an abstract group in diverse ways as a group of matrices (representation theory) threw light in
various fields of science — the representation theory plays crucial role in quantum mechanics, number
theory etc., even Langland’s conjecture is stated in the language of representation theory.

In our present report we have dealt with finite groups represented as matrices whose entries are
integers. Under this project titled “Finite groups occurring as groups of integer matrices”, we study
finite subgroups of GL(n, Z), the group of all invertible matrices which have integer entries and whose

inverses also have integer entries.

One of the famous classical theorems due to Minkowski tells us that, infinite groups like the group
GL(n, Z) admits only finitely many possibilities of finite order for elements or subgroups of the group.

This leads us to investigate the nature of these possible orders and how they might vary withn. Due to
the fact that there exists a finite number of them, therefore there must exist some maximal possible
finite order of subgroups.

We start by recollecting the basics of group theory.
Lagrange’s theorem [4]:
If a finite group G has a subgroup H, then the order of the subgroup H is a divisor of the order of G.

A map ¢:G — H is said to be a homomorphism from the group (G,*) to the group (H,®), if and
only if, (X *y) = @(X) ® ¢(y). If a homomorphism ¢ is a bijection (one-one and onto), it is said to be

an isomorphism. The image of a homomorphism to H is a subgroup of Hand the kernel of a
homomorphism (the elements mapping to the identity element) from a group G is a normal subgroup of
G.

Under group isomorphisms, group-theoretic properties are preserved.

A group homomorphism from a group G to a group H which is one-one makes it possible to identify G
isomorphically with a subgroup of H. In particular, the following result shows that every finite group can
be regarded as a group of permutations.

Cayley’s Theorem [4]:

Every group of order n is isomorphic to a subgroup of the group of permutations or the group S, .



Let us now look at groups of matrices under matrix multiplication.

The groupGL(n,R)is the set of all matrices with real number entries and non-zero determinant,
considered under the operation of matrix multiplication. All elements of the group have inverses under
multiplication since they are all invertible and the identity under multiplication is the identity matrix | .
Similarly, the group GL(Nn,Q)is the group of all matrices with rational entries and non-zero

determinant.

One defines the group GL(n, Z) to be the group of all matrices with integer entries and determinant 1
or -1. Note that each matrix in this set has an inverse which is also an integer matrix. In fact, an integral
matrix has an inverse matrix which also has integer entries if and only if, the determinant of the matrix is
11. If an integer matrix A has an inverse matrix B, then the determinants of A and of B are integers
whose product is 1; this implies that the determinant must be 1 or -1. Conversely, if the determinant of
an integer matrix is 1 or -1, the inverse of a matrix A is given by dividing all the entries of its adjoint
matrix by the determinant of A.

a1

A

Note that the adjoint matrix of A, if A has integer entries, will also have integer entries.

A adj(A)

Now we can prove that any finite group can be regarded as a subgroup of GL(n, Z) for some n.

Theorem:
Any group of order n is isomorphic to a subgroup of GL(n, Z), for the same n.

PROOF :

Cayley’s Theorem states that any finite group G of order n can be embedded in the group S . Thus, to
show that the group G embeds in the groupGL(n,Z), it is sufficient to show that S embeds in the
groupGL(n,Z).

Consider any permutationc €S,. Let T_:Q" — Q"be the linear transformation defined by

T, (e)=e,; where B={e,,e,, € }is the canonical basis forQ" .

We define a map, ®:S, — GL(n,Z) by sending o €S, to the matrix corresponding to the

transformation T_ with respect to the basis setB .



We observe that the transformation matrix of each of these TG is @ matrix where each entry is either 0
or 1 and with exactly one non-zero entry in each row and column. Such matrices are called permutation

matrices and the set of all such matrices is denoted by P,, . We also observe that, P, = ®(S,).

The matrix TU has determinant equal to the signature of the corresponding permutation.

We see that @ is a homomorphism as it respects the corresponding operations — the composition of
permutations and the multiplication of matrices.

We observe now that this is one-one.
Consider foragiveno, , 0, €S,, T, (&) =T, (&) Vi=12,....n,

:>e(o.l(i)) :e(o.z(i)) Yi :1,2,...,n, '.'ei =eJ' iff |=J :>(Tl(|)=O'2(|)V| =1,2,...,n

Thus,01 =0, and, ®:S,; = GL(n,Z)is a one-one homomorphism.

