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Introduction

Chevalley’s construction of the Chevalley groups unified and explained
the classical simplicity results. Steinberg (Colloque théorie des groupes
algébriques, Bruxelles 1962) constructed using generators and relations,
the universal central extension of Chevalley groups over any field - these
are now called Steinberg groups. Later, these have been generalized to
arbitrary commutative rings with unity by M.R.Stein. While study-
ing the congruence subgroup problem for quasi-split groups, Vinay
Deodhar also generalized Steinberg’s construction to non-split groups.
Over the years, Abe, Bak, Hurley, Suzuki, Vavilov and others have de-
veloped extensive details on Chevalley-Demazure group schemes over
rings. The theory of (abstract and topological) central extensions is the
analogue of covering group theory for abstract groups. Steinberg also
obtained an explicit presentation for the Chevalley group itself. The
Schur multiplier of a Chevalley group over a field can be described by
these means. Over local and global fields, the description is in terms of
the norm residue symbol and leads to rich mathematics with connec-
tions to several parts of mathematics. We report on chapters 6 and 7
of Steinberg’s celebrated Yale notes.
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Steinberg’s construction of Chevalley groups

This section reviews preliminary information and can be skipped if that
answer has already been recalled.

For any abstract root system Φ with a basis ∆ = {α1, · · · , αl}, one
considers the free Lie algebra generated by 3l symbols xi, yi, hi(1 ≤ i ≤
l). On this free Lie algebra, if we force the ‘Serre’ relations

[xi, yi] = hi , [xi, yj] = 0 ∀ i ̸= j

[hi, hj] = 0 ∀ i, j

[hi, xj] =< αj, αi > xj ∀ i, j

[hi, yj] = − < αj, αi > yj ∀ i, j

(ad xi)
−<αj ,αi>+1(xj) = 0 ∀ i ̸= j

(ad yi)
−<αj ,αi>+1(yj) = 0 ∀ i ̸= j

where < αj, αi > are the corresponding Cartan integers, one obtains a
finite-dimensional semisimple Lie algebra G as Serre proved. Then,
the next step is to show that this Lie algebra has a certain basis
{xα;α ∈ Φ} ∪ {hi; i ≤ l} with certain special properties like the struc-
ture constants being in Z (what is known as a Chevalley basis). All
this depends only on the root system really. The Z-span G(Z) of a
Chevalley basis is then a lattice in G. For any m ≥ 0 and any α ∈ Φ,
the operators (ad xα)

m/m! leave G(Z) invariant; hence the operator
exp(ad xα) itself leaves this lattice invariant (as ad xα is nilpotent).
Then, the group A of inner derivations of G is a matrix group which
has the subgroup G generated by all exp(ad cxα) as c varies in Z. This
G gives the algebraic group sought for, as it leaves the lattice G(Z)
invariant, and hence consists of some integral matrices of determinant
1. Indeed, if T is a general indeterminate, then the matrix group gen-
erated by all exp(ad Txα) has entries from Z[T ] and determinant 1.
Specializing T to elements of any field (including finite fields), we get
an algebraic group G. This is the group of adjoint type. Similarly, us-
ing other representations of the Lie algebra (the adjoint representation
was used in the above construction), one can construct other ‘covers’.
This has essentially been done in earlier lectures but we shall rephrase
and repeat them in Steinberg’s language.
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0.1. A Chevalley basis. We will recall a number of results proved in
the earlier lectures on Lie algebras. Let G be a complex semisimple Lie
algebra, and H, Cartan subalgebra. We have

G = H⊕
⊕
α ̸=0

Gα

as usual. A crucial fact proved in earlier lectures is that the set Φ of
roots spans H∗ as a vector space over C. The nondegeneracy of the
Killing form implies the existence of an element H ′

α ∈ H such that
(H,H ′

α) = α(H) for all H ∈ H. Thus, the definition (α, β) = (H ′
α, H

′
β)

gives a positive-definite, symmetric bilinear form on the Q-vector space
H∗

Q spanned by the roots. We know that the reflections

sα : v 7→ v − 2
(v, α)

(α, α)
α

in the hyperplane orthogonal to the root α, takes roots to roots and
generate a finite group - the Weyl group of the root system. It is also
useful (as we have seen in earlier lectures) to write the Cartan integers

2 (α,β)
(β,β)

as< α, β >. Moreover, if {α1, · · · , αl} is a simple system of roots,

then W is generated already by sαi
’s and every root is a W -translate

of a simple root. The first observation is :

Lemma 1.
For each root α, the element Hα = 2

(α,α)
H ′

α is a Z-linear combination

of Hαi
.

The proof of this follows from the simple calculation which establishes

sαi
(Hαj

) = Hsαi (αj) ∀ i, j.

For roots α, β, we write β − rα, · · · , β, · · · , β + qα for the α-string
through β. We know that there is such a string of roots and also that
if α+β is a root, then r− q =< β, α > (as sα maps β− rα to β+ qα).
We have :

Lemma 2.
If α + β is a root, then

q
|α + β|2

|β|2
= r + 1.

Having chosen Hαi
’s as above, we would like to choose generators for

the root spaces in a suitable manner as follows :
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Lemma 3.
There exist Xα ∈ Gα satisfying :
(a) [Xα, X−α] = Hα, and
(b) if β ̸= ±α, then [Xα, Xβ] = ±(r + 1)Xα+β or = 0 according as to
whether α+ β is a root or not.
One usually writes these as [Xα, Xβ] = Nα,βXα+β.

One calls a basis of G made up of Hαi
’s and Xα’s as above, a Chevalley

basis. More precisely, we have a Chevalley basis for G to be a basis
which is a union of a basis {Hi; i ≤ l} of H and a basis {X(α) : α ∈ Φ}
of

⊕
α∈Φ Gα, which satisfy the properties :

(a) [Hi, X(α)] =< α, αi > X(α),
(b) [X(α), X(−α)] ∈ H is a Z-linear combination of the Hi’s,
(c) [X(α), X(β)] = ±(r + 1)X(α + β) or 0 according as to whether
α + β is a root or not.

§ A Z-basis for U(G).

Recall that by the PBW-theorem, the universal enveloping algebra
U(G) of G has as a basis, all monomials Xk1

1 · · ·Xkn
n where X1, · · · , Xn

gives a basis of the Lie algebra G. Given a Chevalley basis, it is possible
to get a corresponding basis of the universal enveloping algebra over Z
itself. Indeed :

Proposition 4.
Let {Hαi

; 1 ≤ i ≤ l} be a basis of H as in lemma 1 and Xα (for α ∈ Φ)
be as in lemma 3. Fix an ordering of these elements of G. Consider the
Z-algebra U(G)Z which is generated by the elements Xm

α

m!
as α varies

over roots and m varies over non-negative integer. Then, for every
choice of non-negative integers ni,mα, the collection of products of all(
Hαi
ni

)
and Xmα

α

mα!
in the fixed order, forms a basis for U(G)Z.

For the proof, we need the following steps.

Step 1 :

Xm
α

m!

Xn
−α

n!
=

∑
i

Xn−i
−α

(n− i)!

(
Hαi

−m− n+ 2i

i

)
Xm−i

α

(m− i)!

for each root α.
This is proved by first showing by induction on n that

Xα

Xn
−α

n!
= (

Xn
−α

n!
X +

Xn−1
−α

(n− 1)!
)(Hα − n+ 1)
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and then using induction on m.
Step 2 : (

Hα

n

)
∈ U(G)Z.

To see this, one puts m = n in step 1, applies induction on n and uses
the elementary fact that a complex polynomial of l variables z1, · · · , zl
that takes integral values for integral zi’s must be an integral linear
combination of the polynomials

∏l
i=1

(
zi
ni

)
with ni’s bounded by the

degree of the starting polynomial.
Step 3 :
If GZ denotes the Z-span of Hαi

’s and Xα’s, then each Xm
α

m!
preserves

each tensor product GZ⊗GZ⊗· · ·⊗GZ under the adjoint representation
extended to U(G).
This is checked by simply using the definitions.
Step 3 :
Let S ⊂ Φ be closed under addition and satisfy S∩−S = ∅. Then, the
product of all Xmα

α

mα!
for α ∈ S and mα ≥ 0 (taken in the fixed order) is

a Z-basis for the Z-algebra A generated by all Xm
α

m!
with α ∈ S.

The PBW-theorem applied to the Lie algebra with basis {Xα : α ∈ S}
shows that each element of the above Z-algebra is at least a complex
combination of the given elements. That the coefficients are integral
can be proved using the previous step.
Step 4 :

For any two roots α, β, and any m,n ≥ 0, the element Xm
α

m!

Xn
β

n!
is an

integral combination of
Xn

β

n!
Xm

α

m!
and of monomials whose total X-degrees

are smaller.
This follows for α = −β from step 1. In the contrary case, step 3 can
be applied to the set S of roots of the form iα + jβ arranged in the
order α, β, α + β, · · ·

Sketch of proof of proposition 4.
Firstly, we keep in mind the observation that for any roots α and β,
and any polynomial f , we have

Xn
αf(Hβ) = f(Hβ − nα(Hβ))X

n
α .

This simply follows from the case when f is a power, in which case, it
is a consequence of the equality [Hβ, Xα] = α(Hβ)Xα and induction on
the two exponents.
Now, by step 2,

(
Hαi
n

)
are in the Z-algebra under consideration and

we need to show that the integral combinations of these elements give
all elements. Of course, it suffices to show that all monomials arise as
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integral combinations. One may apply induction on the total degree in
the X’s. Step 4 and the observation made in the beginning of the proof
here, allows us to write every monomial as an integral combination of
monomials where, for each α, the Xα-terms can be put together and
in the order fixed. As

Xm
α

m!

Xn
α

n!
=

(
m+ n

n

)
Xm+n

α

(m+ n)!

each Xα needs to be represented at most once. Also, (again by the
observation in the beginning), the H-terms can be brought in front
and, by the proof in step 2, can be written as integral combinations of
the asserted elements in the fixed order.

0.2. Lattices in representations of G. We know the highest weight
theory for representations of G and we would like to get lattices in-
variant under the Z-form of the universal enveloping algebra. We start
with a consequence of the previous proposition.

Corollary 5 (of proposition 4).
If U(G)+Z (respectively, U(G)−Z) denotes the Z-subalgebra of U(G)Z gen-

erated by the elements Xm
α

m!
for α > 0 (respectively, α < 0) and m varies

over non-negative integers, and if U(G)0Z denotes the Z-subalgebra gen-
erated by all

(
Hαi
n

)
(for i ≤ l; n ≥ 0), then we have

U(G)Z = U(G)−ZU(G)0ZU(G)+Z .
This follows from step 3.

