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Prime numbers have fascinated mankind through
the ages. In fact, one may think that we know all
about them. However, this is not so! One does
not know the answers to many basic questions
on primes. We shall concentrate here mainly on
questions and discoveries whose statements are
elementary and accessible. Right at the end, we
mention a result whose statement is simple but
whose proof uses rather sophisticated mathemat-
ics. Even here, we do not try to be exhaustive.
The subject is too vast for that to be possible.

1. Introduction

We start with the first major discovery about primes,
which is the proof by Euclid’s school that there are infi-
nitely many prime numbers. Euclid’s proof of the infini-
tude of primes will eternally remain beautiful no matter
what advances modern mathematics makes. In spite of
its simplicity, it still retains quite a bit of mystery. For
instance, it is unknown as yet whether the product of the
first few primes added to 1 takes a prime value infinitely
often. It is even unknown whether it takes a composite
value infinitely often! Do you see the mystery? What
is the first time we get some composite number? Does
anyone know the answer already? Anyway, let me tell
you that 2.3.5.7.11.13 4+ 1 is not a prime.

Actually, it is often the case that for any sequence of nat-
ural numbers which does not obviously take only com-
posite values, the question as to whether it does take
infinitely many prime values remains unanswered. Here
are some examples (the py, ps, ... are prime numbers):

(i) pip2---pn+1,
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i) pip2--pn—1,

(

(iii) nl+ 1,

(iv) nl—1,

(V) 2" — 1a

(vi)  2"+1,

(vii) n*+1,

(viii)  f(n) for any polynomial of degree > 2 such that
t

here is no k dividing all the values f(r),r € Z.

Of course, in (v), it is obviously necessary that n it-
self be prime, and in (vi), a necessary condition is that
n is a power of 2. As for (vii), it was proved by a con-
temporary mathematician Henryk Iwaniec in 1978 using
some advanced mathematics that infinitely many num-
bers of the form n? + 1 can be expressed as a product
of at most 2 primes. Note that the condition in (viii)
cannot be weakened; for instance, if we merely say that
all the coefficients of f be not divisible by any k, it is
not sufficient. Indeed, f(z) = z(z + 1) is a counterex-
ample. That the sequence in the last example takes
infinitely many prime values was conjectured by Viktor
Bouniakowsky in the 19th century. In contrast to the
last example, the degree one case is known to take infi-
nitely many prime values — this is the famous theorem of
Lejeune Dirichlet on primes in arithmetic progressions.
Incidentally, here is a little exercise : If we make the (ap-
parently weaker) conjecture that under the hypothesis
of example (viii), every such f takes ONE prime value,
it is actually equivalent to asserting that each such f
takes infinitely many prime values!

Here is another issue of importance — in cryptography;,
for example. Given a natural number n, how does one
recognize whether it is prime or not ? This is of crucial
importance in many modern cryptosystems where the
belief is that it is comparatively much easier (compu-
tationally) to answer this question than to factorize a
given number. Basically, the idea would be to unearth
properties of prime numbers which terize them (that is,

It was proved by a
contemporary
mathematician
Henryk lwaniec in
1978 using some
advanced
mathematics that
infinitely many
numbers of the form
n?+ 1 can be
expressed as a
product of at most
2 primes.

Given a natural
number n, how does
one recognize
whether it is prime or
not? This is of crucial
importance in many
modern
cryptosystems where
the belief is that it is
comparatively much
easier
(computationally) to
answer this question
than to factorize a
given number.
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One website in
German translated

‘the little theorem of

Fermat’ as ‘the
small sentence of
Fermat’! It is even

funnier when we
recall that Fermat

was a judge who did

pass sentences at
times!

would not hold for even a single composite number).
One such fundamental property (which is an easy exer-
cise) is that a natural number n > 1 is prime if, and
only if, n divides (n — 1)!+1. This is known as Wilson’s
congruence. Another such property is that any prime
p divides the binomial coefficients f for each r in the
range 0 < r < p. That this is untrue for every composite
number is again a nice little exercise.

