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1 Introduction

Polya theory is, unlike most of high- school combinatorics, not a bag of tricks
that are situation- specific. It deals with questions where clearly understanding
the set that is to be counted is the main difficulty.
An example of this is when we are trying to find the number of nationalities
represented in a group of people: having counted the first Indian, we must ig-
nore the other Indians as the counting proceeds.
In this case certain groups of people were related by nationality; however, the
problems of Polya theory involve relations of symmetry operating among ele-
ments (people), and the crux of their solution is to understand how symmetry
changes the relationships between these elements.
In what follows we will consider symmetry problems from elementary combina-
torics, such as necklaces and chessboards, as well as solid geometry and chem-
istry, and we will hint at the number theoretic applications that abound in this
field. The full scope of Polya theory is, of course, far greater, and is visible in
graph theory and higher algebra as well.

Remark 1.1 We begin with a simplified chessboard example that, although
easily solved by brute force, quickly generalises to problems that beg for more
systematic methods of solution.

Example 1.2 Consider a 2 × 2 board whose squares are coloured either in
red(r) or in black(b). We must find the number of different boards. Elementary
counting suggests that since each square can have one of two colours, there are
24 = 16 possible arrangements. A lot, however, depends on what we mean by
’different’. The consensus among most people is that two boards are equivalent
if one can be obtained from the other by a rotation of some multiple of 90
anticlockwise. Assuming this, we find the following arrangements: a) 4 red
squares b) 3 red, 1 black c) 2 red, 2 black (there are 2 possiblities here, where
similar squares are on the same half or the same diagonal).

Thus the total number of non-equivalent boards is 2·(1+1)+2 = 6, since the
two remaining cases are (a) and (b) with the colours interchanged. The reader
will appreciate the intrinsic difficulty of the problem immediately upon replacing
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the ’ 2×2 ’ even with ’ 3×3 ‘, and certainly with any greater number. Problems
of a similar nature abound in elementary settings: The number of necklaces of
n beads, with a choice of m colours, where necklaces with rotational symmetry
are equivalent; the number of colourings of the vertices of a cube or tetrahedron
in m colours, equivalent up to rotation; and several others that will be returned
to.

2 Abstracting the problem

In each case mentioned above, there is an assignment of colours to squares,
beads or vertices- a function from a domain to the set of colours. Elementary
counting gives us the cardinality of the set of all such functions RD, where
D is the domain and R, the range. However, some functions are ’equivalent’
(the elucidation of ’equivalence’ being central to our study and done presently)
and thus the real problem is to determine the number of eqivalence classes of
functions on RD.

So, when are two functions equivalent? Returning to our examples, we see
that equivalence was defined by the property that one arrangement (function)
could be obtained from another by an operation on the elements of the domain.
What sort of operation? Clearly, any such operation permutes the elements
among themselves, otherwise the power set is ill defined. Furthermore, as in our
example, if we can speak of rotating a chessboard by multiples of 90, we must
surely include rotations by zero (the identity operation) and negative multiples
(inverses). We see that the set of operations possess a group structure; and, as
our discussion will show, it is sufficiently general to consider that the operations
form a permutation group.

We will formalize the concept of equivalence of functions. Let G be a per-
mutation group acting on a set D. There exists a set R and the set RD, the set
of all functions from D to R.

Definition 2.1 Two functions f, g ∈ RD are equivalent if there exists a per-
mutation π ∈ G such that for all d ∈ D, f(d) = g(π(d)). Also, for every π ∈ G,
define eπ : RD → RD such that eπ(f) = g iff f and g are equivalent.

eπ is well defined. For, if for some i, f(π−1(i) = g(i), then setting i = π(d),
which is possible as π is a permutation, we get f(d) = g(π(d)).

Further, e(π) is injective. If eπ(f) = eπ(h) = g, then f(d) = h(d) for all
d ∈ D and so f = h. This, together with the fact that the domain and range
have equal cardinality, imply that eπ is also surjective and so is a permutation
on RD.

The equivalence class of f is called a pattern. Thus, the set of chessboards
that form a pattern can be obtained from each other by rotation. Our objective
is to enumerate the patterns on RD.
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3 A Partial Answer- Burnside’s Lemma

The full machinery that we seek to employ is not always necessary, at least when
we set ourselves the limited problem of counting the number of patterns with-
out asking for any further information about their nature or their constituent
functions.