Therefore, S, is embedded in the groupGL(n, Z). By Cayley’s theorem, we know that the group G is
embeddedinS,, .

Thus, the group G of order n is embedded in the group GL(n, Z) or in other words, G is isomorphic to a
subgroup of GL(n, Z).

This completes the proof.

Orders of finite subgroups of GL(n,Z):

We now observe that, in the groupGL(n,Z), for any givenn, there will always exist a subgroup of
ordern and also a subgroup of order N!'such asS,, . In fact, we will observe the surprising fact that there

may also exist subgroups of order greater than n! (!)

For example —

Let C, be a subgroup of GL(n, Z) consisting of all diagonal matrices with * 1 diagonal entries.

Then, C, =2 Z,xZ,%x---xZ, . let B, =C,P,.

n

Here, and elsewhere,
Let A, Ay € By = A = X;Y; where X; eC, andY; € P, and i =1.2.

Al @ A2 = A1A2 = X1Y1X2Y2 = X1X2Y1Y2. [Yl S Pn :>Y1A= AYl YV Ae GL(n,Z)]
Xle S Cl’] and Y1Y2 S Pl’] = X1X2Y1Y2 € Bl’l’ Al @ AZ S Bn



et A € B, 3A, T eGL(N,Z)st. AA T=1.
o Al (S Bn — Al = XlYl s.t. Xl (S Cn and Yl S Pn
=S AT =YX T =X Y T ey e, =Y, A= AY TV Ae GL(N, 2)

where X, - eC,andY, " eP,, . A, eB,
leC,andl e P, = 1.1 =1€B,

Thus, By is closed over addition, contains the inverse of each of its elements and also contains the

identity element. Therefore B, is a subgroup of GL(n,Z).

From the previous proof, we can see that, P, = S,,. .. |Pn| = |Sn| =n!. Also,

wCh=lyxlyx XLy = |Cn| =2". Thus, the cardinality of B, is determined by the product of

n

IPy|and [Cy|. = [By|=|Cpl|Pa] = 2"nt.

Thus, there exists a subgroup B, of GL(n, Z) with order 2" n!.

Structure of finitely generated abelian groups
A group G is said to be abelian if the group operation is also commutative on all elements of the group.

An abelian group G is said to be a finitely generated abelian group if there exists a finite subset A of G
such that the smallest subgroup of G containing A is the whole of G; we write G = <A> This means that

every element of G is a finite, integer linear combinarion of elements of A (here, we write the operation
on G additively).

Fundamental Theorem of finitely generated Abelian groups [2]:

Let G be a finitely generated Abelian group. Then,

1. G ;eranxan x---xZnS, for some integers I,Ny,Ny,...,Ngsatisfying the following

conditions —
a. rz0andn; >2forall j

b. N, divides n; ,1<i<s-1

2. The expression in (1) is unique given the conditions (a) and (b).



An abelian group G is said to be free abelianof rank n if G = Z n , the group of all n-tuples of integers

under the operation of adding entry-wise. For convenience in working with matrices, we will regard Z n
as column vectors with integer entries. The Fundamental Theorem of Finitely generated Abelian Groups
implies that an abelian group is free abelian if it is a finitely generated abelian group with no nontrivial
elements of finite order. It also implies that any subgroup of a free abelian group is free with rank less
than or equalton.

The next theorem proves the surprising fact that finite subgroups of GL(n,Q) are essentially already

subgroups of GL(n,Z) . More precisely, we prove:

Theorem [1] :

If G is a finite subgroup of GL(N, @), then G is conjugate to a subgroup of GL(n,Z).
PROOF :

G is a finite subgroup of GL(n,Q)and |G| =k

k
Let F = Zg<2”)={2givi |9 #95Vr #5,0; €G,v; eZ”}
geG i=1

k
g(F)Z{ngiVi |9, #9,Vr=s,0,0; €G,v; € Z”}
i=1

k
g(F)={Zggivi |9y #9sVr#5,9.9; €G,v; € Z”}

=
k
0,0;€G=00;eGVi=12--k=) gg;v;eF
=

=g(F)cF vgeG 1)

We observe that | € G .- G is a subgroup of GL(n, Q).

k-1

Then, 3H c F st. H :{Ivk +Zgivj |g; = 1 Vi,v; =0,vy ezn}.AIso,wefindthat,
i=1

H Z{Vk |Vk eZn}zzn.