Using the above property of primes, one can prove by
induction on n that n? — n is a multiple of p for every
n. Equivalently, if p does not divide n, then p divides
nP~t —1. This is known as the little theorem of Fermat.

Interestingly, I found that one website in German trans-
lated ‘the little theorem of Fermat’ as ‘the small sen-
tence of Fermat’ ! It is even funnier when we recall that
Fermat was a judge who did pass sentences at times!

At this point, it is better to stop and point out the an-
swer to a question which would have crossed the minds
of many people. Is there a ‘formula’ for the n-th prime?
Indeed, there are many formulae for primes! However,
they are all worthless in a practical sense; that is, one
cannot hope to computationally produce primes by such
formulae. However, later we do talk about a recent al-
gorithm by three Indians which tells us in polynomial
time whether a given number is prime or not. Here is a
‘formula’ for primes based on Wilson’s congruence. Put

flz,y) = {1+ ﬁ if + # y, and f(z,z) = 0. Note

that f(z,y) is simply 1 or 0 according as to whether z >
yorx <y. Putw(n) =14+ 3" {(i—2)! —i[(: — 2)!/i]}
for n > 3 and 7(1) = 0,7(2) = 1. This counts the num-
ber of primes up to n. Then, the n-th prime p,, is given
by the formula :

po=1+_ f(n.m(i)).

i=1

After some thought, we see that the formula, although
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perfectly valid, is of no practical use in finding the n-th
prime. A somewhat better formula was given several
years ago by an Indian named J M Gandhi.

2. Carmichael Numbers: ‘Carm’posites in Prime
Clothing

Some avatar of Fermat’s little theorem is used in most
primality tests even today. But, unfortunately Fermat’s
little theorem does not characterize primes ! It does
happen for some composite n that n divides "' — 1
for some a co-prime to n. In the terminology of cryp-
tography, one says that n is a pseudo-prime to the base
a and that a is a strong liar for n. Worse happens —
there are, indeed, infinitely many numbers (known as
Carmichael numbers after Robert Carmichael) n such
that n divides a”~! — 1 for every a co-prime to n. The
smallest such number is 561. The proof of the infinitude
of the Carmichael numbers (as recently as 1994) also
showed that there are at least n%7 such numbers < n
provided n is sufficiently large. The proof used deep,
modern-day mathematics. In this article, I will concen-
trate on two conjectures (one made in 1950 and the other
made in 1990) which aim to characterize primes. Ironi-
cally, they have turned out to be equivalent! As the con-
jectures involve Carmichael numbers also, we first prove
a elementary criterion due to Theodor Korselt which
characterises Carmichael numbers.

In what follows, we will be using the following notations.
We will say a = b mod m when a — b is a multiple of
m. These congruences have a calculus quite similar to
equality. Namely, if @ = b mod m and ¢ = d mod m
(same m, of course), then a+b = c+d and ab = cd mod
m.

Theorem. A composite numbern is a Carmichael num-
ber if, and only if, n is square-free and, for each prime
divisor p of n, the number p — 1 divides n — 1.

The proof of the
infinitude of the

Carmichael numbers
(as recently as 1994)

also showed that

there are at least n?”

such numbers <n
provided n is
sufficiently large.
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Proof. We shall assume and use the following fact which
was first proved by Gauss. For any prime number p,
there exist positive integers a < p and b < p? which
have ‘orders’ p — 1 and p(p — 1) in the following sense:

When ¢" = 1 mod p, then p — 1 divides r, and
when b° = 1 mod p?, then p(p — 1) divides s.

(It should be noted that neither of these statements is
trivial to prove although they are about two hundred
years old.)

Now, first let n = pip2---p, be a square-free number
such that for each ¢ < r, the number p;, — 1 divides
n—1. Evidently, for every a co-prime to n, a is co-prime
to each p;. Thus, one has by Fermat’s little theorem that
a1 =1 mod p;. So, a" ! = (¢ 1)* = 1 mod p;. In
other words, p; divides a® ' — 1 for each i < r. Thus,
n = pipy - - - p, itself divides «”~' — 1. This shows that
n is a Carmichael number.