Proposition 6.
Every finite-dimensional representation V of G contains (under the in-
duced action of U(G)Z) a lattice M which is left invariant. Moreover,
every such lattice is the direct sum of its weight components.
Proof.
We need to get hold of a lattice M so that all the generators Xm

α

m!
of

U(G)Z leave it stable.

Corollary 7.
If V is a faithful, finite-dimensional representation of G andM , a lattice
in it invariant under U(G)Z), then one has

{X ∈ G : X(M) ⊆ M} = ⊕αZXα ⊕ {H ∈ H : µ(H) ∈ Z}
where µ on the right runs over the weights of the representation. Thus,
this set GZ is a lattice in G which depends on the representation but
not on the lattice M .
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Example 8.
We mentioned that the definition of the lattice GZ depends on the rep-
resentation. For instance, look at the 3-dimensional Lie algebra gener-
ated by X,Y,H and such that [H,X] = 2X, [H, Y ] = −2Y, [X, Y ] = H.
Under the adjoint representation V , the only weights are ±α with
α(H) = 2. So, we have GZ = ZX ⊕ ZY ⊕ Z(H

2
). On the other hand,

the Lie algebra is isomorphic to G ′ = sl2 with H corresponding to(
1 0
0 −1

)
; under the natural representation, the weights are ±µ where

µ(H) = 1. Thus, G ′
Z = ZX ⊕ ZY ⊕ ZH.

0.3. Chevalley groups. Definition 9.
Let k be any field. Then, for G,H, V,M as above, one defines V k =
M ⊗k,Gk = GZ⊗k,Hk = HZ⊗kV k

µ = Mµ⊗k, kXk
α = ZXα⊗k, where

the tensoring is over Z.

Lemma 10.
(i) V k = ⊕µV

k
µ ,

(ii) Gk = kXk
α ⊕Hk, and every Xk

α ̸= 0, dimkHk = dimCG and dimCG.
This is immediate from corollary 7.

As the action of Xn
α

n!
on M is zero for large n, the action of T nXn

α

n!
on

M ⊗Z[T ] is zero as well for large n, where T is a variable. Thus, there

is an action of exp(TXα) :=
∑

n≥0 T
nXn

α

n!
on M ⊗ Z[T ] and hence, on

M⊗Z[T ]⊗k. Following this up with a homomorphism M⊗Z[T ]⊗k →
M⊗k = V k given by a specialization T 7→ t for some t ∈ k, we therefore
have an action of exp(tXα) on V k. The element exp(tXα) is also written
as Xα(t) and is clearly an automorphism of V k (the inverse corresponds
to −t). Indeed, it is clear that for each root α, the automorphism Xα(t)
is additive as a function of t ∈ k.
The Chevalley group over k with respect to the representation V is
defined to be the subgroup of Aut(V k) generated by Xα(t) for α ∈
Φ, t ∈ k.

1. Some relations in Chevalley groups

Before starting with chapter 6 of Steinberg’s notes, we recall some basic
facts on Chevalley groups which will be relevant for our study of the
Steinberg groups.

Let g be a complex, simple Lie algebra. Let Φ be its (irreducible, re-
duced) root system with respect to a Cartan subalgebra and let ∆ be
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the corresponding set of simple roots. Recall that a group of auto-
morphisms of g - called a Chevalley group - was constructed. It was
constructed with the help of a Chevalley basis of g. Recall that this
is a basis of the form {hα;α ∈ ∆} ∪ {eβ; β ∈ Φ} where hα = 2α

(α,α)
is

the co-root corresponding to α and eβ is a non-zero element in the root
space gβ and they satisfy the following properties:

[eα, e−α] = hα ∀ α ∈ Φ.

[hα, eβ] =< β, α > eβ ∀ α ∈ ∆, β ∈ Φ

where < β, α >= 2 (β,α)
(α,α)

are the Cartan integers.

[eα, eβ] = 0 if α + β ̸∈ {0} ∪ Φ.

[eα, eβ] = Nα,βeα+β if α + β ∈ Φ

where the structure constant Nα,β = ±(p+ 1) with p the largest inte-
ger with β − pα ∈ Φ.
The signs of the structure constants depend on the choice of the Cheval-
ley basis.

Let K be any field. For each root α in Φ and each t ∈ K, xα(t) :=
exp(t adeα) is an automorphism of g. These automorphisms generate
the Chevalley group G(Φ, K). The effect of these automorphisms on
the Chevalley basis is described as follows.
xα(t) leaves invariant, the 3-dimensional space spanned by eα, hα, e−α;

on this ordered basis it acts by the matrix

1 −2t −t2

0 1 t
0 0 1

.

If α, β are linearly independent roots, then

xα(t)(hβ) = hβ − t < α, β > eα

and

xα(t)(eβ) =
∑
i≥0

ti

i!
Nα,βNα,α+β · · ·Nα,(i−1)α+βeiα+β =

∑
i≥0

±ti
(
p+ i

i

)
eiα+jβ.

Chevalley showed that the elements xα(t) as α varies over Φ and t
varies over K, satisfy the following commutator relations:

xα(s)xα(t) = xα(s+ t)

[xα(s), xβ(t)] =
∏

iα+jβ∈Φ

xiα+jβ(Nα,β,i,js
itj)
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where the product is over roots of the form iα+ jβ with i, j ≥ 1.
Here, Nα,β,i,j are integers depending on the order of terms in the prod-
uct and the roots α and β but not on s, t.
The Chevalley commutator relations depend on the structure constants
only, as follows:

Nα,β,i,1 =
1

i!
Nα,βNα,α+β · · ·Nα,(i−1)α+β;

Nα,β,1,j =
−1

j!
Nβ,αNβ,α+β · · ·Nβ,(j−1)β+α.

In particular,

Nα,β,1,1 = Nα,β.

So, if α+ β is the only root of the form iα+ jβ (for instance, when Φ
is simply-laced = types ADE), we have

[xα(s), xβ(t)] = xα+β(Nα,βst).

Nα,β,3,2 =
1

3
Nα,βNα,β+αNα,β+2αNβ,β+3α if α + β < 2α + β;

Nα,β,3,2 =
−1

6
Nα,βNα,β+αNα,β+2αNβ,β+3α if α + β > 2α + β;

Nα,β,2,3 =
−1

3
Nβ,αNβ,α+βNβ,α+2βNα,α+3β if α + 2β < α + β;

Nα,β,2,3 =
1

6
Nβ,αNβ,α+βNβ,α+2βNα,α+3β if α + 2β > α + β.

Of course, if Φ has rank 1, the last commutator identity is vacuous; it
has the following analogue in case Φ has rank 1.
For t ∈ K∗, define wα(t) = xα(t)x−α(t

−1)xα(t) where Φ = {±α}. Then,
we have the relations:

wα(s)xα(t)wα(−s) = x−α(−s−2t)

We are going to discuss the beautiful work of Robert Steinberg in which
he shows that an abstract group defined by the above relations is an
analogue of a universal cover for the Chevalley group and the Chevalley
group itself is determined by these relations along with the additional
relations

hα(s)hα(t) = hα(st) ∀ s, t ∈ K∗

where hα(t) = wα(t)wα(1)
−1 for each α ∈ Φ.

M.R.Stein has generalized Steinberg’s results to commutative rings
with unity. Also, Vinay Deodhar generalized Steinberg’s results to
quasi-split groups over K.
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Let us discuss Steinberg’s results now. The proofs will depend crucially
on the Bruhat decomposition; so, we recall that first.

Consider a Chevalley group G := G(Φ, K) as above. Let N and H
denote, respectively, the subgroups of G generated by wα(t) and by
hα(t) as α varies in Φ and t varies in K∗. Further, if U denotes the
subgroup of G generated by xα(t) as varies over the positive roots and
t over K, and if we write B := UH, then we have:
(i) H normalizes U ;
(ii) H is normal in N and the quotient N/H can be identified with the
Weyl group W ; denote by wα the element of W corresponding to the
coset of wα(1);
(iii) G = ⊔w∈WUHnwU where, for each w ∈ W , nw is an arbitrary lift
in N ;
(iv) (Normal form of Bruhat decomposition)
Each element of UHnwU has a unique expression as uhnwv where u ∈
U and v is in the group generated by xα(t) as α varies over positive
roots such that w(α) < 0 and t varies in K;
(v) UH is the normalizer in G of U and also of UH;
(vi) N is the normalizer in G of H when |K| > 3.

The above properties are deduced from the following set of relations
which are well-known in the Chevalley group:

xα(s)xα(t) = xα(s+ t).

[xα(s), xβ(t)] =
∏

iα+jβ∈Φ

xiα+jβ(Nα,β,i,js
itj).

wα(s)xβ(t)wα(s)
−1 = xwα(β)(cs

−<β,α>t)

where c = ±1 depends on α, β but is independent of s, t;

wα(s)wβ(t)wα(s)
−1 = wwα(β)(cs

−<β,α>t)

with c same as above.

hα(s)xβ(t)hα(s)
−1 = xβ(s

<β,α>t).

hα(s)wβ(t)hα(s)
−1 = wβ(s

<β,α>t).

wα(s)hβ(t)wα(s)
−1 = hwα(β)(cs

−<β,α>t)hwα(β)(cs
−<β,α>)−1 = hwα(β)(t).

Also, the signs c(α, β) above satisfy:

c(α, β) = c(α,−β);

c(α, α) = c(α,−α) = −1;



11

c(α, β)c(α,wα(β)) = (−1)<β,α>;

c(α, β) = 1 if α + β ̸∈ Φ ∪ {0};
c(α, β) = c(β, α) = −1 if < α, β >= −1 =< β, α >;

c(α, β) = −1 if < α, β >= 0 , α± β ∈ Φ.

2. The Steinberg groups

Let Φ, K,G be as above. Consider the set X̂ of symbols x̂α(t) as α

varies in Φ and t varies in K. Define, for t ∈ K∗, symbols ŵα(t), ĥα(t)
in the obvious manner in terms of the various x̂β(s)’s.
The Steinberg group corresponding to Φ is defined to be the abstract
group St(Φ, K) =< X̂;R > where R is the set of relations:

x̂α(s)x̂α(t) = x̂α(s+ t) · · · (R1).