=Z"cF (2)

F= z g(Z"), Thus, the set of generators for F is found to be —
geG



f= {g(ei)|ei e standard basis for 2",V g € G}

Which is a finite set as G is of finite order. Thus, the Fundamental Theorem of Abelian groups ensures
that F is free.

Let d be a common denominator for all the generators of F (LCM of all denominators).

—df cZ2" = dF < Z"i.e, there exists a one-one mapping between f andZ", thus, there exists a

homomorphism between F and Zn(property of a free group). We also observe that this

homomorphism must be one-one. Therefore, F is isomorphic to a subgroup of Z n
From (2), -+ Z" — F we can conclude that, Z" = F .

Let y:Z " 5 F be such an isomorphism. Now, we define a linear transformation, I": Qn - Q” by

I'(ej) =y(e;)fori=12,...,nwith a transformation matrix C with respect to the standard basis s.t.

I'(vV)=CvVveQ". When restricted toZ", T =y. ct gives the transformation matrix forT L or

when restricted to F , it gives y_l F>2z2".

Forsome g € G,

=C7ge(z") =c7(g(c(z"))

c@Z™=F

=C7gc(z") =C(g(F))

From(1), - g(F)c F

=C ' (g(F)cz"

—Clgc@@"cz" vgeG

If Ae M, (Q),thenAe M, (Z) iff AbeZ"Vbez".

C_lgC € Q", from the above we can say, = C_lgC €Z"vgeG
—clec M, (Z) Also, C'GCisa subgroup of GL(Nn, Q)

= C1GC is a subgroup of GL(n,Z)
Any finite subgroup of GL(n, Q) is conjugate to a subgroup of GL(n,Z).

Hence, the theorem is proved.

Reduction mod p homomorphisms

Let p be a prime number.



Consider the set 7 D consisting of the non-negative integers not exceeding p . It is not only a group
with addition modulo pas the group operation, but it also has another operation which is

multiplication modulo p. All the non-zero elements have multiplicative inverses. If M, (Z Io) denotes the
set of all matrices of size N and entries from Z P’ the matrix multiplication operation involves both the
addition and multiplication operations of Z p- We consider the group GL(n,Zp) is the group of all

invertible matrices from M, (Z p) ; the matrices in it have determinant which is not zeroin Z ;.

Each entry of a matrix with integer entries can be reduced moulo p. With this operation, one may define
amap v, 1M (Z) - M, (Z ;) which will be called the reduction mod p for a prime p.

(HHIEEN

When restricted toGL(n,Z), v, : GL(n,Z) — GL(n,Z ;) is a group homomorphism.

For example, if p=3,

The following result goes towards determining a subgroup of finite index in GL(n,Z)

with no nontrivial matrices of finite order.

Proposition [1] : Let ( be a prime and suppose that g9 = | for some g € GL(n,Z).If p # 2is a prime,
andifv,(g)=1,theng=1.

PROOF :

Suppose, g # | with v, (g) = | . Then we can write g = | + pH; for some non-zero matrix H.
= g = | + pdH where, d is the gcd of the entries of H; and the gcd of all the entries of H is 1.
g9 = (1 + pdH)9. Applying Binomial theorem,

g9 =19+ qpdH +@ p?d?H? +---+ (pdH)Y

| = I +qpdH +@p2d2H2+---+(de)q

- After cancelling common ter ms
gH +—q(q2 D pdH2 -+ (pdH)TLH = 0 { ; }

and dividing by pd

In the above equation, we find thatp divides each term, therefore p must divideqH .

= pdivides q OR p divides H



. All entries of H have no common factor. = p divides q
- Both are primes = p =q

Now, dividing each term by either p orq we get,

H +—p(p2—1)de +o-4 p92d9tH9 =

Similarly as above, we can say that p must divide H . This is a contradiction.- gcd of H is 1 = H is the
zero matrix.
=g=I

Hence, proved.
Now, we can prove a beautiful, classical result due to Hermann Minkowski.

