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Abstract

Fueter and Polya proved that the only quadratic polynomials giving a bijection between
N and N2 are the two Cantor polynomials. It is conjectured that there is no bijection
from N2 onto N given by a polynomial of degree at least 3. A similar problem arises
when the domain of the map is replaced by the set of integral points in some sector in
R2. Rational sectors were considered by Nathanson and Stanton. Here, we study and
solve the case of general irrational sectors. In fact, our method enables us also to
recover the results on rational sectors and also answer a question posed by Nathanson.
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1 Introduction
In his seminal works [1,2] which developed the foundations of modern set theory, Cantor
established, in particular, a bijection between the set N of non-negative integers and N

2.
In [4], Fueter and Polya established that the only quadratic polynomials that bijectively
map N

2 onto N are the two Cantor polynomials

(x + y)2 + 3x + y
2

and
(x + y)2 + x + 3y

2
.

The original proof was rather complicated, using deep tools from analytic number theory,
such as Lindemann’s transcendence theorem. An elementary proof was given in [13].
More generally, an explicit polynomial bijection between N

r and N for any r ≥ 2, is given
(see [3]) by the map

F (x1, x2, . . . , xr) = x1 +
(
x1 + x2 + 1

2

)
+ · · · +

(
x1 + x2 + · · · + xr + r − 1

r

)
.

There are several ways to generalize the two-dimensional problem. It is conjectured that
there is no bijection from N

2 onto N given by a polynomial of degree d ≥ 3. The cases
d = 3, 4 were settled by Lew and Rosenberg [7,8]. Higher-degree case remains an open
problem. A similar problem arises when the domain of the map is replaced by the set
of integral points in some sector in R

2. Rational sectors were considered by Nathanson
[9,10] and Stanton [12]. Here, we study and solve the cases of general irrational sectors. In
fact, our method enables us also to recover the results on rational sectors and also answer
a question (Question 6) posed by Nathanson [9].
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After submission of the paper the authors became aware that the question of Nathanson
was independently settled in [5] by a different method. The authors are grateful to an
anonymous referee for pointing out the corresponding reference.

2 Notations and statement of main results
Let 0 ≤ α < β ≤ ∞ be fixed. Consider

S = S
α,β = {(x, y) ∈ R

2 : x ≥ 0, αx ≤ y ≤ βx}, (1)

SZ = S
α,β
Z

= S
α,β ∩ Z

2. (2)

Definition 1 We say that the sector S
α,β is rational if α is rational and β is either rational

or ∞. Otherwise we call the sector S
α,β irrational.

Definition 2 The ray {(μt, νt)) : t ∈ R>0} is said to be rational if it contains a rational
point. Otherwise, we call it irrational.

Let P be a quadratic polynomial in two variables X and Y with real coefficients. We
write

P = a20X2 + a11XY + a02Y 2 + a10X + a01Y + a00 (3)
and set

P2 = a20X2 + a11XY + a02Y 2, (4)

P1 = a10X + a01Y, (5)
so that P = P2 + P1 + a00.

Definition 3 Finally, we say that P is a quadratic packing polynomial on S if it induces a
bijection P : SZ → N (as mentioned in the introduction, in our notation, N contains 0).

For any nonnegative integer n we define
S(n) = {(x, y) ∈ S : 0 ≤ P(x, y) < n}. (6)

In particular, if P is a packing polynomial on S, then
|S(n) ∩ Z

2| = n. (7)
With the above notations, the main result is:

Theorem 1 If P is a quadratic packing polynomial on S = S
α,β , then for some integers

d > 0, u and v with (u, v) = 1 we have

2a20 = du2, a11 = duv, 2a02 = dv2.

Moreover,

2a20β−1 + a11(1 + αβ−1) + 2a02α = 1 − αβ−1. (8)

The above relation is also valid for the sector with β = ∞ if we set β−1 = 0.

As a corollary, we obtain Stanton’s necessary condition for rational sectors.