[x̂α(s), x̂β(t)] =
∏

iα+jβ∈Φ

x̂iα+jβ(Nα,β,i,js
itj) · · · (R2)

if Φ has rank > 1; or

ŵα(s)x̂α(t)ŵα(−s) = x̂−α(−s−2t) · · · (R2′)

if Φ has rank 1.
The numbers Nα,β,i,j are as in the Chevalley commutator relations
above and take values among ±1,±2,±3.
Clearly, there is a surjective homomorphism Π from St(Φ, K) toG(Φ, K)
which maps x̂α(t) to xα(t).
The first theorem of Steinberg we wish to prove is:

Theorem 1.
The following relations must also hold in St(Φ, K):

ŵα(s)x̂β(t)ŵα(−s) = x̂wα(β)(cs
−<β,α>t) · · · (R3)

where c = ±1 is the constant occurring in the analogous equality for
the Chevalley group G(Φ, K);

ĥα(s)x̂β(t)ĥα(s)
−1 = x̂β(s

<β,α>t) · · · (R4).

ŵα(s)ĥβ(t)ŵα(−s) = ĥwα(β)(cs
−<β,α>t)ĥwα(β)(cs

−<β,α>)−1 · · · (R5).

ĥα(s)ĥβ(t)ĥα(s)
−1 = ĥβ(s

<β,α>t)ĥβ(s
<β,α>)−1 · · · (R6).

ŵα(s)ŵβ(t)ŵα(−s) = ŵwα(β)(cs
−<β,α>t) · · · (R7)

ĥα(s)ŵβ(t)ĥα(s)
−1 = ŵβ(s

<β,α>t) · · · (R8).
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Before proving theorem 1, we recall two facts which have been proved
earlier in this workshop:

Fact I (Lemma 17): If S ⊂ Φ is a closed subset such that S∩−S = ∅,
then every element of the subgroup XS of G(Φ, K) generated by xα(t)
as α varies in S and t varies in K, can be expressed uniquely as a
product

∏
α∈S xα(tα) where the product is taken in any fixed order.

Fact II (Corollary to Lemma 33): If Φ has rank at least 2, then
any α ∈ Φ can be written as β + nγ for some β, γ in Φ and some
positive integer n > 0 such that Nβ,γ,1,n ̸= 0.
In fact, most of the time n = 1 itself works (see page 51).

Consequence of Fact I:
For any closed S ⊂ Φ with S ∩ −S = ∅, the homomorphism Π :
St(Φ, K) → G(Φ, K) maps the subgroup X̂S isomorphically to XS.
This is so because any element of St(Φ, K) can be reduced to a prod-
uct of the form

∏
α∈S x̂α(tα) using the commutator relations and any

element
∏

α∈S xα(tα) in XS has a unique such expression.

Proof of theorem 1.
We notice that (R4) to (R8) are consequences of (R1),(R2) and (R3).
Let us deduce (R3) from (R1) and (R2).
Clearly, the case α = −β reduces to that of α = β because ŵα(−t) is
the inverse of ŵα(t) and wα(α) = −α.
Therefore, assume α ̸= −β.
If α ̸= ±β, look at the closed set

S = {iα+ jβ ∈ Φ : j > 0}.

Write Xα and X̂α for XT and X̂T with T = {α}. Then, (R2) shows

that X̂S is normalized by the subgroups X̂α and X̂−α. Thus, by defini-
tion, ŵα(s) being in the subgroup generated by X̂α and X̂−α normalizes

X̂S as well. As we observed (consequence of fact I), X̂S maps isomor-
phically onto its image in G(Φ, K) and we need verify (R3) only in
G(Φ, K) where, of course, it is already observed.
Next, look at α = β.
If Φ has rank 1, then (R3) follows simply from (R2).
Assume Φ has rank > 1 and α = β. Then fact II recalled above shows
there exist roots β, γ such that

α = β + nγ
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with n > 0 and Nβ,γ,1,n ̸= 0.
Let us consider then the subset S of Φ consisting of iwα(β) + jwα(γ)
with i, j > 0. Now

[x̂β(s), x̂γ(t)] =
∏

iβ+jγ∈S

x̂iβ+jγ(Nβ,γ,i,js
itj)

has Nβ,γ,1,n ̸= 0.
Conjugating both sides by ŵα(u), and applying the case already treated
above, all terms on the right hand side (other than the one correspond-

ing to α) are known to belong to X̂S. Hence, we must have

ŵα(u)x̂α(Nβ,γ,1,nut
n)ŵα(−t) ∈ X̂S.

Once again, the proof of (R3) reduces therefore to the corresponding
assertion in G where it is known/easily verified.
The proof is complete.

3. Presentation for Chevalley groups

In this section, we use the Steinberg group to obtain a presentation for
the abstract group G(Φ, K). More precisely, we prove:

Theorem 2.
Consider the abstract group G̃ defined by the presentation < X̃;S >
where X̃ consists of symbols x̃α(t) as α varies over Φ and t varies over
K, and S = {R1, R2/R2′, T} where

x̃α(s)x̃α(t) = x̃α(s+ t) · · · (R1).

[x̃α(s), x̃β(t)] =
∏

iα+jβ∈Φ

x̃iα+jβ(Nα,β,i,js
itj) · · · (R2)

if Φ has rank > 1; or

w̃α(s)x̃α(t)w̃α(−s) = x̃−α(−s−2t) · · · (R2′)

if Φ has rank 1; and

h̃α(rs) = h̃α(r)h̃α(s) · · · (T ).
Here s, t vary in K∗. Also, w̃α(t), h̃α(t) etc. here are defined in the
obvious manner in terms of the generators in X̃. Then, G̃ is isomorphic
to the universal Chevalley group G(Φ, K).

As mentioned earlier, a crucial result to be used is a Bruhat decompo-
sition for the Steinberg group. We recall now how the Bruhat decom-
position for G carries over to St(Φ, K). We define Û in the obvious
way; that is, as the subgroup generated by x̂α(t) as α varies over the
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positive roots and t varies in K.
For each α, consider the reflection wα. We define ŵα := ŵα(1) ∈ St(Φ).
For each w ∈ W , the Weyl group, one may write

w = wα1 · · ·wαk

Define analogous elements n̂w ∈ St as

n̂w = ŵα1 · · · ŵαk
.

Recall that we have a surjective homomorphism Π from St to G which
takes x̂α(t) to xα(t). We claim:

Lemma 1 (Proposition+ Corollary 1 on P.39-40).
In the following, any quotient group of St(Φ, K) can be used although
we use the notations for the Steinberg group.
(i) Every element of Û can be written uniquely as

∏
α>0 x̂α(tα).

(ii) Every element of St(Φ, K) has a unique expression of the form

uhn̂wv for some w ∈ W with u ∈ Û , h ∈ Ĥ and v belonging to the
subgroup generated by x̂α(t) as α varies over positive roots which are
carried to negative roots by w and t varies in K.
(iii) Ker Π ≤ Z(St) ≤ Ĥ.
Proof.
We have already seen that (i) holds (consequence of fact I).
To see that (ii) is true, it is firstly clear that each element of St has an
expression of the form uhn̂wv (we can use (R3),(R4),(R5) as they hold
good in St by theorem 1).
Suppose uhn̂wv = u′h′n̂w′v′. Applying Π and noting the uniqueness of
the normal form of the Bruhat decomposition for G, and the isomor-
phism of Û with its image under Π, we have w = w′, u = u′ and v = v′.
Thus, we get h = h′ as well.
To prove (iii), take an element z of Ker Π and express it as in (ii).
Taking the image under Π and using uniqueness of the Bruhat normal
form, we obtain z ∈ Ĥ. We may write z =

∏k
i=1 ĥαi

(ti). As z is in
the center, it commutes with any x̂β(t) for any β and any t. But, the
relation (R4) gives

zx̂β(t)z
−1 = x̂β

(
(

k∏
i=1

t<β,αi>
i )t

)
.

Hence, applying Π, we have

xβ

(
(

k∏
i=1

t<β,αi>
i )t

)
= xβ(t)
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which gives
k∏

i=1

t<β,αi>
i = 1.

Therefore, z commutes with each x̂β(t), which shows that z is in the
center of St(Φ, K).

Finally, to show that Z(St) ≤ Ĥ, it suffices to show that Z(G) ≤ H

(because H = Π(Ĥ) and Ker Π ≤ Ĥ).
Let 1 ̸= c ∈ Z(G); write c = uhnwv in G with v in the subgroup
generated by all xα(t) where α varies over positive roots which are
carried to negative roots by w if w ̸= 1. If w ̸= 1, then choose α > 0
with w(α) < 0. Then cxα(1) = xα(1)c contradicts the uniqueness of
the normal form of the Bruhat decomposition.
Therefore, we must have c = uh. This is super-diagonal. But the
longest element w0 of W satisfies the property that nw0cn

−1
w0

is sub-
diagonal. These are equal (as c ∈ Z(G)); so u = 1 and thus x ∈ H.

Proof of theorem 2.
Clearly, we have a surjective homomorphism Π̃ : G̃ → G.
Moreover, theorem 1 shows that (R3),(R4),(R5),(R6),(R7),(R8) are
also satisfied by G̃ (as they are satisfied by St which surjects onto

G̃). Hence, for each root α, the subgroup H̃α generated by h̃α(t) as t
varies in K∗, is normalized by each H̃β for any root β (from (R5).

Claim: The subgroup H̃ generated by h̃α(t) as α varies over roots and t

varies in K∗ is expressible as
∏k

i=1 H̃αi
where α1, · · · , αk are the simple

roots.
We need to show that for each root β, H̃β is contained in the right hand
side. This follows by writing β as wαi for some w ∈ W and applying
induction on the length of w. Let 1 ̸= w and write w as a product of
simple reflections, say w = wα · · · where α is a simple root. We put
γ = wα(β). Then (R5) implies

h̃β(t) = w̃α(1)h̃wα(β)(c(−1)−<β,α>t)h̃wα(β)(c(−1)−<β,α>)−1w̃α(−1).

Using (R8), this can be rewritten as

h̃β(t) = h̃γ(c(−1)−<β,α>t)h̃γ(c(−1)−<β,α>)−1w̃α(t
−<β,α>)w̃α(−1).

The right hand side above belongs to H̃γH̃α.

Applying induction hypothesis, the subgroup H̃γ is contained in the

product
∏k

i=1 H̃αi
. The claim follows.