Minkowski’s Theorem [1]:

If G is a finite subgroup of GL(n,Z), then G is isomorphic to a subgroup ofGL(n,Zp)for all primes

p # 2. In particular, the group GL(n,Z) contains, upto isomorphism, finitely many finite subgroups.
PROOF :

Let G # {I}be a finite subgroup of GL(N,Z). For some prime p # 2, let Vo be a map defined as

above. Suppose thatG m Ker (v ;) # {I }

=3IxeGstvy(x)=1and x¥ = | where y € M is the order of X and X # |

Yy may either be composite or prime. If it is composite, then there must exist some prime (s.t.
g divides y.

+xeG = xY/% = g e G asall powers of x must belongto G, G being a subgroup.
=g%=1

ve() =1 = v, (xY9) =y, ()Y =19 =

= 3g e Gs.t.g% = I where g is prime and vy(9)=1=g=1 from the proposition

Xy/OI = | and y is not the order of X . This is a contradiction.

If y was prime, then from the proposition we conclude that X = | , again a contradiction.

Therefore, G m Ker (vp) = {I } Thus, the map vV is injective when restricted to the subgroup G .

In other words, G is isomorphic to a subgroup of GL(n, Z p) .



Being a finite group, GL(n, Z D ) has only a finite number of subgroups.

Therefore, the group GL(Nn,Z) contains, upto isomorphism, finitely many finite subgroups.

We immediately deduce:

Corollary :

Upto isomorphism, GL(n, Q) contains only finitely many finite subgroups.

POSSIBLE ORDERS OF ELEMENTS OF GL(n,Z):

The above proofs show us that there are only finitely many possibilities for orders of elements or
subgroups of GL(Nn,Z) andGL(Nn, Q). Then, we try to find what these possible orders are and how they
vary with n. Due to the finiteness of these possibilities we can also say that there must exist a maximal
possible order for subgroups of GL(n,Z) _

For example :

2 -16 3 -1
-2 0 O
5 -3 1
0 3% -8 3

The matrix Ais a 4 x4 matrix with order 12. Thus, we can say that GL(4,Z) has an element and a

Consider the matrix A =

subgroup of order 12. We will later verify that 12 is the maximal order of subgroups inGL(4,2) .

Cyclotomic Polynomials

Consider a matrix A of order k; this implies that A satisfies the equation xK-1=0.

The roots of this polynomial are the Kth roots of unity. Since A satisfies the given polynomial, the
eigenvalues of A must also satisfy the given polynomial. Thus, the eigenvalues of k are kth roots of
unity.

Minimal polynomial of an element is the monic polynomial of the smallest degree which when
evaluated at the given element gives zero. The minimal polynomials of the roots of unity are called the
cyclotomic polynomials.

-10-



The roots of the equation X™ —1= 0, the mth roots of unity, are given by-

Uy = {ez"”i/m = cos(ZK%)+ isin(Zk%): k = 1,2,...,m}

The above set of roots forms a cyclic group under multiplication of complex numbers. The generators of
this group are called the primitive mth roots of unity. The primitive mth roots of unity are given by
reducing the set of roots of unity by allowing only those values of k which are co-prime tom -

Hm = /1d>
ug = B2 = cos(k/ )isin(2K/ ): (k,m) =11<k <m ke Z|

The number of primitive mth roots of unity is given by¢(m) , where ¢(m) is the Euler’s ¢ -function;

¢(m)gives the number of positive integers lesser than or equal to m which are relatively prime to m.

N n-1 zmry
Forintegersn >1, X —1=H X—e n |, overC.

m=0

The mth cyclotomic polynomial is defined by @ ., (x) = Hy (x - ;/), where y ranges over x4 the set of

all primitive mth roots of unity. Some properties of cyclotomic polynomials are as follows :

1. From the definition above, we can see that the degree of @ ,(X) is given by ¢(m)where ¢ is

defined as above.

2. From the factorization of X" —1= H (X - 7/), we group the factors together such that all y s of
Y€l
orderd are grouped together. By Lagrange’s Theorem, d must always dividen. Since, y has
order d, therefore ¥ is a primitive d th root of unity.