Conversely, let n be a Carmichael number. If p is a
prime dividing n, consider a natural number a of ‘order’
p — 1 mod p. We claim that we can always choose such
an a which is co-prime to n.

First, if a is co-prime to n, then by hypothesis, a" ! =

mod n, which implies ¢! = 1 mod p, and thus p — 1
divides n — 1. If (a,n) > 1, then look at the set of
primes p = p1, - - -, px which divide n but not a. Consider
a + p1---pg in place of a. Evidently, a + py - - - pg is co-
prime to n. Moreover, it is of the form a + pd, and so,
its ‘order’ mod p is the same as that of a.

Now, let p? divide n for some prime p, if possible. Let
b be of order p(p — 1) mod p?. If b is co-prime to n,
then 5"~ ! = 1 mod n which gives "' = 1 mod p?
which again implies that p(p — 1) divides n — 1. Thus
p divides (n — 1), an impossibility because p divides n.
So, n must be square-free if b can be chosen co-prime
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to n. But, if (b,n) > 1, then once again we look at the
set of primes p = p1, ps, - - -, pr Which divide n but not b.
Then b + p2py - - - py, is co-prime to n and has the same
order mod p? as b has, namely, p(p — 1).

The proof is complete.
We end with an easy exercise:

Suppose n = py---p, is a Carmichael number and m =
1 mod L where L = LCM of py — 1,---,p, — 1. If
¢i = 1+ m(p; — 1) are all primes, then N = q1---q, is
also a Carmichael number.

3. ‘Nava’ Giuga and Long ‘Agoh’

Let us start with the first of the 2 conjectures we wish
to discuss. If p is a prime, then clearly

Phportyp oy (p— 1P = —1 mod p.

Giuseppe Giuga conjectured in 1950 that this charac-
terises primes; that is,

Conjecture (Giuga 1950):
SRl = —1 mod n = n is prime.

As he showed, the conjecture can be reformulated as
follows:

Theorem. /-1 k"' = —1 mod n if, and only if, for
each prime divisor p of n, both p and p—1 divide % —1.

Equivalently, a composite numbern satisfies Yp—1 k"' =
—1 modn if, and only if, it is a Carmichael number such

that 3y % — Il % s a natural number.

In the above statement, the sum and the product run

over primes and p|n denotes ‘p divides n’.

Proof. Note that for any prime p, we have Zg: Em=—1
or 0 mod p according as whether p — 1 divides r or not.

RESONANCE | September 2008 W

871



GENERAL | ARTICLE

Giuga’s conjecture
amounts to the
assertion that
there is no Giuga
number which is
also a Carmichael
number.

Therefore, for a prime p dividing n, we have

n—1 p—1 2p—1 n—1
Z kn_l = Z kn_l 4 Z kn_l 44 Z kn_l
k=1 k=1 k=p+1 k=n—p+1

= —n/p or 0 mod p according as to whether p—1 divides
n — 1 or not.

To prove the theorem, first suppose >, 1k:” =1
mod n. Then, for every prime p|n, we have (p—1)[(n—1)
and 3 = 1 mod p. Note that (p—1)[(n —1) implies p—1
divides p(2 —1) =n—p = (n—1)—(p—1) and so (p—1)
also divides % —1.

Conversely, suppose p(p—1) divides %— 1 for each prime
divisor p of n. First of all, this forces n to be square-free.
Now, for any prime p|n, we also have >}~ k:” = Z =
—1 mod p. This proves the first statement The second
assertion is easy. If p(p — 1)[(3 — 1) for each prime pn,
we have that n is a Carmichael number (in particular,
it is square-free). Then,

SEES IR EE

pln pin P pm P
So, multiplying by n, we must show that n divides
me% — 1. Thus, we need to show that each prime
divisor of n divides me% — 1. This follows because
each prime divisor p of n satisfies p[(3 — 1) and pl[; for

PFq.