To continue with the proof of the theorem, look at an element z in
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the kernel of the surjection Π̃ : G̃ → G. By lemma 1 (applied to the
quotient group G̃ of St(Φ, K)), z ∈ H̃. Note also that the relation T

implies that, for any root α, any element of H̃α is of the form h̃α(t) for
some t ∈ K∗. Hence,

z =
k∏

i=1

h̃αi
(ti)

for some ti ∈ K∗. Applying Π̃, we have

1 =
k∏

i=1

hαi
(ti)

in G(Φ, K).
As this is the universal Chevalley group, each ti = 1 and so z =∏k

i=1 h̃αi
(1) = 1.

This proves that G̃ is isomorphic to G and hence, completes the proof
of theorem 2.

4. Over Finite fields

We saw in the previous section that the Steinberg group is a central ex-
tension of the universal Chevalley group for any irreducible root system
Φ and any field K. We prove in this section that if K is algebraic over
a finite field, the groups coincide! First, we begin with the following
definition and lemma over any field:

Definition (Symbols).
Fix any α ∈ Φ. For u, v ∈ K∗, the element

fα(u, v) = ĥα(u)ĥα(v)ĥα(uv)
−1

is called a symbol.
We will not discuss symbols in detail but they will be of significance
when the field K is local or global. The symbol will turn out to be
essentially independent of α.

In this section, we fix α and, for convenience of notation, do not write
the subscript in fα(u, v) (we write f(u, v) etc.), and also write h(t) in

place of ĥα(t), x(t) in place of x̂α(t) and y(t) in place of x̂−α(t). There
should be no confusion with the corresponding elements in G.
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Note that f(u, v) ∈ Ker Π ≤ Z(St) since the image is trivial in G.
Further, note that by definition, for t ∈ K∗,

w(t) = x(t)y(−t−1)x(t).

So, w(−t) = w(t)−1.
Further, by (R3),

w(t)x(u)w(t)−1 = y(−t−2u) , w(t)y(u)w(t)−1 = x(−t2u).

Hence, with t = u, we have

w(t)x(t)w(−t) = y(−t−1)

which gives

w(t) = y(−t−1)w(t)x(−t) = y(−t−1)x(t)y(−t−1)

Lemma 2.
f : K∗ ×K∗ → Z(St) satisfies:
(i) f(t, u2) = f(t, u)f(u, t)−1 = [h(t), h(u)] := h(t)h(u)h(t)−1h(u)−1;
(ii) f(t, u2v) = f(t, u2)f(t, v);
(iii) If f(u, v) = f(v, u), then f(u, v2) = f(v, u2) = 1;
(iv) If u = tm, v = tn for some t and integers m,n, then f(u, v) =
f(v, u);
(v) f(t, 1− t) = 1 if t ̸= 1.
(vi) (skew-symmetry) f(t,−t) = 1 for all t ∈ K∗.
Proof.
We first note that (R6) reduces (as α = β) to:

h(x)h(y)h(x)−1 = h(x2y)h(x2)−1.

(i) The above statement implies with x = t, y = u that

h(t)h(u)h(t)−1h(u)−1 = h(t)(h(u2t)h(u2)−1)−1

= h(t)h(u2)h(tu2)−1 = f(t, u2).

Clearly, the left hand side is also equal to f(t, u)f(u, t)−1.

(ii) f(t, u2v) = h(t)h(u2v)h(tu2v)−1

= h(t)h(u2v)

(
h(u)h(tv)h(u)−1h(u2)

)−1

(with x = u, y = tv)

= h(t)h(u2v)h(u2)−1h(u)h(tv)−1h(u)−1

= h(t)(h(u)h(v)h(u)−1)h(u)h(tv)−1h(u)−1

= h(t)h(u)h(v)h(tv)−1h(u)−1

= h(t)h(u)h(t)−1f(t, v)h(u)−1

= h(t)h(u)h(t)−1h(u)−1f(t, v)
(as we can push the central element f(t, v) to the end)



18

= f(t, u2)f(t, v) by (i).

(iii) This is immediate from (i).

(iv) h(u) = h(tm) = h(t)mx for some x ∈ KerΠ.
Similarly, h(v) = h(tn) = h(t)ny for some y ∈ KerΠ.
This implies [h(u), h(v)] = 1; that is, f(u, v) = f(v, u).

(v) Now f(t, 1− t) = h(t)h(1− t)h(t− t2)−1 = 1 if and only if

h(t)h(1− t) = h(t− t2).

Equivalently, we wish to prove

w(t)w(−1)w(1− t) = w(t− t2).

The LHS equals
w(t)y(1)x(−1)y(1)w(1− t)

=

(
w(t)y(1)w(−t)

)
w(t)x(−1)y(1)w(1− t)

=

(
w(t)y(1)w(−t)

)
w(t)x(−1)w(1− t)

(
w(1− t)−1y(1)w(1− t)

)
= x(−t2)w(t)x(−1)w(1− t)

(
w(t− 1)y(1)w(1− t)

)
= x(−t2)x(t)y(−t−1)x(t)x(−1)w(1− t)x(−(t− 1)2)

= x(t− t2)y(−t−1)x(t− 1)x(1− t)y(−(1− t)−1)x(−(t− 1)2)

= x(t− t2)y(−t−1 − (1− t)−1)x(−(t− 1)2) = w(t− t2)

since −t−1 − (1− t)−1 = −(t− t2)−1.

(vi) To show f(t,−t) = 1, we need to show h(t)h(−t) = h(−t2). Equiv-
alently, we need to check if

w(t)w(−1)w(t)−1 = w(−t2).

Now, the LHS equals

w(t)x(−1)y(1)x(−1)w(−t)

= (w(t)x(−1)w(−t))(w(t)y(1)w(−t))(w(t)x(−1)w(−t))

= y(t−2)x(−t2)y(t−2) = w(−t2).

This finishes the proof.

Theorem 3.
Let K be algebraic over a finite field. Then, Π is an isomorphism from
St(Φ, K) onto G(Φ, K).
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Proof.
We need only show that f(t, u) = 1 for all t, u.
Look at the finite subfield k generated by t, u. If t or u is a square in
k, this follows from lemma 2 (iii),(iv). In particular, the result follows
when K has characteristic 2.
Assume that both t, u are non-squares.
As k has odd characteristic (so, odd cardinality), there exist r, s ∈ k∗

such that r+ s = 1. Since the non-squares form the unique non-trivial
coset in k∗/(k∗)2, we have

t = x2r, u = y2s

So, f(t, u) = f(x2r, y2s) = f(r, s) = 1 by lemma 2.

5. Central extensions - generalities

Definition. A central extension is an exact sequence of groups

1 → A → E → G → 1

where the image of A is contained in the center of E.
For instance, for an abelian group A, the direct product of G and A
gives such a central extension.

A central extension as above is to be thought of as a way of extending
G by A. With this point of view, it is natural to call another such
central extension

1 → A → F → G → 1

equivalent to the first one if there is an isomorphism between E and
F giving a commutative diagram as in the figure. This is clearly an
equivalence relation. Also, any central extension is equivalent to one
in which the homomorphism from A to E is simply inclusion (exercise).

A central extension

1 → A → E → G → 1

is said to be split if it is equivalent to the trivial extension

1 → A → A×G → G → 1

The terminology comes because these are precisely the extensions for
which there is a splitting homomorphism from G to E giving the iden-
tity on G on composing it with the given surjection from E to G.

Natural examples of central extensions:
1 → K∗ → GLn(K) → PGLn(K) → 1 where K is any field and K∗
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sits as the scalar matrices in GLn(K).
1 → Zn(K) → SLn(K) → PSLn(K) → 1 where K is any field and
Zn(K) denotes the scalar matrices in SLn(K).
It should be noted here that Zn(K) is a finite subgroup of the group
of all n-th roots of unity in K.

Exercises.
(i) Let ρ : G → PGLn(C) be a homomorphism (also called a projective
representation of G). Show that it lifts to an actual representation from
G to GLn(C) if the central extension

1 → C∗ → π−1(ρ(G)) → ρ(G) → 1

induced by

1 → C∗ → GLn(C)
π→ PGLn(C) → 1

is split.
(ii) Show that any central extension is equivalent to one in which the
homomorphism from A to E is inclusion.
Hint: Given any central extension

1 → A
α→ E

π→ G → 1

choose any section s : G → E so that s(1) = 1 and π ◦ s = IdG.
Define f : G × G → α(A) by f(x, y) = s(x)s(y)s(xy)−1. Consider
the set F = A × G with multiplication defined by (a1, g1)(a2, g2) =
(a1a2α

−1(f(g1, g2)), g1g2) gives the central extension

1 → A → F → G → 1

where A → F is the inclusion a 7→ (a, 1).

Central extensions arise naturally in the context of projective repre-
sentations as seen in the exercise (i).

Let us see what the obstruction is to the existence of a splitting for a
given central extension

1 → A → E
π→ G → 1

One can, of course, choose some section i.e., set-theoretic splitting
s : G → E. Then, s is a group-theoretic splitting if f(x, y) :=
s(x)s(y)s(xy)−1 is the identity. Note that the values of f land in A, the
kernel of π. The map f : G×G → A is, in fact, a 2-cocycle where the
action of G on A is trivial. Moreover, the element defined in H2(G,A)
is independent of the choice of s (see exercise below). In other words,
there is a group-theoretic splitting precisely when the corresponding f
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gives the trivial element in H2(G,A). In particular, if H2(G,A) itself
is trivial, any central extension is trivial.
Notice that if

1 → A → E
π→ G → 1

is an exact sequence with A abelian, then G acts on A by means of the
inner automorphisms of E. In this way, even for a nontrivial action of
G, the cohomology group H2(G,A) characterises all extensions of G
by A i.e., exact sequences as above. In this more general situation, the
trivial element of H2 corresponds to the semi-direct product of G and
A.

Exercise.
If s is a set-theoretic splitting of a central extension

1 → A → E
π→ G → 1

then show that fs : G × G → A ; (x, y) 7→ s(x)s(y)s(xy)−1 is an ele-
ment of Z2(G,A) for the trivial action of G on A.
Further, if t is any other splitting, then fs = ft in H2(G,A).
Hint: The proof of the first part was already given as a part of a
hint. For the second part, note that if s, t are two splittings, then for
any x ∈ G, the element s(x)−1t(x) ∈ A i.e., is central. So, f−1

s ft as
an element of Z2(G,A) is given by (x, y) 7→ α(x)α(y)α(xy)−1 where
α : G → A with α(x) = s(x)−1t(x). Here, one has used the fact that
s(x)t(x)−1 = t(x)−1s(x) which holds good because s(x) = at(x) for
some a ∈ A.