= x" —1=1_[OIIn [T(x-»)

VEHM
Thus, we can also write

x" 1= Hd|nd>d (x)

3. The cyclotomic polynomial, @ , (X) is a monic polynomial over integers [3].

Proof :

We fix a value for n

®, (x) = x—1, from the definition of cyclotomic polynomials.

-11-



We assume that @ 4 (X) is a monic polynomial over integers for alld < n.

Consider the polynomial, F(x) = H D, (x).

din,d<n
F(X)EZ[X] and its leading term has co-efficient 1, since Vd <n,®,(x)are monic

polynomials over integers.

By division algorithm, 3 h(x), r(x) € Z[x]such that h(X) is monic and,

x" —1=F(X)h(x) + r(x), where r(x) = 0or deg(r(x)) < deg(F (x))

By previous theorem we have x" —1= F(X)®,, (X) . Therefore, by uniqueness of quotient and

remainder over €, h(x) = @, (x)

Thus, @, (x) € Z[x]and is a monic polynomial.

By principle induction, we can say that any cyclotomic polynomial is a monic polynomial over
integers.

Cyclotomic polynomials are irreducible over Q [3]. Therefore, x" —1= Hd|n d 4 (x)is the

irreducible factorization of X" —1.

Companion matrices of cyclotomic polynomials

With the help of cyclotomic polynomials we can create matrices of specified orders in GL(n,Z).

Consider a positive integer M and the cyclotomic polynomial @ , (X) .

We can construct a matrix of order M in the group of ¢(m) x ¢(m) matrices.

Let A be the companion matrix for the cyclotomic polynomial, ® ;, (X) .

by

Recall that if p(x) = xK + ak_lxk_l +---+ @ X+ g is a polynomial, then its companion matrix is given
[0 0 -ay |
0 -
CcC=|0 0 —a,
000 - a4

-12 -



It can be checked that, p(X)is the characteristic polynomial of its companion matrix C; so p(C) = 0.

From the properties of cyclotomic polynomials we can say that the coefficients of @, (X) are integers.

Thus, Alis an integer matrix as Ais of the form above. Also, since CDm(X) is an irreducible factor of

x™ -1, and ®,(A)=0= AT =1,

Let us assume that A has a minimal polynomial, mu(X) € Z[x]. By the definition of minimal
polynomials, m,(X)is a monic polynomial of the smallest degree for which, m,(A) =0. Consider,
some polynomial p(Xx) e Z[X]such that, p(A)=0. By division algorithm of polynomials,
p(x) =mu(x)h(X) +r(x) such that, h(x),r(x) e Z[x]and r(x) = 0or deg(r(x)) < deg(m(x)).
Evaluating at A we get, r(A)=0. If r(x) =0, it will contradict the fact that m, (x)is the minimal
polynomial of A. Therefore, r(x) =0, m,(X)is a factor of any such polynomial p(x) which when

evaluate at A gives the zero matrix.

Thus, m (X) s a factor of @, (X) . Since, @, (X) is an irreducible polynomial, = @, (X) = mA(X).
Therefore, mis the least degree for which A satisfies the polynomial, x™ -1,

= Mis the order of A.

Now, we have a ¢(m) x ¢(m) matrix, A of order m with integer entries.

Now, consider the matrix in the previous example. We try and construct that matrix by using a
cyclotomic polynomial.

Example :
$(12) =4
If we factor X*2 —1, we find that @4, (x) = x* = x? +1. The companion matrix of @1, (x) is as
follows-

0 00 -1

100 0

C=
010 1
001 O

By performing a few row operations on the 4x4 identity matrix, we obtain the following matrix —

-13-



1 2 00 1 -2 0 O

01 00O L 1 0 1 0 O
B = and with inverse B =

0 410 0 -4 1 O

0 0 3 1 0 12 -3 1

B and B lare elements of GL(n,Z) . Consider the matrix, A = BCB_l, Conjugate of C in the group

GL(n,Z). Given that, cl? -

= A" =(sce | = Bc(s B (B *B)B .- BCB L = BC B

n

= A” —pc¥?Bt=BIB!=1I

Thus, the order of Ais the sameas C, 12.