Consider a group G acting on a set S . For every g ∈ G, let Sg denote the
subset of S fixed by g. Also for every s ∈ S define the stabilizer Gs of s, the
subgroup of G (this is easily proved to be a subgroup) which fixes s, so that
gs = s for all g ∈ Gs. Now we find the cardinality of the set (g, s) : gs = s.

Fixing a g and then summing over G gives
∑
g∈G |Sg|. Alternatively, fixing

an s and summing over S yields
∑
s∈S |Gs|. The latter sum can be simplified

with the Orbit- Stabilizer Theorem. Indeed,∑
s∈S
|Gs| =

∑
s∈S

|G|
|Os|

= |G|
∑
s∈S

1

|Os|

= |G|
∑

orbitsO

|Os|
|Os|

= |G| ·N,

where N is the number of orbits of S and |Os| is the order of the orbit of s.
This gives an expression for N :

Lemma 3.1 (Burnside’s Lemma) Given a group G acting on a set S, the
number of orbits N due to this action is given by

N =
1

|G|
∑
g∈G
|Sg|.

Remark 3.2 It is rather interesting to find that this is just as often often
referred to as the not- Burnside Lemma in recognition of its prior discovery
independently by Cauchy and Frobenius.

We immediately apply Burnside’s Lemma to Example 1.2 letting G be the
group C4, the cyclic group of rotations by multiples of 900. We number the
squares as quadrants. Letting Sθ denote the set of coloured boards (functions)
which remain unchanged upon rotation by θ, we see that
a) Any board is fixed by rotation through θ = 0. There are 16 such boards and
so |S0 = 16.
b) A 900 rotation sends 1 to 2, 2 to 3, 3 to 4, 4 to 1. If the board is unchanged,
the colour of square 1 should be the same as that of 2, and similarly for all
pairs. We thus have a monochromatic board, giving |S90| = 2(red or black).
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Symmetry gives |S270| = 2 as well.
c) A 1800 rotation is a reflection about the x- axis and sends 1 to 4, 2 to 3.
Arguing as before, we get |S180| = 22 = 4.

Burnside’s Lemma now gives N =
1

4
(16 + 2 + 2 + 4) = 6, which we had

obtained previously.
However, there are some clear limitations to the use of this lemma: comput-

ing fixed points of sets under group action is often tedious and does not allow
us to solve problems such as the following:

Problem: Find the number of different cubes that can be obtained by colour-
ing its vertices in 2, 3, m colours. Two cubes are considered equivalent under
rotational symmetry.

4 A Better Understanding of Equivalent Func-
tions; The Cycle Index

We need a better understanding of the properties of a function that is fixed by
a permutation in G. A key insight is the following lemma, which restricts the
values of the functions that can be fixed by a permutation π ∈ G.

We will use the fact that under action of π,we obtain a permutation of the
elements of the domain which can be decomposed into cycles. If there are bi
cycles of length i, the permutation is said to have cycle type (b1, b2, ..., bn).

Consider one of the cycles of length j, C = (a1, a2, .., aj). We have the
following lemma:

Lemma 4.1 If π fixes a function f on RD then f is constant for all ai ∈ C.
Proof: The above is equivalent to saying that eπ(f) = f and so for all

d ∈ D, f(d) = f(π(d)). But if d is in C, ie. d = ai for some i, then f(ai) =
f(π(ai)) = f(ai+1) and so f is constant within C.

In the language of example 1.2, if upon rotation by 90◦, which generates a
single cycle of length 4 among the four squares, if we get an unchanged board
then for all squares in the cycle (basically, all 4 squares), the value of the function
(the colour assigned to the square) must be constant for all elements of the cycle
(squares).

Upon rotation by 180◦ we get two cycles, (14) and (23). So within each cycle,
any assignment must be constant over the cycle. How this is to be used to count
the patterns will be deferred until we have a scheme to represent assignments
suitably.

Moreover, in order to use our knowlegde of Lemma 4.1 we will need some
sort of bookkeeping device that stores information about the cycles generated
separately by all the elements of G. The ’device’ most suitable for computation
is a polynomial whose each term describes one element of G, and so we define
the following:
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Definition 4.2 (Cycle Index) For each α ∈ G with |G| = n define a mono-
mial xb11 x

b2
2 ...x

bn
n where the xi are arbitrary variables and bi is the number of

cycles of length i in α. Then the cycle index of G in its action on set S is defined
as

PG(x1, x2, ..., xn) =
1

|G|
∑
α∈G

(monomial(α)).