Calculating central extensions of finite groups.

Given a finite presentation < X | R > for a group G there is a canonical
central extension induced. This is

1 → R/[F,R] → F/[F,R] → G → 1

Here, we have used R to denote also the normal subgroup of F = F (X)
generated by the relations R. The context will make it clear whether
one is talking about the normal subgroup R or the set of relations R.
Moreover, if G is finite, it is easy to see that the finitely generated
abelian group R/[F,R] is isomorphic to the direct product of Zn and
the finite subgroup ([F, F ] ∩R)/[F,R] where n = rank(F ).

We noted that the notion of central extensions is an algebraisation
of the notion of covering spaces. In covering space theory, one has
the universal covers which have no nontrivial covers themselves. The
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corresponding notion here is that of universal central extensions (ab-
breviated u.c.e).
A central extension

1 → A → E
π→ G → 1

is universal if for any other central extension

1 → B → E ′ π′
→ G → 1

there is a unique homomorphism θ : E → E ′ so that π = π′ ◦ θ. By the
requirement of a unique θ, it follows that if there is a u.c.e of G, then
it is unique upto equivalence. Sometimes, one simply writes (π,E) for
the u.c.e. and Ker(π) is called the Schur muliplier of G.

Lemma 3.
(a) If (π,E) is a u.c.e of G, then E = [E,E] and [G,G] = G.
(b) If G = [G,G], there exists a u.c.e of G.

Proof
Look at the extension

1 → B → E ′ π′
→ G → 1

where E ′ = E × E/[E,E] and π′(x, y) = π(x). This is clearly a cen-
tral extension. Moreover, the two homomorphisms θ1(x) = (x, 1) and
θ2(x) = (x, x[E,E]) from E to E ′ satisfy π = π′ ◦θi. By the uniqueness
of such a map, one has θ1 = θ2 i.e., E = [E,E]. The last assertion that
G = [G,G] then follows trivially. This proves (a).
We construct a u.c.e when G = [G,G]. Consider the group E defined
by generators s(g) for each g ∈ G and the relations

[s(x)s(y)s(xy)−1, s(z)] ; x, y, z ∈ G.

The map s(g) 7→ g extends to a homomorphism π : E → G. Let
us denote the central element s(x)s(y)s(xy)−1 of E by t(x, y) for sim-
plicity. Suppose w ∈ Ker(π). Write w = s(x1)s(x2) · · · s(xn). Then,
x1 · · · xn = 1. Moreover, w = t(x1, x2)s(x1x2)s(x3) · · · s(xn). By induc-
tion on n, it follows that w = cs(x1 · · · xn) = c where c is a central
element. Thus, (π,E) is a central extension.
Next, we need to know that for any other central extension

1 → A → E ′ π′
→ G → 1

there is a homomorphism θ : E → E ′ such that π = π′ ◦ θ. For this,
let us pick any arbitrary lifts s′(g) ∈ E ′ of g ∈ G. Since t′(x, y) :=
s′(x)s′(y)s′(xy)−1 ∈ Ker(π′) ≤ Center(E ′), for any x, y ∈ G, the re-
lations [t′(x, y), s′(z)] = 1 hold good for all x, y, z ∈ G. This means
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that the map s(g) 7→ s′(g) extends to a homomorphism θ : E → E ′.
Evidently, π = π′ ◦ θ from the very definition.
But, θ may not be the unique such homomorpism i.e., (π,E) may not
be universal. To get around this, one considers F = [E,E] and the
restriction πF of π to F . Since π(F ) = [π(E), π(E)] = [G,G] = G as
given, one has a central extension (πF , F ) of G. If θ1 and θ2 are two
homomorphisms from F to E ′ such that πF = π′ ◦ θ1 = π′ ◦ θ2, then
θ1(x)θ2(x)

−1 ∈ Ker(π′) ≤ Center(E ′). Thus, α : x 7→ θ1(x)θ2(x)
−1

is a homomorphism from F to an abelian group. Now, π(E) = G =
[G,G] = π([E,E]) shows that E = [E,E]Ker(π) = FKer(π). Hence,
[E,E] = [F, F ] as Ker(π) is central in E. Thus, F = [F, F ] i.e., α is
trivial and so θ1 = θ2. This completes the proof of the lemma.

Exercises.
If (π,E) is a u.c.e of G, then prove :
(i) that (Id, E) is a u.c.e of E, and
(ii) that every projective representation of G can be lifted uniquely to
an actual representation of E.
(iii) For any abelian group A, one has H2(G,A) ∼= Hom(SchG,A)
where SchG is the Schur multiplier of G.
Hint : E is perfect and does not admit nontrivial central extensions.

Topological central extensions

Let us consider a topological group G which is locally compact and
second countable. Then, another such topological group E is said to
be a topological central extension of G by a group A if there is a central
extension

1 → A → E
σ→ G → 1

with A closed in E, σ continuous and inducing an isomorphism E/A →
G of topological groups.

Mackey and Moore showed that on equivalence classes of topological
central extensions there is a natural multiplication under which the
group becomes isomorphic to H2

m(G,A) where the cocycles are defined
in terms of Borel-measurable cochains. Thus, for a connected topo-
logical group, covering space theory can be seen in terms of central
extensions. To develop a ‘covering space theory’ for other types of
groups like the p-adic Lie groups, the notion of topological central ex-
tensions proves very useful.
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The correct analogue of G = [G,G] (which was the condition for the
existence of a u.c.e) in covering space theory is the connectedness of
G. A covering E → G of connected topological groups is a topological
central extension.

6. Steinberg is universal

We prove that St(Φ, K) is the u.c.e. of G(Φ, K). We give a proof which
is valid for fields with at least 5 elements (and also avoid the field of 9
elements when Φ has rank 1).

Theorem 4.
Let |K| > 4 (and |K| ̸= 9 when Φ has rank 1. Then, Π : St(Φ, K) →
G(Φ, K) defines a u.c.e.
Here, G is the universal Chevalley group.
Proof.
Noting that [ĥα(a), xα(t)] = x((a2−1)t), it follows that we may choose
a ̸= 0, 1,−1 when |K| > 4, and so the groups St and G are perfect.
Hence, we only need to prove that St has no nontrivial central exten-
sions. As any central extension of St gives a central extension of G
itself, the idea of the proof is to show that for a central extension E
of G, the relations (R1), (R2/R2’) can be lifted. Consider any central
extension π : E → G. The crucial fact to be used is:
The commutator of two arbitrary lifts in E of elements of G is a well-
defined element.
Denote C = Kerπ.
Choose a ̸= 0, 1,−1 in K; we noted that

[hα(a), xα(t)] = x((a2 − 1)t)

in G, for any α and t.
Define ϕ : G → E such that:
ϕ(xα(t)) is a lift of xα(t) to E and ϕ(wα(t)), ϕ(hα(t)) etc. in terms of
ϕ(xα(t)) etc. so that the following property holds:

[ϕ(hα(a)), ϕ(xα(t))] = ϕ(xα((a
2 − 1)t)) · · · (♠)

Note that this is not a cyclic definition because of the observation on
commutator lifts made above.
In this manner, we may define ϕ on all of G.

Take any h ∈ H; write hxα(t)h
−1 = xα(dt) for some d ∈ K∗ which

depends on h and is independent of α, t etc.
Conjugating (♠) by ϕ(h), and remembering that commutator does not
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depend on the choice of lifts, we get

[ϕ(hα(a)), ϕ(xα(dt)] = ϕ(h)ϕ(xα((a
2 − 1)t))ϕ(h)−1

Thus,

ϕ(xα((a
2 − 1)dt)) = ϕ(h)ϕ(xα((a

2 − 1)t))ϕ(h)−1

The LHS also equals

ϕ(hxα((a
2 − 1)t))h−1)

so that we have (as (a2 − 1)t runs through arbitrary elements in K∗),

ϕ(h)ϕ(xα(u)ϕ(h)
−1 = ϕ(hxα(u)h

−1).

Similarly, we have

ϕ(n)ϕ(xα(u)ϕ(n)
−1 = ϕ(nxα(u)n

−1)

for all n ∈ N .
The last assertion also shows that if Φ has rank 1, then ϕ respects the
relation (R2’).

Claim: If α, β are roots with α + β is not a root and not zero also,
then the commutator

[ϕ(xα(t)), ϕ(xβ(u))] = 1.

Call this commutator g(t, u). Note that clearly g is bi-additive. The
claim is equivalent to showing that g is the constant map 1.

To prove the claim, we shall repeatedly use the relation

hα(t)xβ(u)hα(t)
−1 = xβ(t

<β,α>u) · · · (♡)

Consider firstly the case when α ̸= β.
If (α, β) = 0, then by conjugating the central element

g(t, u) = [ϕ(xα(t)), ϕ(xβ(u))]

by ϕ(hα(v)), we obtain by (♡) that

g(t, u) = [ϕ(hα(v))ϕ(xα(t))(ϕ(hα(v)))
−1, ϕ(hα(v))ϕ(xβ(u))(ϕ(hα(v)))

−1]

= [ϕ(xα(v
2t)), ϕ(xβ(u))] = g(v2t, u)

since (α, β) = 0.
Thus, g(t(1− v2), u) = 1 which gives on choosing some v ̸= ±1 that

g(x, u) = 1 ∀ x, u.

If (α, β) > 0, then choosing h = hα(v
2)hβ(v

−<β,α>), we obtain

g(tvd, u) = g(t, u)
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where d = 4− < α, β >< β, α >= 1, 2 or 3.
Hence g(t(1 − vd), u) = 1 for some d ∈ {1, 2, 3}. As |K| > 4, we can
choose v with 1 ̸= vd. Once again, we get g ≡ 1.

Now, look at the case α = β.
Firstly, assume that the rank of Φ is > 1.
If Φ is not of type Cn, there is always a root γ so that < α, γ >= 1.
Choosing h = hγ(v) and applying

ϕ(h)ϕ(xα(u)ϕ(h)
−1 = ϕ(hxα(u)h

−1)

we obtain
g(tv, uv) = g(t, u).

Therefore, for v satisfying v − v2 ̸= 0, 1, we get

g(t(v−v2), u) = g(t,
u

v − v2
) = g(t,

1

v
)g(t,

1

1− v
) = g(tv, u)g(t(1−v), u) = g(t, u)

Thus, g(t(1 − v + v2), u) = 1 and hence by the choice of v, we again
have

g ≡ 1.