Corollary 1 Let α = 0 and β = n/mwith integers n,m ≥ 1, (m, n) = 1. If P is a quadratic
packing polynomial on S

0,n/m, then n | (1 − m)2 and

P2(X, Y ) = n
2

(
X + 1 − m

n
Y

)2
.
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As another corollary of the theorem, noting that (8) cannot hold if α = 0 and β is
irrational, we obtain an affirmative answer to a question (Question 6) posed byNathanson
in [9].

Corollary 2 There exists no packing polynomial onS
0,β for any positive, irrational number

β .

For any fixed polynomial P ∈ 1
2Z[X, Y ] and any odd p ∈ N and k ∈ Z we define N (p, k)

as the number of residue classes satisfying the congruence

P(x, y) ≡ k (mod p), (9)

i.e.,

N (p, k) = |{(x, y) : 0 ≤ x, y < p, P(x, y) ≡ k (mod p)}|. (10)

The following theorem is the main technical ingredient of our proofs.

Theorem 2 Let P be a quadratic packing polynomial on S. For any odd positive integer p
and any integer k, we have N (p, k) = p.

3 Some preliminary results
Lemma 1 If P takes integer values on SZ, then the numbers a11, 2a20, 2a02, 2a10, 2a01,
a20 + a10, a02 + a01, and a00 are integers.

Proof There exist integers u and v such that the nine points (u+ i, v+ j) with i, j ∈ {0, 1, 2}
lie in SZ. We have

a11 = P(u + 1, v + 1) − P(u + 1, v) − P(u, v + 1) + P(u, v),

2a20 = P(u + 2, v) − 2P(u + 1, v) + P(u, v),

2a02 = P(u, v + 2) − 2P(u, v + 1) + P(u, v),

2a10 = −(2u + 1)P(u + 2, v) − 2vP(u + 1, v + 1) + (4u + 2v + 4)P(u + 1, v)

+2vP(u, v + 1) − (2u + 2v + 3)P(u, v),

2a01 = −(2v + 1)P(u, v + 2) − 2uP(u + 1, v + 1) + (2u + 4v + 4)P(u, v + 1)

+2uP(u + 1, v) − (2u + 2v + 3)P(u, v),

a20 + a10 = −uP(u + 2, v) − vP(u + 1, v + 1) + (2u + v + 1)P(u + 1, v)

+vP(u, v + 1) − (u + v + 1)P(u, v),

a02 + a01 = −vP(u, v + 2) − uP(u + 1, v + 1) + (u + 2v + 1)P(u, v + 1)

+uP(u + 1, v) − (u + v + 1)P(u, v),

a00 =
(
u + 1
2

)
P(u + 2, v) + uvP(u + 1, v + 1) − (u2 + uv + 2u)P(u + 1, v)

+
(
v + 1
2

)
P(u, v + 2) − (v2 + uv + 2v)P(u, v + 1)

+
((

u + 1
2

)
+

(
v + 1
2

)
+ uv + u + v + 1

)
P(u, v),

and the claim follows. 	




   39 Page 4 of 12 B. Sury, M. Vsemirnov Res. Number Theory           (2022) 8:39 

4 Reducibility of P2
Lemma 2 ([13, Lemma 2.4], [10, Lemma 2]) For any integer � �= 0 and any integer
non-square D, there is a prime p such that D is a quadratic non-residue modulo p and
p � �D.

Remark 1 There is a slight inaccuracy in the proof of [10, Lemma 2]. In the notation of
[10], one must choose p that additionally satisfies p � m.

Lemma 3 Let P be a packing polynomial on S, and let P2 be as above. Consider the
discriminant of P2:

D = a211 − 4a20a02. (11)

We have that D is the square of an integer. In particular, P2 factorizes overQ into a product
of two linear (not necessarily distinct) polynomials.

Remark 2 For similar results stated for S
0,∞, see also [13, p. 709, proof of Proposition 2.1]

and [10, Lemma 6]).

Proof (Proof of Lemma 3) Let us set

U = 4a20X + 2a11Y + 2a10,

V = 2DY + 2a11a10 − 4a20a01.