On evaluating A = BCB !,

1 200000 -11 =2 0 0] [2 0 0 -1 1 -2 0] [2 -16 3 -1
0100100 0f0 1 ol |1 00 offlo 1 0o of |1 -2 0 o0
0410010 10 -4 1 0/ |410 1[0 -4 1 0| |4 5 -3 1
00310 01 ofo 12 -3 1| |0 31 30 12 -3 1| |0 35 -8 3

We find that A is the same matrix as given in the previous example.
Remark on coefficients of cyclotomic polynomials:

Though, for the first 104 integers for n, the coefficients of @ , (X) belong only to {i 1,0}, for n =105,

D5 (X) has two coefficients as -2. In fact, J.Suzuki proved the amazing fact that every integer occurs as

a coefficient in some cyclotomic polynomial.

Finally, we find a way to determine if for a given integer m there exists a matrix of order m and
size nxn for a fixed n and thus calculate the maximum possible order of a matrix in GL(n, Z)

for a fixed n.
The following theorem is the final result in this direction.
[1] MAIN THEOREM :

Let m= p;* ps? --- p;t with p, < p, <--- < p, distinct primes. ThenGL(n,Q) - and hence

GL(n,Z) - has an element of order m if, and only if,

-14 -



L X (p,-Dprt-is<n for pi=2

5 zszl(pi ~1) piei_l <p Otherwise

For the proof of the above theorem, we need the following lemma.

We defineamap, W : Z — Z, such that, for

m= p;* py?--- pyt with p, < p, <--- < p,

t L
Zi:l(pi -1 pie' L 1. for pfl -2
W (m) =

2:21( p; —1) piei_l --- otherwise

[1] Lemma:

If me M andif {d;,d,,---,d} is a set of distinct divisors of M such that lcm(dy,d,,---,dg)=m,

then W (m) < iqﬁ(di ).

i=1
Proof :
Writem = p;* p52 -+ pet.

Since, lem(dy,d,,---,d )= m, upon separating out the common terms, we can obtain a set of
integers, {Cl, C2,~~,CS} such that for each 1, C;is a divisor of d;, C;C,---C; =M , and gcd (ci ,C: )= 1

Vi ]j.

Since, C; divides d;, then ¢(c;) < ¢(d;) = ZS:¢(ci) < ZS:¢(di) ...... (1)

i=1 i=1

Consider the sets S;, for each i =1,2,---.S, defined as S; = {p?j : p?j | c; } Since all the Cj’s are

pairwise relatively prime to each other, therefore, S; N SJ- gives the empty set Vi # j. Since,

S
CCy ---Cg = M, therefore, USi = {plel, pgz o, Py } Thus, Sq,--+,Sg forms a partition on the set of
i=1

-15-



maximal prime power factors of M. By partitioning this set we ensure that, given any pjJ we can

always find an unique i(j) such that, p?j divides c;;y -

Without, loss of generality we can assume that pfl divides Cq, as we can always rearrange the terms to

make it so. Since, @(ab) > ¢(a) + ¢(b) forall a,b > 2, ¢(c; Z ¢(pJ ) foralli>1.
pje

Suppose p # 2, then similar to above, ¢(c; ) > Zqﬁ(p ). Thus, Z¢(C )= Z¢( sz(m).

p Yes,

Suppose pfl = 2, then we can say ¢(C1)Z ¢(C%) > z ( ) Z ¢( ) 1. Thus,

p;lesy, j=1 pjles
s t .
> o)z Yo p} )-1=w(m)
i=1 i=1

S
From the above results and (1), we get, Zgb(di) >W (m)
i=1

Hence, the lemma is proved.

Now, using the above lemma we can prove the main theorem -
PROOF OF THEOREM:

Recall that

S (pi-Dpfit 1. for pft =

Z. L (pi - 1)pI .- otherwise

W (m) =
To prove the above statement we must show that, GL(n,Q) has an element of order m if and

only if W(m) <n.