Remarks. A composite number n such that p[(2—1) for
each prime p|n, is called a Giuga number. Equivalently,
> pln % — Iy % € N. Then, Giuga’s conjecture amounts
to the assertion that there is no Giuga number which is
also a Carmichael number. As of today, only 12 Giuga
numbers are known and all of them have sum minus
product (of reciprocals of prime divisors) equal to 1. The
numbers 30, 858, 1722 are Giuga numbers. Until now,
no odd Giuga numbers have been found. Any possible
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odd Giuga number must have at least 10 prime factors
1,1 ,1 .1 1 1,1, 1,1
because thesum 3 +=+=+ 5+ 3+t +55 T35 < 1.

In an article in Volume 103 of the American Mathemati-
cal Monthly of 1996, David Borwein, Jonathan Borwein,
Peter Borwein and Roland Girgensohn propose that a
good way to approach Giuga’s conjecture is to study
Giuga numbers in general. More generally, they define
a Giuga sequence to be a finite sequence ny < ng < -+ <
n, of natural numbers such that >77_ n% = | n% is a
natural number. Thus, a Giuga sequence consisting of
primes gives rise to a Giuga number, viz., to the prod-
uct of those primes. The smallest Giuga sequence where
the sum minus product is > 1, has 59 factors! Here is
an easy method to produce arbitrarily long Giuga se-
quences.

Theorem. Suppose n; < ng < --- < n, is a Giuga
sequence satisfying n, = [['—{ ni—1. Then, the sequence
ny < ng < -+ < N, Npegr 18 a Giuga sequence whose
sum minus product is the same, where fi, = [[/={ n; +

~ ~ r—1
1vnr+1 = Ny Hi:l n; — 1.

Starting with a sequence like 2, 3,5 say, this gives Giuga
sequences of arbitrary lengths whose sum minus product
is 1. The proof is a simple exercise of manipulation. In
fact, one has the following nice result:

Proposition.

Look at a sequence nqy < ng < --- < n, which satisfies
Y1 n% + 1T n% = 1. For example, the sequence n; =
2,nk = [Lijcrni+ 1 is such a sequence. Then, n; < ng <
e <Ny < Npaq = Hle n; — 1 is a Giuga sequence.

The proof is straightforward verification.

Incidentally, note that the sequence given as an example
above proves the infinitude of primes because the pair-
wise GCD (ni,n;) =1 for all i # j.

The smallest
Giuga sequence
where the sum
minus product is
>1, has 59
bfactors!

The sequence
2,3,7,43, ... where
each termis 1
more than the
product of all the
previous terms
also proves the
inifinitude of
primes.
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Fermat’s last
theorem can be
proved for a prime p
(in an easy, natural
manner) provided p
does not divide the
numerators of B,, B,,
.., B

p-3"

The von Staudt—
Clausen theorem
says that the
denominator of B,, is
precisely

Ty P

The Giuga conjecture involved the sums Zz;ll k"=t In
general, a sum of the form ZZ; k™ can be ‘easily’ eval-
uated in terms of certain rational numbers called the
Bernoulli numbers. These ubiquitous numbers turn up
in such diverse situations that it is impossible to men-
tion most of them here. Suffice it to say that Fermat’s
last theorem can be proved for a prime p (in an easy,
natural manner) provided p does not divide the numer-
ators of By, By, --,B,_3. How are the B,’s defined?
Often, they are defined by means of the generating se-
ries > 07 anl—r!b = —*—. The equality can be simplified to

er—1"
give the recursion )" ("jl) B, = 0 and using By = 1,
one can determine them. It turns out that By = —% and
B, = 0 for all odd » > 1. More generally, the Bernoulli
polynomials are defined as B,(z) = Y1, (Z) Bpa"F; it

is of degree n. Note that B,,(0) = B,,.

It is an elementary exercise to show that

r—1
1

E k" = B, — Bi1).

Z n—|—1( +1(r) +1)

In this manner, the sums of powers can be expressed in
terms of Bernoulli numbers.

The von Staudt-Clausen theorem says that the denom-
inator of By is precisely [(,—1y2x p; note this is square-
free. In particular, it makes sense to talk about (2k +
1)By; mod 2k + 1; note that for (a,b) = 1, one talks of
% mod b — it is the unique ¢ mod b for which ac = 1 mod
b.