By Lemma 1, D is an integer and U , V are polynomials in X , Y with integer coefficients.
A straightforward but a bit tedious computation gives us

16a20DP = DU2 − V 2 + r, (12)

where

r = 16Da20a00 − 4Da210 + (2a11a10 − 4a20a01)2. (13)

Applying Lemma 1 again we conclude that r is an integer.
Assume thatD is not an integer square. In particular, a20 �= 0. By Lemma 2, we can find

a prime p such that p � 16a20D and
(
D
p

)
= −1. Now we prove that if

16a20DP(x, y) ≡ r (mod p) (14)

for some integers x, y, then

16a20DP(x, y) ≡ r (mod p2). (15)

In particular, P never takes values congruent to p + (16a20D)−1r modulo p2; here
(16a20D)−1 denotes the multiplicative inverse of 16a20D modulo p2. Hence, P cannot
be onto N.
Indeed, if (14) holds then (12) gives us DU (x, y)2 − V (x, y)2 ≡ 0 (mod p). Since D is a

quadratic non-residue modulo p, the last congruence holds only if p | U (x, y), p | V (x, y).
Hence, p2 | DU (x, y)2 − V (x, y)2 and (15) holds.
Thus, D must be a square. The final claim is now obvious.
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5 Positivity of P2
Lemma 4 Let P, P2 and P1 be as in (3)–(5), respectively. Assume further that P takes
nonnegative integer values on SZ. If P2 vanishes on some rational ray in S, then P is not
injective on SZ.

Proof Clearly, integer-valued linear functions in two variables are not injective on SZ.
Indeed, the number of points in SZ ∩ [0,M]2 grows quadratically with respect toM, while
the size of

Z ∩ {a10x + a01y + a00 : (x, y) ∈ SZ ∩ [0,M]2}

is bounded by some linear function inM.
Thus, it is enough to consider the case when P2 is not identically 0. Moreover, since

0 ≤ P(xz, yz) = z2P2(x, y) + zP1(x, y) + a00

for any (x, y) ∈ SZ and z ∈ N, we have that P2 is nonnegative on any rational ray in S.
Assume thatP2 vanishes on some rational ray inS. In particular, any rational ray contains

infinitely many integer points, so we have P2(u, v) = 0 for some non-negative integers
u and v, (u, v) ∈ SZ, (u, v) �= (0, 0). Therefore, P(ut, vt) = t(a10u + a01v) + a00. Put
m = a10u + a01v = P(u(t + 1), v(t + 1)) − P(ut, vt). In particular,m is an integer.
Since P takes nonnegative integer values on SZ, we have that P(ut, vt) = mt + a00 is

non-negative for any positive integer t. Therefore,m ≥ 0. Ifm = 0 then P is not injective,
since P(ut, vt) = a00 for any positive integer t. Thus, we may assume thatm > 0.
Now we specify the value of t. Since P2 is not identically 0, by the observation at the

beginning of the proof we can find (r, s) ∈ SZ such that P2(r, s) > 0. Moreover, we may
choose them in such a way that

P2(2r, 2s) > 2|a10r + a01s| (16)

(otherwise replace (r, s) by (r�, s�) for a sufficiently large scale factor �). We have

P(2rm, 2sm) = m(4a20r2m + 4a11rsm + 4a02s2m + 2a10r + 2a01s) + a00.

Set

t = 4a20r2m + 4a11rsm + 4a02s2m + 2a10r + 2a01s = mP2(2r, 2s) + 2a10r + 2a01s

By Lemma 1, t is an integer, and t > 0 by (16), so that both (ut, vt) and (2rm, 2sm) are in
SZ. On the other hand,

P(ut, vt) = mt + a00 = P(2rm, 2sm).

Since P2(u, v) = 0 but P2(r, s) �= 0 and P2 is homogeneous, we have that (r, s) is not
proportional to (u, v), hence (2rm, 2sm) �= (ut, vt). Therefore, P is not injective. 	


Corollary 3 If P be a quadratic packing polynomial on SZ then P2(u, v) > 0 for any
(u, v) ∈ S \ {(0, 0)}.