Case —I:

-16 -



Suppose that, mis a positive integer such that m = pfl pgz ptet and pf’l #2and W(m) <n. For
each pie‘ we can construct a matrix A, of order piei and size piei_l(pi -1) x piei_l(pi -1)

D piei ) = piei _1( P; —l)J. We do this in the same manner as done in the example above. Then, we

define a matrix B such that,

A O 0

A, 0

B=A®A® ®A = , .
0 0 A,

The size of Bis Z::1¢(piei )= z::l(pi -1) piei_l =W(m), - ¢(pie‘ )z piei_l(pi —1) and the order of

Bis Icm(plel, pgz eees pte‘) =m. Suppose W (m) = n, then, A = B is the desired matrix. If, W (m) <n

,then, A= B ® |,is the desired matrix where, s=n—-W(m).
Case-ll:

Suppose that, pfl =2 and W(m) <n.
W(m) =" (p; ~1)p{ " -1, Substitute p;* =2

=W (m) = pf(p -0+ Y, P (e - -1=2"12-0) -1+ Y pf T (py -1)
SW(m)=Y.  pi(pi-1)=W(m/2)
=>W(m/2)<n

Thus, from the previous case we can see that, given W (m/2) < n, there must exist some matrix A of

order m/ 2 belonging to GL(n, Q). Since, m/2is odd, then, — A has order m .

Therefore, for any positive integer m = plel pgz ptet , When W (m) <n, then there must exist a

matrix of order M in the group GL(n,Q), and hencein GL(n,Z).

Conversely suppose that, A€ GL(n,Q) has order m for some m = plel pgz - pgt. Let, my(X) be the

minimal polynomial of the matrix A. Let the irreducible factorization of mj,(x)be

mA(X) =my(X) i m, (X) f2 ---Mg (X) s From the previous results we know that, mA(X) is the factor of

any polynomial that when evaluated at A gives the zero matrix. Since, order of A is m, then AM =

and A satisfies the polynomial, X™ —1. Thus, m,(x) is a factor of X™ —1. Since the irreducible
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factorization of x™ —1=Hd|md>d(x) gives distinct factors, thus f;=f, =---=1f; =1. By
comparing these two factorizations, for each i =1,2,---,S we get, m; (x) = CDdi (x), for some d; which

must be a divisor of M. Since, A has order m, lcm(d;,d,,---,dg) = m. By primary decomposition, A

is similar over () to a matrix of the form —

A O 0
0 A, -
0 0 A

Where, the minimal polynomial of each Ayis d)di (x) for each i =12,---,5. For each i let |; be the

S S
size of each A . Then, |, > deg(m; (x)) = ¢(d; ) for each i. Therefore, Z¢(di)g Zli =n
i=1 i=1

From the above lemma, W (m) < iqﬁ(di )=>W(m)<n.
i=1
Hence, we have proved the main theorem.
Here is an amusing corollary.
Corollary :
GL(2k, Q@) has an element of order m, if and only if, GL(2k +1, Q) does.
PROOF:

Consider some positive integer M such that, GL(2k,Q) has an element of order m .
= W (m) < 2K . But, this also gives the result that W (m) < 2k +1

Therefore, given, GL(2k, @) has an element of order m, then GL(2k +1,Q) also has an element of
order m.

Conversely, suppose GL(2k+1,Q) has an element of order m. =W(m)<2k+1.

t

W(m) = Z pie‘_l(pi —1), where m = pfl pgz ptet and pfl # 2 as 2K +1is odd. Since each p; is
i=1

odd, then p; —1 is even for each i. Thus, each term is even, hence W (m) is even. W (m) will never be

equal to 2k +1.
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Therefore, W (m) < 2k , and GL(2k, @) has an element of order m, if and only if GL(2k +1,Q) does.

Hence, the corollary is proved.

Table with orders of elements

Using the theorem described above and its following corollaries we can now find the possible orders of

subgroups for a given Nin GL(Nn,@Q) or GL(Nn,Z) and thus, we can also find the maximal possible order

of subgroups in these groups. In a similar manner we can also try and look at finite subgroups of the

group GL(n, R) . Butin such a case, the possibilities for a finite order need not be finite.

We conclude this report by observing the maximal finite order of elements in GL(n,Z) for the first few

terms of N [q).

n | maximal | n | maximal
order order

2 6 4 12

6 |30 8 |60

10 | 120 12 | 210

14 | 420 16 | 840

18 | 1260 20 | 2520

22 | 2520 24 | 5040
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