For example, 15By4 = 15 X % = 3—25 =35 x 8 = —5 mod
15.

13B1; = 13 X 5528—= = —1 mod 13.

Looking at such data, Takashi Agoh conjectured in 1990
(conjectured by ‘Agoh’ not long ‘ago’!):

nB,_1 = —1 mod n if, and only if, n is prime.
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A few years later (in 1994) he used the von Staudt-
Clausen theorem and showed that his conjecture is ac-
tually equivalent to Giuga’s conjecture. Then, in Sep-
tember 2004, Bernd Kellner gave a new proof of the
equivalence of the two conjectures (which gives another
proof of the von Staudt-Clausen theorem) based on the
following result :

Theorem (Kellner). If m > 1, and n is even, then

Zk"z— Z ﬁEmBn mod m.
p

k=1 plm,(p—1)|n

The proof is elementary but rather involved and we do
not discuss it here. This theorem allows for a further
reformulation of the Giuga and Agoh conjectures, and
may now be called:

Conjecture (Agoh—Giuga—Kellner):

An integer n > 2 is prime if, and only if,

1 1

> -—-—cZ

plp-Dln-1) P T

4. All’s Bell

In this section, we discuss a conjecture due to Djuro
Kurepa which can be stated in elementary language but
the proof which appeared in 2004 involves some sophis-
ticated mathematics. Those who have learnt Galois the-
ory would be able to appreciate it but others can also
get a flow of the argument. Of course, the fact that
an elementary statement may require very sophisticated
methods should not come as a surprise. A case in point
is Fermat’s Last Theorem (FLT) which says that for an
odd prime p, there do not exist nonzero integers x,y, 2
such that 2P + y? 4+ 2P = 0. The question of Kurepa
doesn’t quite require the kind of sophisticated mathe-
matics required in FLT though. Kurepa conjectured in
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The n-th Bell number
P_is the number of
ways of writing an
n-element set as
unions of non-empty
subsets. We see that
P,=1,P,=2,P,=5,
P,=15, P,= 52, etc.

It turns out using
some elementary
combinatorics that

1971 that for any odd prime p, the sum K, := zi’;ﬁ) n!is
not a multiple of p. Of course Ko = 2. This is, of course,
not a characterisation of primes; for example, K, = 10.
The proof (only in 2004) of Kurepa’s conjecture due to
D Barsky and B Benzaghou involves the so-called Bell
numbers. One way of defining the Bell numbers is as fol-
lows. The n-th Bell number P, is the number of ways of
writing an n-element set as unions of non-empty subsets.
We see that P1 = 1,P2 = 2,P3 = 5,P4 = 15,P5 = 52
etc. (There is a lot of combinatorics involving the Bell
numbers.) From combinatorial considerations, one can
prove that P,.1 = >7)_, (Z) Py, where we have written
Py to stand for 1. From this, it is easy to prove (anal-
ogously to the proof for Bernoulli numbers) that the
generating function for P,’s is given by

F(x) = Z P,x" =
n=0

1;)(1—@(1—2@---(1_”@ (1)

The Kurepa question can be formulated in terms of the
Bell numbers easily. It turns out using some elementary
combinatorics that P, = Zﬁ;%n! modulo p. Thus,
since K, is the sum of (p — 1)! with the right hand side
above, Kurepa’s conjecture amounts to the statement
that P,_1 # 1 modulo p because (p — 1)! = —1 modulo
p. The idea of the proof of Kurepa’s conjecture is to
consider what is known as the Artin—Schreier extension
F,[0] of the field F,, of p elements, where 0 is a root (in
the algebraic closure of F ) of the polynomial 2 —z — 1.
This is a cyclic Galois extension of degree p over F.
Note that the other roots of 27 —x — 1 are 6 + i for i =
1,2,---,p—1. The reason that this field extension comes
up naturally is as follows. The generating series F'(z) of
the Bell numbers can be evaluated modulo p; this means
one computes a ‘simpler’ series Fj(x) such that F(x) —
F,(z) has all coefficients multiples of p. Since Kurepa’s
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conjecture is about the Bell numbers P,_; considered
modulo p, it makes sense to consider F,(z) rather than
F(x). Reading the equality (1) modulo p, one gets