Since calculating the cycle index of our groups is fundamental to what is to
come, it is worthwhile to perform the calculation for some well- known objects.

Example 4.3 Now let G be the group of rotations (rotational symmetries) of
a cube ABCDEFGH. The total number of symmetries, |G|, is 24. Indeed, a
vertex can be rotated to any other face under the action of G, so its orbit has
order 8. Also, its stabiliser is the group of rotations by multiples of 1200 about
the axis passing through the vertex and the centre of the cube, and has order
3. The Orbit-Stabilizer Theorem now gives |G| = 8 ∗ 3 = 24. The rotations in
G can be classified as follows:

a) Rotations fixing vertices: A rotation fixing, say, A and G can either
send E → B → D → E (120◦ rotation) or can send E → D → B → E (240◦

rotation). We recognize that these two rotations, along with the identity, con-
stitute the stabilizer of A and G, mentioned previously. Thus, for each such
rotation, there are two 1-cycles and two 3-cycles, to which we assoociate the
monomial x21x

2
3. There are two rotations per pair of opposite vertices and 4

such pairs in the cube, giving a factor of 8 to the above monomial.

b) Rotations fixing edges: Suppose we rotate the cube by 180◦ about
the axis formed by joining the midpoints of AB and GH. Then, we have the
cycles (AB), (GH), (DF), (CE) and the associated monomial x42. There are 6
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axes, one for each pair of opposite edges.

c)Rotations fixing faces: Here the axis is through the centre of a face
and perpendicular to it. For rotations by 90◦ or 270◦, the vertices that bound
these faces are permuted among themselves in two 4-cycles, ie. 2 · x24. For a
180◦- rotation, there are four 2- cycles formed by vertices on the same face,
diagonal to each other. We can choose the axis in 3 ways.
This gives us the cycle index of G:

PG(x1, x2, .., xn) =
x81 + 8x21x

2
3 + 9x42 + 6x24
24

where the first term is the identity permutation monomial.

Example 4.4 The purpose of this example is to show that in addition to the
degree, even the coefficients of the cycle index can change depending on which
element of the cube we choose as our set. Let us perform the same calculation
for the faces of the cube.

a) As above, for a 120◦ rotation the cycles are (A)(G)(EBD)(FCH). So
ABCD → ADHE → AEFB → ABCD and similarly for the other three faces.
This gives the term 8x23.

b) Using the cycle decomposition for vertices, we haveABCD → BAEF,ADHE →
BFGC,DCGH → FEHG with the associated term 6x32.

c) For 90◦ and 270◦ rotations, two faces are fixed and the others go around
in a 4-cycle. For 180◦, the 4-cycle breaks into two 2-cycles. The contributionto
the cycle index reads 6x21x4 + 3x21x

2
2.

Thus, [ PG(x1, x2, ..., xn) =
x61 + 8x23 + 6x32 + 6x21x4 + 3x21x

2
2

24
.]

Example 4.5 We shall try to find the cycle index of the cyclic group Cn of
rotations acting on a regular n- gon- a situation encountered in the necklace
problem outlined along with Example 1.2. First we observe that this group is
isomorphic to the additive group Zn of integers modulo n, acting on the set
[n] = (1, 2, ..., n).
Next, we see that the difference between consecutive numbers in a cycle is the
same by definition, and for this difference d, the length of the cycle is the least
number k such that kd ≡ 0 (mod n). For a fixed d, this k is unique and so the
length of all cycles is the same. Thus, if there is a cycle of length k, then there
are n/k cycles, partitioning Zn. Of course k|n by this argument.
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Now, we must find the number of values of d that act on [n] in this manner, for

a fixed k. For the above congruence to hold clearly d =
n

k
· t for some t ≤ k.

Notice that with this value of d, the number k′ =
k

(t, k)
is also a solution to the

congruence, because the product k′d is still a multiple of n. Since k is the least
solution for fixed d we must have (t, k) = 1 and since t < k there are exactly
φ(k)solutions, ie. φ(k) permutations with cycle length k.

These contribute the term φ(k)x
n/k
k to the cycle index. Thus, we finally have

our expression:

PG(x1, x2, .., xn) =

∑
k|n φ(k)x

n/k
k

n
.