Proof Lemma 3 implies that P2 does not vanish on irrational rays, while Lemma 4 says
that P2 does not vanish on rational rays in S. 	
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6 Equidistributionmodulo p
The aimof this section is to proveTheorem2, namely, to show that for a quadratic packing
polynomial P on S and any odd p ∈ N the number of residue classes satisfying P(x, y) ≡ k
(mod p) is independent of k . Note that oddness of p is needed in the arguments below
because P(x+ap, y+bp) ≡ P(x, y) (mod p) is true for odd p, and may not be true for even
p since one may have 2 as the common denominator of the coefficients of P.
We need several auxiliary results. By Corollary 3, P2 is positive on S \ {(0, 0)}. Let us set

c1 = min
(x,y)∈S
x+y=1

P2(x, y), (17)

We have, c1 > 0 as it is the minumum of a positive continuous function on a compact set.
In particular, for any (x, y) ∈ S \ {0, 0},

P2(x, y) = (x + y)2P2(x/(x + y), y/(x + y)) ≥ c1(x + y)2. (18)

For any nonnegative integer n, recall that we defined S(n) by (6). In particular, if P is a
packing polynomial on S, then |S(n) ∩ Z

2| = n, see (7).

Lemma 5 LetP, P2 bedefinedby (3)and (4). Assume further thatP2 is positive onS\{(0, 0)}.
Set c1 as in (17). If

n > max
{
8|a10|2

c1
,
8|a01|2

c1
, 2|a00|

}
, (19)

then for any (x, y) ∈ S(n) we have

x + y <

√
2n
c1

. (20)

Proof Let n satisfy (19). We will show that, for any (x, y) ∈ S(n),

n >
c1
2
(x + y)2, (21)

which is equivalent to the conclusion of the lemma. Using the definition of S(n) and (18)
we have

n > P(x, y) ≥ P2(x, y) − |a10|x − |a01|y − |a00|
≥ c1(x + y)2 − |a10|x − |a01|y − |a00|. (22)

If x + y ≤ max{4|a10|/c1, 4|a01|/c1, 2√|a00|/c1}, then (21) follows from (19). Thus, we
may assume that x + y > 4|a10|/c1, x + y > 4|a01|/c1, and (x + y)2 > 4|a00|/c1. These
inequalities together with (22) imply

n > c1(x + y)2
(
1 − |a10|

c1(x + y)
· x
x + y

− |a01|
c1(x + y)

· y
x + y

− |a00|
c1(x + y)2

)

> c1(x + y)2
(
1 − 1

4
· x
x + y

− 1
4

· y
x + y

− 1
4

)
= c1

2
(x + y)2.

	

Proof (Proof of Theorem 2) We consider the sets S(n) as n increases and estimate the
number of points (x, y) ∈ S(n) that satisfy (9).
For that purpose we start with some n, which is large enough. To be precise, we assume

that n satisfies (19). Next we cover S(n) by squares and estimate the number of such
squares. Namely, for any odd positive p and any real x and y let

Q(x, y, p) = {(u, v) ∈ R
2 : x ≤ u < x + p, y ≤ v < y + p}. (23)
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We consider squares of the form Q(px, py, p), where p ∈ N is a fixed odd number and x
and y are non-negative integers. In particular, each such square contains p2 integer points.
We point out that p is assumed to be odd, and so, the number of solutions P(x, y) ≡ k

(mod p) within each square is the same because P(x + ap, y + bp) ≡ P(x, y) (mod p).
We say thatQ(px, py, p) is good if all integer points inQ(px, py, p) are in S(n) and that it

is bad if it has at least one integer point in S(n) and at least one integers point outside S(n).
Our aim is to show that the proportion of bad squares becomes negligible as n tends to
infinity.We have thatQ(px, py, p) is bad if it belongs to one of the three families described
below.
Case 1: at least one integer point inQ(px, py, p) lies below the line y = αx. In particular,

α �= 0 and the line y = αx intersects Q(px, py, p). Moreover, (px + p, py) lies below the
line y = αx and (px, py + p) lies above the line. Therefore,

αpx < py + p, α(px + p) > py.