5le) :ZZ (1—xz)---(L— (ip+ n)z)
TS5 (- (ip+ D) (- (ip + n)x)
(1—x)---(1—ipx)

—se (I =(ip+1)z)-- (1 = (ip+n)r)

((1—56)"'(1—1796))

modulo p. Therefore,

_ Yhmr"(l-(n+Da) - (L—(p— Do)
1— Pl —gP

()

on simplification. Notice that #~! is a root of the poly-
nomial 1 — =% — 2P above. Thereafter, doing some
algebra in the field extension F,[f] of F, expresses the
various Bell numbers P,, modulo p as

P, = —Tr(8%)Tr(g" %1,

where Tr denotes the trace to F), from the Artin-Schreier

extension F,[0] and ¢, = Z=2 and t, = Z=1 There-
P P

1 1
after, the analysis of the properties of the trace functions

implies that if P,_; — 1 were to be zero modulo p, then
0 would be zero, which is absurd since # is not zero,
as it generates a degree p extension. This was one in-
stance of proving an elementary statement on primes
which needs some sophisticated mathematics.

The n-th Bell number
P_modulo a prime p
can be expressed in

terms of the trace
function on a certain
field containing F,.
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Recently, three 5. AKS — A Case of Indian Expertise
Indians stunned the Having said that there are no (practically) ‘nice’ formu-
world with the lae for primes, and having also said that producing large
discovery of a primes is a basic requirement in fields like cryptography,
polynomial-time how does one reconcile one with the other? The fact is
deterministic primality that there are many probabilistic algorithms to certify
testing algorithm. primes with very high probability. We shall not dis-

cuss them but we raise the mathematical question as to
whether there are deterministic algorithms to decide in
reasonable computational time whether a given number
is prime or not. Until very recently, no deterministic
algorithm was known which was polynomial-time and
which could detect every prime. Recently, three Indi-
ans (Manindra Agrawal, a professor of computer science
at II'T Kanpur and his BTech students Neeraj Kayal
and Nitin Saxena) stunned the world with the discov-
ery of a polynomial-time deterministic primality testing
algorithm. We mention very briefly the Agrawal-Kayal—-
Saxena algorithm. Most algorithms start with Fermat’s
little theorem and apart from other shortcomings, are
also infeasible at first glance because of having to com-
pute p coefficients in order to check the validity of the
congruence (r — a)? = 2P — a mod p. The basic idea
of the AKS algorithm is to make it feasible by evaluat-
ing both sides modulo a polynomial of the form z" — 1.
Their algorithm would take O(r?log®p) time to verify
(x—a)? = 2P —a mod 2" — 1 in F,[z]. As there are com-
posites also which satisfy this congruence, one has to
choose r and a suitably. One general comment to note
is that it is far easier to test a polynomial over Fj, for
irreducibility than to test primality of a natural number.
In a nutshell, here is the AKS algorithm:

AKS algorithm to check primality of n
Step I

Check if n is a perfect power; if not go to the next step.
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Step I1

Find a prime number r = O(log%n) such that r — 1 has
a prime divisor ¢ > 4+/rlogn, where ¢ divides the order
of n mod r.

Step 111

With r as above, check for each a < 2y/rlogn, if
(x—a)"=2"—a mod 2" —1 in (Z/nZ)x].

If the congruence is not satisfied for some a, declare that
n is composite. If it is satisfied for all a, declare n prime.