Corollary Since the sum of coefficients in the cycle index is by definition
1, we obtain

∑
k|n φ(k) = n.

5 What do we really want now? Weight for it .
. .

To summarize what we have done so far, we have restated the problem of as-
signing properties to sets as a problem of finding the number of patterns, or
classes of functions within a power set, some of which are equivalent under the
action of a permutation group. The number of patterns is closely related to the
number of functions that are fixed by the permutations of the group. Burnside’s
Lemma is the clearest example of this. Furthermore, if a permutation fixes a
function we have proved it must be constant over its individual cycles. All the
information we could possibly need about cycles is contained in the cycle index,
which is a lot easier to compute than the fixed points in Burnside’s Lemma.
So we have the tools we need to find the number of patterns in a group. But
with the amount of machinery we have at our disposal, a little more effort can
actually allow us to solve a much bigger question: What is the exact nature of
the patterns? How many of the squares in Example 1.2 have equal numbers of
red and black? How many cubes exist where exactly three vertices are coloured
red, and the rest blue?
The new idea we present is motivated by the need to distinguish between dif-
ferent elements of the range R. We define for each r ∈ R a weight function
w : R→ R. Also, we define the following:

Definition 5.1 The weight of a function f : D → R is given by

w(f) =
∏
d∈D

f(d).
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Also, the total weight of R is w(R) =
∑
r∈R w(r).

For example, if there are six mathematicians to each of whom one problem
from a selection of hard problems is assigned, if three are given the Goldbach
Conjecture, two the P/NP problem and one the Riemann Hypothesis, the weight
assignment (using an obvious convention) for this function would be g3p2r.
Our definition of weights has the following very desirable property:

Proposition 5.2 Equivalent functions have equal weight. Proof: Suppose
eπ(f) = g. Then for all d ∈ D, f(d) = g(π(d)) and thus

w(f) =
∏
d∈D

f(d)

=
∏
d∈D

f(π−1d)

=
∏
d∈D

g(d)

= w(g)

This allows us to make the following definitions:

Definitions 5.3 For each pattern F , define w(F ) = w(f) for some f ∈ F . By
Proposition 5.2, this function is well-defined.
Now define the pattern inventory, which is given by

P.I. =
∑
F

w(F )

where the sum covers all patterns in RD.
At last we have clearly defined what we were looking for: The pattern inventory
contains by means of its weighted terms all the information about the action
of the group that we could possibly need. The number of patterns, which
we calculate when we have considered all patterns to be equally important, is
indeed obtained by setting all weights equal to unity. Knowledge of the pattern
inventory is, in principle at least, the solution to all the problems we have set
ourselves hitherto.
To see this, we consider the following example:

Example 5.4 We are to place marbles into a container with three holes ar-
ranged in the form of an equilateral triangle. There are 6 marbles in total. We
must list all possible arrangements, assuming that the dihedral group D3 acts
on the triangle.
Here, if we assign weight ai to a group of i marbles in the same hole, the possible
arrangements are given in the pattern inventory

P.I. = a6 + a5a1 + a4a
2
1 + a4a2 + a23 + a3a2a1 + a32.
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We leave it to the reader to verify that the pattern inventory for Example 1.2,
assuming that red and black are weighted with r and b respectively, is

P.I. = r4 + r3b+ 2r2b2 + rb3 + b4.

This example reminds us of something very important:

Remark Different patterns may have the same weight.
We now have everything we need to find the pattern inventory purely by ex-
amining group actions on the given domain. There is a final link, the relation
between a function constant over given subsets of the domain and its weight,
which is given by the following lemma:

Lemma 5.5 For a function f : D → R let D =
⋃
iDi such that f is constant

over any given Di. Then the total weight of all such functions f is

W =
∏
i

(
∑
r∈R

w(r)
|Di|)

Proof: Any such function has the weight w
|D1|
1 w

|D2|
2 ...w

|Di|
i ... and so belongs

to the expression W . Conversely, any term in W corresponds to the unique
function f with f(d) = wifor all d ∈ Di.
Thus, if our six mathematicians (see def. 5.1) asked for a reallocation of prob-
lems but demanded that their teammates remain unchanged, even if two teams
got the same problem, the possible weights of functions in this case would be
terms from the product [ (g3 + p3 + r3)(g2 + p2 + r2)(g + p+ r) ]
where it is ensured that any assignment remains constant over a given team, as
was required.