If Φ is of type Cn, one may write α = δ + 2β.
By explicit computation in C2 (lemma 33) - this was used also in the
“consequence of fact I” - we have

[xδ(t), xγ(u)] = xδ+γ(±tu)xδ+2γ(±tu2).

Thus, we obtain

[ϕ(xδ(t)), ϕ(xγ(u))] = cxδ+γ(±tu)xδ+2γ(±tu2)

for some c ∈ Kerπ.
By the cases of the claim already proved above, ϕ(xα(v)) commutes
with each of the factors other than possibly the last, it must commute
with the last one also, which proves our claim in the case when Φ has
type Cn and n > 1.

Finally, consider the case when the rank of Φ is 1 and α = β.
If |K| is a prime, then g ≡ 1 since xα(t) and xα(u) are both powers of
the element xα(1). Thus, we assume |K| is not prime.
Using h = hα(v), we have by (♡) that

g(tv2, uv2) = g(t, u).

The argument given above (for α = β and Φ of type other than Cn and
if rank > 1) implies that it suffices to get hold of non-zero v such that
v − v2 ̸= 0, 1 and, in addition, v and 1 − v are both squares (because
there we had g(t, u) = g(tv, uv) for all v whereas here we have it only
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for squares).
This is clearly possible when K is finite of characteristic 2 (because
every element is a square).
Otherwise, choose v = ( 2x

1+x2 )
2. Then, since we have |K| ≥ 25 (this is

why we avoided |K| = 9), it can be checked that there are at least 12
values of x with the desired properties v − v2 ̸= 0, 1. This completes
the proof of the claim.

Now, we show that the relations (R1),(R2/R2’) are respected by ϕ.
By the claim above, the element

z = ϕ(xα(t(a
2 − 1)−1)ϕ(xα(u(a

2 − 1)−1)ϕ(xα((t+ u)(a2 − 1)−1)−1

is in Ker π.
Conjugating this central element by ϕ(hα(a)), the above observations
imply that

z = zϕ(xα(t)ϕ(xα(u))ϕ(xα(t+ u))−1

which means that (R1) holds in E.

Now, look at (R2). We have

ϕ(xα(t))ϕ(xβ(u))ϕ(xα(t))
−1 = g(t, u)

( ∏
iα+jβ

ϕ(xiα+jβ(Nijt
iuj)

)
ϕ(xβ(u)).

We need to prove that g ≡ 1. Look at the number k of roots in the
above product. If k = 0, then we have shown above that g ≡ 1. We
apply induction on k. Now, the induction hypothesis and the fact that
ϕ respects (R1) implies that g is bi-additive. Once again, we may apply
the method used in proving the above claim.
The proof is complete.

7. Moore’s description of Schur multiplier

We have seen that the Steinberg group is the u.c.e. of the universal
Chevalley group G and the kernel of the surjection Π can be identi-
fied with the Schur multiplier of G. We have seen that this is trivial
when K is a finite field. While proving that, we noticed that certain
2-cocycles f(u, v) played a key role. In general, Moore and Mastumoto
described the Schur multiplier in the following fashion:

Theorem 5 (Moore-Matsumoto).
Let α be a long root. Then, the function

f : K∗ ×K∗ → KerΠ;
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(u, v) 7→ ĥα(u)ĥα(v)ĥα(uv)
−1

defines an isomorphism between KerΠ and the abstract generated by
all symbols f(u, v) with the relations:
(a) f is a 2-cocycle; f(u, 1) = 1 = f(1, v);
(b) f(u, v) = f(v−1, u);
(c) f(u, v) = f(u,−uv);
(d) f(u, v)f(u,−v−1) = f(u,−1);
(e) f(u, v) = f(u, (1− u)v);
(f) When Φ has type other than Cn; f is bi-multiplicative.

In the proof, the fact that it suffices to stick to a single long root to
describe KerΠ, and the fact that the mapping from the abstract group
to Ker Π is a surjective homomorphism are fairly easy (see pages 87-88).
The injectivity requires more work.

8. K2(Z) has order 2

As mentioned earlier, Steinberg’s results have been generalized by M.R.Stein
to all types of root systems over any commutative rings. We discuss
only the case of type An and the ring Z. However, we define the Stein-
berg group over a general ring - it will be useful to study this group
over the finite rings Z/kZ as it leads to some applications over Z.

Definition.
Let R be any commutative ring (with unity 1 ̸= 0).
For n ≥ 3, define the Steinberg group Stn(R) to be generated by the
symbols xij(t) for i ̸= j and t ∈ R, subject to the following relations:

t 7→ xij(t) are homomorphisms such that

[xij(t), xjk(u)] = xik(tu) if i ̸= k

[xij(t), xkl(u)] = 1 if j ̸= k , i ̸= l

For n = 2, St2(R) is defined by the generators x12(t), x21(u) where
x12, x21 are homomorphisms subject to the relations

w12(t)x12(u)w12(−t) = x21(−t−2u)if t ∈ R∗

w21(t)x21(u)w21(−t) = x12(−t−2u)if t ∈ R∗

where for any n ≥ 2 and i ̸= j, wij(t) = xij(t)xji(−t−1)xij(t).

As we saw over fields, a Bruhat decomposition for the Steinberg group
was vital to the discussion. To carry this over to rings, we need rings
with many units. We discuss rings like Z/prZ which are actually gen-
erated by the units. The ring Z is much harder to study!



29

Theorem 6.
For n ≥ 3 and k ≥ 1, the group SLn(Z/kZ) is generated by the n(n−1)
elementary matrices Xij; i ̸= j subject to the relations

[Xij, Xjk] = Xik if i ̸= k

[Xij, Xkl] = I if j ̸= k , i ̸= l

Xk
12 = I

(X12X
−1
21 X12)

4 = I

The last relation is redundant unless 4 | k.
Proof.
First, suppose that the asserted presentation holds for SLn(Z/p

r) for
prime powers. Now, by the Chinese remainder theorem, if k = pr11 · · · prss ,
then SLn(Z/k) ∼=

∏s
i=1 SLn(Z/p

ri
i ). Each SLn(Z/p

ri
i ) has a presenta-

tion < Fi|Ri > with Fi consisting of certain symbols x
(i)
jk for j ̸= k

such that (x
(i)
jk )

p
ri
i = 1. Then, a presentation for

∏s
i=1 SLn(Z/p

ri
i ) is

obtained by the generators

(x
(1)
jk , 1, · · · ), (1, x

(2)
jk , 1, · · · ), · · · , (1, · · · , 1, x

(s)
jk ).

Call their product fjk. Now, apr11 − bq1 = 1 for some a, b where

q1 = k/pr11 . Then, f−bq1
jk = (x

(1)
jk , 1, · · · , 1). Thus, the elements fjk for

j ̸= k generate
∏s

i=1 SLn(Z/p
ri
i ). Mapping the fjk to the elementary

matrices xjk, it follows that the presentation holds good for SLn(Z/k)
for a general k once it is known for prime powers.
From now on, we consider SLn(Z/p

r) for a prime p and n ≥ 3. Con-
sider the corresponding Steinberg group Stn(Z/p

r). Write L and U
respectively, for the subgroup generated by xij, i > j and that gen-
erated by xij, i < j. Also, denote by W , the subgroup generated by
wij(t) for t a unit and i ̸= j. Then, we have the following Bruhat-type
decomposition in Stn(Z/p

r):

Claim.
For any n ≥ 2 and any prime p, Stn(Z/p

r) = LUW .

The following calculation will prove useful :

Exercise.
Let A be any commutative ring and u, v be units. Then, in Stn(A), we
have for any i ̸= j,

xij(−u)xji(u
−1(1− v))xij(u) =

xji(u
−1(v−1 − 1))hij(uv)hij(u)

−1xij(u(1− v−1)) =
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xji(−u−1)xij(u(v − 1))xji(u
−1).

Proof of claim
We first note that Stn(Z/p

r) is generated by

xi+1,i , wi+1,i , 1 ≤ i ≤ n− 1.

This is clear from the commutator relations [xij, xjk] = xik and the
relation wijxijw

−1
ij = x−1

ji . So, we need only show that LUW is stable

under left multiplication by any x±
i+1,i and by any w±

i+1,i. The first is

evident. Also, w±
i+1,iLUW = x±

i+1,ix
∓
i,i+1LUW ; thus it suffices to prove

that x±
i,i+1LUW ⊆ LUW .

Start with any g ∈ x±
i,i+1LUW We can write g = xe

i,i+1x
a
i+1,iluw with

e = ±1, a ∈ Z, l ∈ Li+1,i where Li+1,i consists of those elements of L
which can be written as products of xjk with j > k other than xi+1,i.
We shall use the first equality in the exercise to conclude that xe

i,i+1x
a
i+1,i =

x∗
i+1,ihx

∗
i,i+1 for some h which is a product of hi,i+1(v) for some suitable

unit u. This is valid if 1 + ea is a unit i.e., if a ̸≡ −e−1 mod p.
This is one place where we use the existence of sufficiently many units
in the ring.
Therefore, for such a, we get g ∈ LUW because h normalises each
< xjk > and xi,i+1 normalises Li+1,i.
Now, we are left with the case a ≡ −e−1 mod p. Let us write e = −a−1+

tp for some integer t. Then, g = x−a−1+tp
i,i+1 xa

i+1,iluw = xtp
i,i+1x

−a−1

i,i+1 x
a
i+1,iluw.

Using x−a−1

i,i+1 x
a
i+1,i = x−a

i+1,iwi+1,i(a), we get g = xtp
i,i+1x

−a
i+1,iwi+1,i(a)luw =

xtp
i,i+1x

−a
i+1,il

′wi+1,i(a)uw for some l′ ∈ Li+1,i since wi+1,i(.) normalises

Li+1,i. Putting u = x∗
i,i+1u1 for some u1 ∈ U i,i+1, we get

g = xtp
i,i+1x

−a
i+1,il

′x∗
i+1,iu

′w

as wi+1,i(.) normalises U i,i+1 and conjugates xi,i+1 to x−1
i+1,i.

But, we can rewrite xtp
i,i+1x

−a
i+1,i as x

∗
i+1,ihx

rp
i,i+1 for some integer r. So,

g = x∗
i+1,il0x

rp
i,i+1x

b
i+1,iu0w0 for some integer b, some l0, u0 in Li+1,i, U i,i+1

respectively, and w0 ∈ W . Therefore, it suffices to show that g0 =
xrp
i,i+1x

b
i+1,iu0w0 ∈ LUW .