6. Sundries

We will finish with a few more remarks about primes.
We mentioned Bouniakowsky’s conjecture which asserts
the infinitude of prime values. Can a polynomial take
only prime values? It is again an easy, elementary exer-
cise to prove that there is no nonconstant polynomial in
some variables x1, - - -, x, which takes only prime values
at all integers. However, it is a deep consequence of the
solution of Hilbert’s 10th problem by Hilary Putnam,
Martin Davis, Julia Robinson and Yuri Matiyashevich
that there exist polynomials f(zq,---,z,) over integers
such that the set of positive values taken by f equals
the set of prime numbers! Of course, the polynomials
do take negative values as well as certain prime values
more than once. Indeed, one can take f to be of degree
25 and r to be of 26. This expresses the fact that the
set of prime numbers is a Diophantine set.

Bertrand stated that there is a prime among n + 1,n +
2,--+,2n. This is known as Bertrand’s postulate and it
was proved first by Chebychev and there are many sim-
pler proofs. Incidentally, a generalisation of Bertrand’s
postulate is a theorem of Sylvester which asserts that in
any sequence n+ 1,n +2,---,n+r with n > r, there is
a number which is divisible by a prime > r.

There is no
nonconstant
polynomial in some
variables x, ..., X,

which takes only
prime values at all
integers. However, it
is a deep
consequence of the
solution of Hilbert's
10th problem by
Putnam, Davis, Julia
Robinson and
Matiyashevich that
there exist
polynomials

f(x,, ..., x) over
integers such that the
set of positive values
taken by fequals the
set of prime numbers!

-
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The twin prime
problem (whether
there are infinitely

many primes p with
p+2 also prime) is
still open. Brun
proved that the
series of reciprocals
of twin primes
converges.

Vinogradov proved
using the Hardy-
Ramanujan circle
method that every
sufficiently large
odd number is a
sum of three
primes.

Of course, the twin prime problem (whether there are
infinitely many primes p with p 4+ 2 also prime) is still
open. Brun proved that the series of reciprocals of twin
primes converges. Note that the series of reciprocals
of all primes is divergent, as proved by Euler. Indeed,
> p<z % behaves asymptotically like the function log log
x for x tending to infinity.

Then, the Goldbach conjecture (asserting that every
even number > 2 is a sum of two primes) is also open;
Vinogradov proved using the Hardy-Ramanujan circle
method that every sufficiently large odd number is a
sum of three primes. The prime number theorem proved
in the beginning of the 20th century shows that the
‘prime counting function’ 7(z) which counts the num-
ber of primes up to x, behaves asymptotically like the
function log% as x tends to infinity. An equivalent for-
mulation is to say that the product of all the primes up
to some z is asymptotically like e®. Here, and elsewhere,
one means by the statement f(z) is asymptotically like
g(x) that the ratio f(z)/g(x) approaches 1 as x tends to
infinity. One can deduce from the prime number theo-
rem that the n-th prime is approximately of size n logn
for large n. That is, very roughly speaking, the proba-
bility that a given n is prime is

log n*

In connection with the fact we mentioned about Gauss
showing that for each prime p, there is an integer a
whose order mod p is p — 1, here is a famous conjec-
ture due to E Artin. He conjectured that each natural
number a which is not a square is the order mod p for
infinitely many primes p. It is also open.

Shortly before his death, Paul Erdos, in collaboration
with Takashi Agoh and Andrew Granville, showed that
any large composite n (n > 400 would do) satisfies
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Using this, and nothing more than the Chinese remain-
der theorem, they showed that any prime n can be
proved to be prime by expressing it as n = Ny + Ny +
-+ 4+ N, where py,---,pi are the first £ primes and n
is not divisible by any of them while each NN; is divisible
by all the p; with j # ¢ and not by p;.
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“One of my favourite Baconian dreams is the possible
connection between the theory of one-dimensional
quasi-crystals and the theory of the Riemann zeta
function. A 1-dimensional quasi-crystal is simply
a nonperiodic arrangement of mass-points on a line
whose Fourier transform is also an arrangement of
mass-points on a line. We know that if the Riemann
hypothesis is true, then the zeta function zeroes on the
critical line are a quasi-crystal. This suggests a pos-
sible approach to the proof of the Riemann hypoth-
esis.”

— Freeman Dyson
(From Foreword of ‘The Mathematical Century’
by P Odifreddi published by Universities Press)
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