Consequently,

αx − 1 < y < αx + α,

So, for each x there are at most α + 2 integer values of y.
SinceQ(px, py, p)∩S(n)∩Z

2 is non-empty, we have that for some integers 0 ≤ u, v < p

P(px + u, py + v) < n,

i.e., (px + u, py + v) ∈ S(n). Combining with Lemma 5, we have

x ≤ x + y ≤ px + u + py + v
p

<
1
p

√
2
c1

√
n.

Setting

c2 = 1
p

√
2
c1

(24)

we see that case 1 gives at most (α + 2)(c2
√
n + 1) bad squaresQ(px, py, p).

Case 2: at least one integer point inQ(px, py, p) lies above the line x = β−1y. In particular,
β �= ∞ and the line y = βx intersects Q(px, py, p). The analysis is completely analogous
to case 1 and gives at most (β + 2)(c2

√
n + 1) bad squares.

Case 3:Q(px, py, p) ∩ Z
2 ⊆ S, but for some integers 0 ≤ u1, v1, u2, v2 < p,

P(px + u1, py + v1) < n ≤ P(px + u2, py + v2).

In particular, (px + u1, py + v1) ∈ S(n). Since u1, v1, u2, v2 are bounded by p, we have for
c2 as above and for some positive c3, c4 depending only on p and the coefficients of P

0 < n − P(px + u1, py + v1) ≤ P(px + u2, py + v2) − P(px + u1, py + v1)

≤ |P2(px + u2, py + v2) − P2(px + u1, py + v1)|
+|P1(px + u2, py + v2) − P1(px + u1, py + v1)|

≤ c3(x + y) + c4 ≤ c3
p
(px + u1 + py + v1) + c4

< c2c3
√
n + c4 .

The last inequality comes from Lemma 5 and (24). Therefore, for sufficiently large n,

0 < n − P(px + u1, py + v1) < c2c3
√
n + c4 .
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Since each bad square Q(px, py, p) contains at least one such integer point (px + u1, py +
v1) ∈ S(n) and P is injective on SZ, case 3 gives us atmost c2c3

√
n+c4 exceptional squares.

Now we cover S(n) by squares Q(px, py, p). Let K (n) be the number of good squares,
i.e., squares that satisfy Q(px, py, p) ∩ Z

2 ⊆ S(n). Since |S(n) ∩ Z
2| = n and the number

of bad squares is O(
√
n), we conclude that n = p2K (n) + O(

√
n), where the constant in

O-symbol depends on P, p, α, β but not on n.
Since P is a packing polynomial, the number of integer pairs (u, v) ∈ S(n) with

P(u, v) ≡ k (mod p) (25)

is n
p + ε, where |ε| ≤ 1. On the other hand, this amount is K (n) · N (p, k) + L(n), where

L(n) counts the number of (u, v) ∈ S(n) that satisfy (25), but lie in bad squares described
by cases 1–3. In any case, L(n) = O(

√
n) and we conclude that |N (p, k) − p| < cn−1/2 for

all sufficiently large n. Since the left-hand side is independent of n, we have N (p, k) = p
for any odd p, as desired. 	


7 Factorisation of P2
.
We also need the following two lemmas:

Lemma 6 For any odd prime p and for any integer j, 0 ≤ j ≤ (p − 1)/2, we have

(p − 1)!
(j!)2(p − 1 − 2j)!

≡ (−4)j
(
(p − 1)/2

j

)
(mod p).

Proof Clearly, both sides equal 1 if j = 0. Now assume j > 0. Modulo p we have

(p − 1)!
(j!)2(p − 1 − 2j)!

= (p − 1) · · · (p − 2j)
j!j!

≡ (2j)!
j!j!

= 2j
1
j!

j−1∏
i=0

(2i + 1)

≡ (−2)j
1
j!

j−1∏
i=0

(p − 1 − 2i) = (−2)j2j
1
j!

j−1∏
i=0

(
p − 1
2

− i
)

= (−4)j
(
(p − 1)/2

j

)
.

	


Lemma 7 Let P be a quadratic polynomial of the form (3) that takes integer values on SZ.
For any odd prime p and any k,

N (p, k) ≡ −(a211 − 4a20a02)(p−1)/2 (mod p).