This is immediate if b is a unit. If b = mp, then xrp
i,i+1x

mp
i+1,iu0w0 =

xi,i+1x
rp−1
i,i+1x

mp
i+1,iu0w0 = xi,i+1x

tp
i+1,ihx

∗
i,i+1u0w0 by the first part of the

lemma. Once again, one can apply the first equality to rewrite the first
two terms above and thereby obtain g0 ∈ LUW . This completes the
proof of the Bruhat-like decomposition claimed.

Let us continue with the proof of the theorem.
Let θ : Stn(Z/p

r) → SLn(Z/p
r) be the natural homomorphism.
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Note that the conjugate of a Steinberg generator xij(u) by any w ∈ W
is again of the form xkl(v)

±, and so, Ker(θ) ∩ W is central. We shall
show, in fact, that Ker(θ) ≤ W . Let h ∈ Ker(θ). Writing h = luw, we
get θ(l)θ(u)θ(w) = I. This gives θ(l) = 1 = θ(u) since an expression
x = ym in SLn with x lower triangular unipotent, y upper triangular
unipotent and w monomial necessarily implies that x = y = m = I.
Thus l = u = 1 since θ is an isomorphism on L and on U . So Ker(θ) ≤
W , and θ(W ) is the group of monomial matrices. Thus, we have shown
that Ker(θ) ≤ W . Therefore, Ker(θ) is central.

We prove now a result which is valid for a general commutative ring
R. First, we introduce a notion and a notation in Stn(R).
A Steinberg symbol is an element of Stn(R) of the form

hij(uv)hij(u)
−1hij(v)

−1 , i ̸= j

where u, v are units. Note that if we take u = v = −1, then wij(1)
4 is

a symbol for any i ̸= j. The symbols have remarkable properties when
n ≥ 3.
For instance, hij(uv)hij(u)

−1hij(v)
−1 = [hik(u), hij(v)] for any k differ-

ent from i, j.
This immediately makes it clear that since the symbol is a central ele-
ment, it is fixed under conjugation and therefore, it is independent of
the choice of the distinct indices i, j, k. One suppresses the hij’s and
writes {u, v} for the symbol. Thus, it is obvious that the symbol is
skew-symmetric and bilinear.

Lemma 4.
For any commutative ring R, consider the kernel C of the homomor-
phism from Stn(R) onto En(R). Then the central subgroup C ∩W of
Stn(R) is generated by Steinberg symbols.
Proof
The subgroup H generated by hij(u) is normal in W . In W/H, one has
relations wij(u) = wij(1) for every unit u. One can call this common
class simply as wij. If x = wi1,j1(u1) · · ·wiljl(ul) ∈ C ∩ W , one has
x ≡ wi1,j1 · · ·wiljl mod H. One can use the conjugation formulae to
push all the terms of the form w1r to the beginning. Moreover, w2

1r = 1
mod H and w1rw1sw1r = wrs for r ̸= s. Thus, we can cancel off the
w1r’s one or two at a time. After this is done, if there is a single w1r

left, it cannot map to the identity in SLn(R). Similarly, we can do
with the elements of the form w2s and so on to get c ∈ H.
If D denotes the subgroup generated by the symbols, then clearly one
has hij(uv) ≡ hij(v)hij(u) ≡ hij(u)hij(v) mod D. Let us write c as
a product of elements of the form h1r(u)

± which we can do again by
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the conjugation relations. Then, c ≡ h12(u1) · · ·h1n(un−1) mod D for
certain units ui.
As h12(u1) · · ·h1n(un−1) maps to the diagonal matrix

diag(u1 · · ·un−1, u
−1
1 , · · · , u−1

n−1)

while c maps to the identity element, it follows that c ∈ D. This proves
the lemma.

Exercises.
Let R be any commutative ring and n ≥ 3. Prove:
(i) For i ̸= j, the Steinberg symbol hij(uv)hij(u)

−1hij(v)
−1

equals the commutator [hik(u), hij(v)] for any k different from i, j.
(ii) The symbol {u, v} is skew-symmetric and bilinear in u, v.
(iii) {u, 1− u} = 1 for all units u.

The theorem on the presentation of SLn(Z/k) would follow if we could
compute for each prime power pr, the subgroup D(n, pr) of Stn(Z/p

r)
generated by the symbols. This is the contention of the following:

Lemma 5.
Let n ≥ 3. If p is odd, then D(n, pr) is trivial.
If p = 2 and r ≥ 2, then D(n, 2r) is the cyclic group generated by the
symbol {−1,−1}.
Proof
The main idea of the proof is the fact that the group of units of Z/pr

is cyclic if p is odd; for this reason the proof works for the finite fields
also (see corollary below). As Z/2r is not cyclic if r ≥ 3, the proof is in
this case is slightly more cumbersome. We follow a computation due
to M.R. Stein in this case.
Consider first the odd prime case. Now, an integer a is a square mod
pr if, and only if, it is a square mod p. Look at the homomorphism
u 7→ 1 − u from (Z/p)∗ \ 1 to itself. As there are exactly (p − 1)/2
nonsquares, one of them has to map to a nonsquare; otherwise the
(p− 1)/2 squares that the nonsquares map to will together with 1 give
(p + 1)/2 squares in (Z/p)∗. Thus, there is a unit u ∈ Z/pr such that
both u and 1 − u are nonsquares in Z/pr. If λ is a generator of the
cyclic group (Z/pr)∗, then u = λr, 1 − u = λs for some odd r, s. As
the symbol is bilinear, we have {u, 1 − u} = {λ, λ}rs. But, we know
from the exercise that for any unit v, {v, 1− v} = 1. Therefore, we get
{λ, λ}rs = 1. But, by skew-symmetry, {λ, λ}2 = 1. As rs is odd, we
get {λ, λ} = 1 and so D(n, pr) = 1 if p is odd.
If p = 2, we show that D(n, 2r) = D(n, 4) for all r ≥ 2. This will com-
plete the group because evidently, D(n, 4) is generated by {−1,−1}.
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We notice for further use that (Z/2r)∗ is generated by the two units
5 and −1. To show that D(n, 2r+1) = D(n, 2r) for all r ≥ 2, we no-
tice that for any integer u = 1 + 2u1 + · · · + 2rur < 2r+1 which is
a unit mod Z/2r+1, either ur = 0 or ur = 1. In the second case,
u ≡ (1 + 2r)(1 + 2u1 + · · · + 2r−1ur−1) mod 2r+1. Thus, by the bi-
linearity of the symbol, it suffices to show that {1 + 2r, u} = 1 for

any unit in Z/2r+1. Now, 1 + 2r ≡ 52
r−2

mod 2r+1 for all r ≥ 2.

Now, {1 + 2r,−1} = {1 + 2r, 1 + 2r} = {1 + 2r, 5s} = {1 + 2r, 5}2r−2
.

Thus, it suffices to prove that {1 + 2r, 5} = 1. But, this is just

{52r−2
, 5} = {5, 5}2r−2

= 1 if r ≥ 3. Finally, if r = 2, we must show
that {5, u} = 1 for any unit u of Z/8. As the units are ±5,±1, and as
{5, 1} = 1 = {5,−5}, we need only show that {5,−1} = {5, 5}−1 = 1.
We leave it as an exercise.

Recall that Stn(Z) is generated by elements xij for i ̸= j. We also
denote by wij the element wij(1).

Lemma 6.
For any n ≥ 2, let Wn denote the group generated by wij, i ̸= j. Then,
Ker(ϕn) ∩Wn is a central subgroup of Stn(Z) if n ≥ 2.
Proof
This is easy to see; also, every element w ∈ Wn conjugates any Stein-
berg generator xij to some x±1

kl .

Theorem 7.
For n ≥ 3, SLn(Z) is generated by the n(n − 1) elementary matrices
Xij for i ̸= j subject to the relations

[Xij, Xjk] = Xik if i ̸= k

[Xij, Xkl] = I if j ̸= k , i ̸= l

(X12X
−1
21 X12)

4 = I

For SL2(Z), one has an analogous presentation by two generators X12,
X21 and two relations

X12X
−1
21 X12 = X−1

21 X12X
−1
21

(X12X
−1
21 X12)

4 = I

Idea of the proof.
Let us lead to the proof in easy steps.
We shall show that

1 → Cn → Stn(Z)
ϕn→ SLn(Z) → 1
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is a central extension and that Cn is a cyclic group, which is generated
by the element (x12x

−1
21 x12)

4.

This will be done in two steps:
(i) Cn ⊆ Wn, and hence, central,
(ii) Cn is cyclic, generated by w4

12 where w12 = x12x
−1
21 x12.

For each n ≥ 2, there is an action of Stn(Z) on Zn on the right by
means of the homomorphism ϕn : Stn(Z) → SLn(Z). Define a norm
on Zn by ∥ (a1, · · · , an) ∥=| a1 | + · · ·+ | an |. The subgroup Wn of
Stn(Z) generated by the elements wij clearly preserves the norm. As
we mentioned earlier, in the absence of a Bruhat-type of decomposition
for Stn(Z), one looks for some sort of normal form for the elements of
Stn(Z). This is provided by the following lemma due to Silvester:

Lemma 7.
For any n ≥ 2, every element in Stn(Z) has an expression as a product
x1 · · · xrw with w ∈ Wn and each xk one of the x±1

ij in such a way that

∥ ex1 ∥≤∥ ex1x2 ∥≤ · · · ∥ ex1x2 · · · xr ∥
where e = (0, 0, · · · , 1).
Proof
The proof uses an appropriate induction hypothesis although it is some-
what laborious to carry out. The deviation from monotonicity of the
sequence θi =∥ ex1x2 · · · xi ∥ is measured by a pair (λ, µ) of posi-
tive integers defined as follows. If 1, θ1, · · · , θr is monotonic i.e., if
1 = θ0 ≤ θ1 ≤ · · · · · · ≤ θr, set λ = µ = 1. If the sequence is not
monotonic, look at those i ≥ 0 for which θi > θi+1 and set λ to be the
maximum value of θi. Of course, λ could equal θi for several i, and
one sets µ to be the maximum i for which λ = θi. One can order the
pairs (λ, µ) lexicographically as though they were two-digit numbers.
With this set-up, the proof of Silvester’s lemma proceeds by showing
that each word x1 · · · xrw with (λ, µ) > (1, 1) can be altered by the
Steinberg relations so that (λ, µ) is decreased. This is done as follows.
Now, λ = θµ > θµ+1 since (λ, µ) > (1, 1). Obviously, µ ̸= 0. We may
assume, by renaming the Steinberg generators that xµ = x±