6 Polya’s Fundamental theorem on Enumera-
tion

Drumroll, please...

Theorem 6.1 (Polya’s fundamental enumeration theorem) The pat-
tern inventory of a set of functions RD acted upon by a permutation group G is
obtained by replacing in the cycle index of the group, the variable xi with the
sum

∑
r∈R w(r)

i
. That is,

P.I. = PG(
∑
r∈R

w(r),
∑
r∈R

w(r)
2
, ...,

∑
r∈R

w(r)
n
).
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Proof: Some patterns have equal weight Wi. Let there be mi such patterns.
The set of functions of weight Wi is a union of disjoint subsets of RD, T =⋃mi

i=1 Fi.
Now G acts on T producing mi orbits, so Burnside’s Lemma gives

mi =
1

|G|
∑
π∈G
|Sπ|

where Sπ is the subset of T fixed by π.
The pattern inventory is therefore given by

P.I. =
∑
i

miWi

=
1

|G|
∑
π∈G

∑
i

|SπWi|

=
1

|G|
∑
π∈G
|(Wf ix(π)|.

where Wf ix(π) is the total weight of all functions fixed by π.
Choose a π ∈ G with cycle type (b1, b2, ..., bn). Any function in Sπ, we have
seen, is constant over the cycles of π, which together partition D. Thus, Lemma
5.5 gives

P.I. =
1

|G|
∑
π∈G

∏
j

(
∑
r∈R

w(r)
j
)
bj
.

This is because we collect the similar expressions for the bj cycles of equal length
j. Comparing this with the definition

PG(x1, x2, .., xn) =
1

|G|
∑
π∈G

∏
j

x
bj
j

the theorem is proved.

Corollary- The number of patterns is given by PG(|R|, |R|, ..., |R|).

7 Applications

Example 7.1 We return to the problem of vertex colouring of a cube in two
colours, red and blue. The pattern inventory, by Polya’s theorem, is

(r + b)8 + 8(r + b)2(r3 + b3)2 + 9(r2 + b2)4 + 6(r4 + b4)2

24
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a) The number of patterns

=
28 + 8.22.22 + 9.24 + 6.22

24
= 23.

b) The number of patterns of 4 vertices each coloured red and blue = coeffficient
of r4b4 in the P.I.

=

(
8

4

)
+ 8 · 2 · 2 + 9 · 6 + 6 · 2

24
= 7.

Example 7.2 How many necklaces of n beads can be made in m colours, if
the group acting on them is the cyclic group Cn? We saw that the cycle index
was given by

PG(x1, x2, .., xn) =
∑
k|n

φ(k)x
n/k
k

and thus the number of necklaces, by Polya’s theorem, is

N =
∑
k|n

φ(k)mn/k.

Remark: There is an elegant solution to the above problem by means of
the Mobius Inversion Formula. The necklace must, as we showed, have cycle
length k|n, and if the d repetitions due to permutations within each cycle are
considered we have

mn =
∑
k|n

kM(k)

where M(k) is the number of patterns with cycle length k. It can be proved that
M(k) is multiplicative and thus the Inversion Formula can be applied, giving
us the same answer after a lengthy computation which we will avoid here.

Example 7.3 We consider the action of the dihedral group D4 on an n × n
square chessboard where n is even. For the purpose of calculation we introduce
a ’dummy’ square at the origin and allow each unit square to have side 1 so that
a lattice point is at their centre. The sides of the square have length 1. We first
obtain the cycle index of the board.

11



a) Rotations by 90◦ or 270◦: Each 1×1 square belongs to a subgroup of four
squares under these motions and so for every four squares a 4-cycle is generated

thus giving a monomial of 2× xn
2/4

4 . The 180◦ rotation gives x
n2/2
2 .

b) Here we assume that the motion of any unit square corresponds to the motion
of the lattice point within the square. Consider the reflection about the x-
axis followed by rotation through 90◦ or 270◦. To analyse this we use the
representation of points on R2 as a 2-D coloumn vector and recall that the
motions of Dn can be represented using orthogonal matrices A with A2 = I.
Thus any square will be part of a 2- cycle or less. It is now sufficient to find the
number of fixed points.
Rotation by 90◦ and reflection about the x- axis have the associated matrices(

0 − 1

1 0

)
,

(
1 0

0 − 1

)
; and their product is

(
0 1

1 0

)
which operates on the vector(

x

y

)
to give

(
y

x

)
. Thus, under this operation, only the n squares along one

diagonal are stabilized and the rest belong to 2- cycles. The monomial is the
same for the cas of reflection and then 270◦ rotation, so we finally get the term

2 ·xn1x
(n2−n)/2
2 . The remaining reflection is just reflection about the y- axis with

the term x
n2/2
2 .