Proof Clearly,

1 − (P(x, y) − k)p−1 ≡
{
1 (mod p), if P(x, y) ≡ k (mod p),
0 (mod p), if P(x, y) �≡ k (mod p).
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Thus, we have the following congruences modulo p:

N (p, k) ≡
p−1∑
x=0

p−1∑
y=0

(
1 − (P(x, y) − k)p−1)

≡ −
p−1∑
x=0

p−1∑
y=0

(P(x, y) − k)p−1

≡ −
p−1∑
x=0

p−1∑
y=0

∑
j1+···+j6=p−1

(p − 1)!
j1! · · · j6!

×aj120a
j2
11a

j3
02a

j4
10a

j5
01(a00 − k)j6x2j1+j2+j4yj2+2j3+j5 .

On the other hand,
p−1∑
x=0

p−1∑
y=0

xiyj ≡
{
1 (mod p), if p − 1 | i, p − 1 | j, and i, j > 0,
0 (mod p), otherwise.

Therefore, if we make summation by x and y first, the terms, where at least one of j4, j5, j6
is positive, disappear. Hence,

N (p, k) ≡ −
∑

2j1+j2=p−1
j2+2j3=p−1

(p − 1)!
j1!j2!j3!

aj120a
j2
11a

j3
02

= −
(p−1)/2∑
j=0

(p − 1)!
(j!)2(p − 1 − 2j)!

(a20a02)ja
p−1−2j
11 (mod p)

Combining this with Lemma 6, we obtain modulo p,

N (p, k) ≡ −
(p−1)/2∑
j=0

(−4)j
(
(p − 1)/2

j

)
(a20a02)ja

p−1−2j
11 = −(a211 − 4a20a02)(p−1)/2.

	


Theorem 3 Let P be a quadratic packing polynomial on S and let D be defined by (11).
We have D = 0. In particular, up to a multiplicative constant, P2 is the square of a linear
polynomial.

Proof By Theorem 2, N (p, k) ≡ 0 (mod p) for odd p. Therefore, by Lemma 7, any odd
prime p divides D. Hence D = 0 and the claim follows. 	


Corollary 4 If P is a quadratic packing polynomial on S, then

P2(X, Y ) = d
2
(uX + vY )2 for some d, u, v ∈ Z. (26)

Proof By Lemma 1, 2P2(X, Y ) ∈ Z[X, Y ]. Now the claim follows from Theorem 3 and the
Gauss Lemma. 	


8 Density results
Let

P(n) = {(x, y) ∈ S : 0 ≤ P2(x, y) < n}. (27)
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Lemma 8 If P is a packing quadratic polynomial on SZ, then

|S(n) ∩ Z
2| − |P(n) ∩ Z

2| = O(
√
n).

Proof The argument is very similar to what we did in case 3 in the proof of Theorem 2.
The first term counts lattice points (x, y) ∈ SZ with 0 ≤ P(x, y) < n while the second
counts points with 0 ≤ P2(x, y) < n. We estimate the size of the symmetric difference of
both sets.
By Corollary 3, P2 is positive on S \ {(0, 0)}. Let c1 be defined as in (17), c1 > 0.
Case 1: (x, y) ∈ P(n), (x, y) /∈ S(n), i.e.,

P2(x, y) < n ≤ P(x, y) = P2(x, y) + a10x + a01y + a00.

We have

x + y ≤ c−1/2
1 P2(x, y) < c−1/2

1
√
n

and

0 ≤ P(x, y) − n < P(x, y) − P2(x, y)

≤ max{|a10|, |a01|}(x + y) + |a00| ≤ max{|a10|, |a01|}c−1/2
1

√
n + |a00|.

Since P is injective on SZ, case 1 gives us at most max{|a10|, |a01|}c−1/2
1

√
n + |a00| + 1

points (x, y).
Case 2: (x, y) ∈ S(n), (x, y) /∈ P(n), i.e.,

P2(x, y) + a10x + a01y + a00 = P(x, y) < n ≤ P2(x, y).