12. More-
over, if xµ = x−1

12 , one could conjugate each xl by w12, replace e by the
vector ew−1

12 and w by w12w so that xµ = x21. So, we may assume that
xµ = x12.
Write ex1 · · · xµ = (a, b, c, · · · ) ∈ Zn. Hence ex1 · · · xµ−1 = (a, b −
a, c, · · · ). Thus, xµ−1 ≤ xµ can be rephrased as | b− a |≤| b |.
Equivalently, | a |≤ 2 | b |, and ab > 0 unless a = 0.
Let xµ+1 = x±

ij. We shall argue depending on the various choices of i, j.
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We outline the proof in some cases and leave the other cases which can
be dealt with on the same lines.
First, if xµ+1 = xµ = x12, then (a, b, c, · · · )xµ+1 = (a, b + a, c, · · · ) and
thus | b− a |≤| b |>| b+ a |, an impossibility.
If xµ+1 = x−1

12 , one can simply cancel xµxµ+1 and this reduces (λ, µ).
If xµ+1 = x±

1i with i ≥ 3, then we may assume i = 3; and so

(a, b, c, · · · )xµ+1 = (a, b,±a+ c, · · · ) , |c| > | ± a+ c|.
Replace xµxµ+1 = x12x

±
13 by x±

13x12. Observe that the transformation

(a, b− a, c, · · · ) xµ7→ (a, b, c, · · · ) xµ+17→ (a, b,±a+ c, · · · )
becomes

(a, b− a, c, · · · ) 7→ (a, b− a,±a+ c, · · · ) 7→ (a, b,±a+ c, · · · ).
This means that all θi are unchanged excepting

θµ =∥ (a, b, c, · · · ) ∥
which becomes

θ′µ =∥ (a, b− a,±a+ c, · · · ) ∥ .

As | c |>| ±a+c |, we have θµ−1 > θ′µ and so the pair (λ′, µ′) associated
with the new sequence is less than (λ, µ).
If xµ+1 = x±

ij with i, j > 2, the proof is the same as the above case.
The other cases can be worked out on the same lines.

We continue with the proof of the main theorem.
Using the lemma, let us show by induction on n that Cn ⊆ Wn.
In this set-up, the inclusion θn−1 : Stn−1(Z) ⊂ Stn(Z) corresponds to
the left hand upper corner inclusion; SLn−1(Z) ⊂ SLn(Z). If c ∈ Cn,
let us write c = x1 · · · xrw as in the lemma. Then,

1 ≤∥ ex1 ∥≤∥ ex1x2 ∥≤ · · · ≤∥ ex1x2 · · · xrw ∥=∥ e ∥= 1

and so, equality holds everywhere. Inductively, it follows that each
xi leaves e fixed, and since ϕn(x1 · · · xrw) = 1, w leaves e fixed too.
Thus none of the xk’s can be x±1

nj for some j. Using the Steinberg
relations, one can push all the factors of the form xin to the left and
write x1 · · · xr = xy where x is a product of factors of the form x±1

in for
some i, and y is a product of the other types of Steinberg generators.

Thus, ϕn(x) is of the form

(
In−1 ∗
0 1

)
while ϕn(yw) is of the form(

∗ 0
0 1

)
. Since In = ϕn(xyw), we must have separately ϕn(x) = In =

ϕn(yw). But, it is clear from the definition of ϕn that then x = 1. We
note also that y ∈ θn−1(Stn−1(Z)). Further, ϕn(w) = ϕn(z) for some
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z ∈ θn−1(Wn−1); so, we can write w = zt for some t ∈ Wn ∩ Cn.Thus,
the element yz ∈ θn−1(Wn−1) by the induction hypothesis. Therefore,
c = xyw = yw = yzt ∈ Wn. This proves step I i.e., that Cn ≤ Wn and
is central.
Finally, we have to show that Cn is cyclic, and generated by the element
w4

12. For n = 2, this is clear since w12w21 = Id and so Wn is generated
by w12; as ϕn(w12) has order 4, Cn =< w4

12 >.
For n ≥ 3, one considers the subgroup H of Wn generated by w2

ij

for i ̸= j. We first show that Cn ⊆ H. Let c ∈ Cn ⊆ Wn. We
write c = wi1,j1 · · ·wir,jrh where h ∈ H. Now I = ϕn(c), ϕn(h) is a
diagonal matrix and ϕn(wij) is a permutation matrix corresponding
to the transposition (i, j), we must have c = h. But, each wij can
be written in terms of w12, w13, · · ·w1n. Hence c is conjugate in H to
w2u2

12 · · ·w2un
1n for some integers ui. This gives

In = ϕn(c) =


(−1)

∑
ui 0 · · · 0

0 (−1)u2 · · · 0
...

. . .
...

0 · · · · · · (−1)un


Hence ui are all even. So, Cn is generated by the 4th powers of wij.
Moreover, obviously w4

ij ∈ Cn for all i ̸= j. As Cn is central, and as

w1jw1kw
−1
1j = w−1

jk , we have w4
ij = w4

kl for all i ̸= j, k ̸= l. Thus,

Cn =< w4
12 > where w12 = x12x

−1
21 x12. The proof of the theorem is

complete.

Remarks.
The above central extension

1 → Cn → Stn(Z) → SLn(Z) → 1

can be shown to be the universal central extension.
Moreover, it can be shown that w4

12 has order 2 or infinity in Stn(Z)
according as n ≥ 3 or n = 2.

9. Application : CSP for SL(n,Z);n > 2

We use the above presentations to prove the CSP for SLn(Z) for n ≥ 3.
In fact, we prove the sharper result that infinite normal subgroups are
automatically of finite index and are, in fact, congruence subgroups.
The proof uses some matrix computations due to J.L.Brenner.

Lemma.
Let g ∈ GLn(Z) with n ≥ 3. Let m denote the greatest common divisor
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of all gij and gii − gjj, i ̸= j. Then, the normal subgroup N(g) of
GLn(Z) generated by g contains Xm

12.

Proof.
If we show that N(g) contains Xmi

12 for all i where mi is the GCD of
all the nondiagonal entries of the i-th column, it follows that N(g)
contains Xh

12 where h is the GCD of all the nondiagonal entries of g.
Moreover, for a permutation σ ∈ Sn, if w ∈ GLn(Z) is the permutation
matrix wij ̸= 0 ⇔ j = σ(i), then (wgw−1)ij = gσ(i),σ(j). So, conjugation
by a permutation matrix allows us to permute the nondiagonal entries
of any two columns. Further, for i ̸= j, the conjugate XijgX

−1
ij has

(i, j)-th entry gij − gji + gjj − gii. Therefore, to prove the lemma, it
suffices to show that N(g) contains Xd

12 where d is the GCD of all the
nondiagonal entries of the first column.

Observation I Each g ∈ GLn(Z) has a conjugate whose first column
is (g11, s, 0, · · · , 0) for some s dividing d.
To see this, write d =

∑n
i=2 tigi1. If r is the GCD of the ti’s, the vector

( t2
r
, · · · , tn

r
) is the first row of some x ∈ GLn−1(Z). Then h =

(
1 0
0 x

)
is

in GLn(Z) and h−1 has a similar form. So, hgh−1 has the first column
(g11, d/r, d3, · · · , dn) where di are integral combinations of gi1, i ≥ 2.

Hence a further conjugation by the matrix X
−rd3/d
32 X

−rd4/d
42 · · ·X−rdn/d

n2

gives a conjugate ygy−1 whose first column is (g11, d/r, 0, · · · , 0).
Observation II If gi1 = 0 for i > 2, then the commutator u =
[X12, g] = X12gX

−1
12 g

−1 has the last n − 2 rows as that of the iden-
tity matrix.

Observation III If u ∈ SLn(Z) has the last n− 2 rows as that of the

identity matrix, then X
(u12,1−u11)
12 ∈ N(u).

This is due to the fact that u−1 also has the last n− 2 rows as that of
the identity matrix and so u−1X−1

23 uX23 differs from the identity matrix
only in the (1, 3)-th and (2, 3)-th entries. These are, respectively, u12

and 1 − u11. Arguing as in the proof of observation I, one shows that

this is a conjugate of X
(u12,1−u11)
13 and, hence, of X

(u12,1−u11)
12 .

To complete the proof of the lemma, we compute the values u12 and
1 − u11 where u = [X12, g] and g has its last n − 2 rows the same
as the identity matrix. Then, u12 = 1 ∓ (g11 + g21)g11 and u11 =
1 ± (g11 + g21)g21 where the signs are according as det g = ±1. As
Xu12

12 , X1−u11
12 ∈ N(u) ⊂ N(g), we get Xg21

12 ∈ N(g). This completes
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the proof of the lemma since g21 is d/r where d is the GCD of the
nondiagonal entries of the first column of the original g.

Theorem.
Let n ≥ 3 and let N be a normal subgroup of SLn(Z), not contained in
{±I}. Then, there exists a unique integer k ≥ 0 such that

Γ(k) ≤ N ≤ Γ(k)∗

where Γ(k)∗ denote the normal subgroup of SLn(Z) consisting of all
the matrices congruent to a scalar matrix modulo k. Here, Γ(0) stands
for the trivial group and Γ(0)∗ stands for the scalars in SL(n,Z).
In particular, any normal subgroup of SLn(Z) with n ≥ 3 is either a
finite, central subgroup, or is a congruence subgroup.
Proof. Let k be the G.C.D of gij, gii − gjj; i ̸= j as g runs through
the elements of N . Then, N ≤ Γ(k)∗ by definition. Now, Xk

12 ∈ N .
Therefore, if E(k) denotes the normal subgroup of SLn(Z) generated
by Xk

12, then E(k) ≤ N ≤ Γ(k)∗. It suffices to prove that E(k) = Γ(k).
If k = 0, this is clear. So, let us assume k > 0. Now, the inclu-
sion E(k) ≤ Γ(k) induces a homomorphism f : SLn(Z)/E(k) →
SLn(Z)/Γ(k) = SLn(Z/kZ). Since Xk

12 ∈ E(k), we have a homo-
morphism in the opposite direction from the above-mentioned presen-
tation for SLn(Z/kZ). Thus, f is an isomorphism which means that
E(k) = Γ(k). This completes the proof.