Our cycle index, then, is

xn
2

1 + 2x
n2/4
4 + 3x

n2/2
2 + 2xn1x

(n2−n)/2
2

8

and replacing the variables with 2 gives the answer.
The reader is invited to perform the similar calculation for odd n and see if a
closed form can be obtained without separating the two cases.
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8 Applications to Chemistry

The fact that molecules have higher probabilities of assuming symmetrical con-
figurations makes it possible to obtain valuable insights via group theory. All
the problems we discuss are related to the counting of isomers.
The first example is from my own chemistry class, and one can see that it can
turn messy without group theoretic ideas.

Example 8.1 A coordination complex is a compound formed when a positively
charged transition metal atom attracts negatively charged ligands in a solution.
The number of ligands that coordinate with it determine the geometry of the
complex.
Thus, six ligands form an octahedral complex written as M(abcdef) where M is
the metal and the rest are ligands, some of which may be equal to each other.
We are to find the number of isomers where a, b, c, d, e, f are all distinct.
To solve this, we note that the octahedron is a dual of the cube in the sense
that the vertices of the octahedron correspond to the faces of the cube, and vice
versa. Therefore, the cycle index of the group of rotations actng on the vertices
is exactly the same as that of the same group acting on the faces of the cube.
and this was found in Example 5.4 to be

x61 + 8x23 + 6x32 + 6x21x4 + 3x21x
2
2

24
.

By Polya’s theorem, the number of diferent cubes obtained is the coefficient of
abcdef in

(a+ b+ c+ d+ e+ f)
6

24

=

(
6

1, 1, 1, 1, 1, 1

)
= 30.

Note that this procedure counts both geometrical and optical isomers.

Example 8.2 There is a great deal of scope for the application of Polya The-
ory in the study of organic molecules. Carbon in its unsaturated form, is the
centre of a tetrahedral molecule idealised as shown.
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There are two rotations that fix the substituent 4, through 120◦ and 240◦,
permuting the other 3 substituents in a 3- cycle. Thus, these rotations contribute
a term 4 · 2 · x1x3 to the cycle index. Next, we fix the axis on the line joining
the midpoints of opposite sides, say 14 and 23. 180◦ rotations about this axis
give us the cycles (14), (23). There are 3 such axes, giving us the term 3 · x22.
Including the identity, we obtain the cycle index

x41 + 8x1x3 + 3x22
12

.

a) Existence of the enantiomeric form: Suppose the substituents p, q, r, s are all
different. We want to find the number of molecules of the type Cpqrs. This

is the coefficient og pqrs in the pattern inventory, which is

(
4

1, 1, 1, 1

)
12

= 2.

The occurrence of two patterns (non- superimposable molecules) when the sub-
stituents are different is called chirality and the molecules form anenamtiomeric
pair.
These molecules form a mirror- image. Indeed, by fixing two substituents, we
can interchange the other two, i.e. reflect them about the mirror formed by
the plane of the fixed substituents. This also tells us why the substituents need
to be different: otherwise, we can choose the mirror so that one molecule is
reflected into itself.
b) A chemist studying the hydrogen content of alkyl halides with one carbon
must know how many compounds are possible for a given number of hydrogen
substituents. This asks for the pattern inventory with H weighted with h and
the halogens Cl,Br, I weighted with 1 each. The pattern inventory is obtained
by substituting for xi the quantity hi + 3 in the cycle index, and carrying out
the required computation we obtain

P.I. = h4 + 3h3 + 6h2 + 11h+ 5
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which solves the problem.

This theory can be extended and generalised, in ways we shall not look into
here; for example, what if a group acts on the elements of the range as well?
A generalisation to Polya’s theorem in this regard was provided by Nikolaas
de Bruijn, and there are various extensions that I hope to be able to acquaint
myself with in future.

I am grateful to Professor B. Sury of the Indian Statistical Institute, Bangalore,
for guiding me and suggesting that I read some articles, including his own, re-
lated to Burnside’s Lemma and related aspects of group theory, which became
the motivation for this study.
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