Without loss of generality we may assume that n is large enough, namely, that n satis-
fies (19).

0 < n − P(x, y) < P2(x, y) − P(x, y)

≤ max{|a10|, |a01|}(x + y) + |a00| ≤ max{|a10|, |a01|}(2c1)−1/2√n + |a00|.
The last inequality follows from Lemma 5. Since P is injective on SZ, case 2 gives us at
most max{|a10|, |a01|}(2c1)−1/2√n + |a00| points (x, y) and the result follows. 	


Lemma 9 If P2 is positive on S \ {(0, 0)}, then
|P(n) ∩ Z

2| = area(P(n)) + O(
√
n) = n · area(P(1)) + O(

√
n).

Proof This is same as Gauss’s circle problem, except that instead of a circle, we have a
homogeneous quadratic polynomial P2. The proof is standard (see Lemma 2.1.1 of [6]),
using unit squares to approximate the area covered by the region {(x, y) ∈ S : P2(x, y) < n}.
In fact, cover the region by unit squares whose lower left corners lie inside the region.
Then the number of unit squares protruding out of the region P(n) is proportional to the
perimeter P(n), which is bounded from above by c5

√
n+ c6 for some constants c5, c6 > 0

depending only on the coefficients of P2 and α, β . 	


Now combining Corollary 3, Lemmas 8 and 9 together with 7, we have the following
result.

Corollary 5 If P is a quadratic packing polynomial on S, then area(P(1)) = 1.
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9 Proof of themain result
Now, we prove the main theorem.

Proof of Theorem 1 By Corollary 4, P2(X, Y ) = d
2 (uX + vY )2 for some d, u, v ∈ Z, (u, v) �=

(0, 0). In particular,

2a20 = du2, a11 = duv, 2a02 = dv2 (28)

Clearly, d > 0 and P2(1,α) �= 0, P2(β−1, 1) �= 0 by Corollary 3. Without loss of generality
we may assume that gcd(u, v) = 1 and u + αv > 0. By Corollary 3 again, uX + vY does
not change sign on S \ {0, 0}. Therefore, β−1u + v > 0.
The set P(1) is the triangle bounded by the lines y = αx, x = β−1y and ux+ vy = √

2/d.
In particular, the vertices of the triangle are (0, 0) and(√

2
d

· 1
u + αv

,
√
2
d

· α

u + αv

)
,
(√

2
d

· β−1

β−1u + v
,
√
2
d

· 1
β−1u + v

)
.

Therefore, the area of P(1) is

1
d

∣∣∣∣∣
1

u+αv
α

u+αv
β−1

β−1u+v
1

β−1u+v

∣∣∣∣∣ = 1
d

· 1 − αβ−1

(u + αv)(β−1u + v)
.

Corollary 5 implies that

d(u + αv)(β−1u + v) = 1 − αβ−1. (29)

Combining with (28) we complete the proof. 	


10 Stanton’s result
Now consider the case, where α = 0 and β = n/m with n,m ∈ N, (m, n) = 1. If P is a
quadratic packing polynomial on S

0,n/m, then after multiplication by n Eq. (8) becomes
2a20m + a11n = n. (30)

Since the ray {(x, 0)|x > 0} lies in S
0,n/m, Corollary 3 implies that a20 > 0. By Lemma 1,

2a20, 2a02 and a11 are integers.
Since (n,m) = 1, Eq. (30) implies that n | (2a20).Write 2a20 = ns for some integer s > 0.

Substituting into (30) and making cancellation we obtain sm + a11 = 1. In particular,
a11 ≡ 1 (mod s). On the other hand, Theorem 3 gives us

a211 − (2a20)(2a02) = 0. (31)
Consequently, a211 ≡ 0 (mod s) since s | (2a20). Therefore, s = 1 and 2a20 = n, a11 =
1 − m. Now, Eq. (31) gives us n | (m − 1)2 and 2a02 = (m − 1)2/n. Hence,

P2(X, Y ) = n
2

(
X + 1 − m

n
Y

)2
,

which is exactly Stanton’s necessary condition.
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