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Introduction

We discuss the basic facts, notions and results of commutative ring theory.
We recall them in a form which will be suitable for discussing Galois theory
and algebraic number theory. At the end, we list ten problems.

§ 1 Commutative rings - Basic notions

The rings we consider for our purposes here are all commutative and have a
multiplicative unity.

• 1.1 Integral domains, nilpotent elements and units

A non-zero element a ∈ A of a ring A is a zero-divisor if there exists b 6= 0
such that ab = 0. A ring without zero divisors is called an integral domain
or simply a domain.
The ring Z/nZ is a domain if and only if n = 0 or n is a prime.

It is an easy exercise to show that the rings C([0, 1],R), C∞([0, 1],R) of
continuous and smooth real-valued functions defined on the interval [0, 1] are
not integral domains. The subring of real analytic functions is a domain. So,
is the ring of holomorphic functions on a complex region since the zeroes of
holomorphic functions are isolated.
For polynomials f, g in a single variable with coefficients in a domain A, the
degree of fg is the sum of the degrees of f and g. Thus, we have :
A is an integral domain if, and only if, A[X] is.
An element a in a ring A is said to be nilpotent if an = 0 for some n ≥ 1.
An element u ∈ A is said to be a unit if there exists v ∈ A such that uv = 1.
The subset A∗ of all units in A is a group under multiplication.
Recall that an additive subgroup I of a ring A is said to be an ideal if ab ∈ I
for all a ∈ A, b ∈ I.

The set of all nilpotent elements forms an ideal Nil(A) called the nil radical
of A.
For, if am = 0 = bn, then (a± b)m+n = 0.
If u ∈ A∗, a ∈ Nil(A), then u− a ∈ A∗.
For, if uv = 1 and an = 0, then (u− a)−1 = (u(1− va))−1 = v(1 + va + · · ·+
vn−1an−1).
Later, we shall see that Nil (A) is the intersection of all the prime ideals of
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A.
Clearly, C([0, 1],R) has no non-zero nilpotents.

If f = a0 + a1X + · · ·+ anXn is in A[X] for some A, then f is nilpotent if,
and only if, all ai(i ≥ 0) are nilpotent.
This can be proved by induction on n as follows. It is clearly true when
n = 0. Now, if n > 0, and f r = 0, then ar

n = 0, that is, an is nilpotent. Thus,
f − anX

n is nilpotent. Hence all ai, 0 ≤ i < n are nilpotent.
Note that in any ring R and for u ∈ R∗ and x nilpotent, the elements u−xy
are units for all y; indeed (u− xy)−1 = u−1(1− u−1xy)−1 = u−1 ∑k

i=0 u−ixiyi

where xk+1 = 0.

Using the above fact, we can show :
f =

∑n
i=0 aiX

i ∈ A[X]∗ if, and only if, a0 ∈ A∗ and ai(i ≥ 1) are nilpotent.
Indeed, the ‘if’ part is clear by the above comment. For the ‘only if’ part,
assume that g =

∑m
i=0 biX

i is the inverse of f . If n = 0, then a0 ∈ A∗. Let
n > 0 and suppose the result holds for units in A[X] of degrees less than n.
Now, clearly a0 ∈ A∗ and, inductively, ai+1

n bm−i = 0; so am+1
n = 0 i.e., an is

nilpotent. Thus, f − anXn is a unit. By the induction hypothesis, all the
ai’s with i > 0 are nilpotent.

f =
∑

i≥0 aiX
i ∈ A[[X]] is a unit in it if, and only if, a0 is a unit.

This is obvious.

Let α ∈ C be an ‘algebraic integer’ i.e., α satisfies some monic integral
polynomial (e.g. α =

√
2). Then, A = { all finite sums

∑
aiα

i; ai ∈ Z} is an
integral domain which is finitely generated as an abelian group. It is a deep
theorem of Dirichlet that A∗ is a finitely generated abelian group.

• 1.2 Prime ideals, maximal ideals

Clearly, an ideal I is proper (i.e. not the whole of A) if, and only if, 1 6∈ I.
A proper ideal M is said to be maximal if it is not strictly contained in any
other proper ideal. It follows by using Zorn’s lemma that :
Any proper ideal I is contained in a maximal ideal.
For, let F be the family of all proper ideals containing I. This is a non-empty
set since I ∈ F . Let C be any chain of proper ideals containing I; then the
union of all the ideals in C is a proper ideal since 1 cannot belong to it.
Hence, by Zorn’s lemma, F has a maximal element. Such an element M is a
maximal ideal since any proper ideal properly containing M would be in F

3



and would contradict the maximality of M in F .

A proper ideal P is said to be a prime ideal if ab ∈ P implies either a ∈ P
or b ∈ P .
Any maximal ideal is a prime ideal. In any domain, {0} is a prime ideal.

Notice that, in Z, the zero ideal is prime but not maximal; every other
prime ideal is maximal and is given as multiples of some prime number. The
rings studied in number theory are integral domains in which all ideals are
finitely generated and have the property that all nonzero prime ideals are
maximal. They are known as Dedekind domains. In fact, ideals in such
domains of number theory are not singly generated in general, and this is
the fundamental cause for problems like Fermat’s last theorem being very
hard.

I is a prime ideal of a ring A if, and only if, the quotient ring A/I is a
domain. I is maximal if, and only if, A/I is a field.

In A[X], where A is an integral domain, the polynomials with constant term
0 form a prime ideal which is maximal if, and only if, A is a field.
This statement follows since A[X]/(X) ∼= A.

In A = C([0, 1],R), for each point x ∈ [0, 1], one has a maximal ideal Mx =
{f ∈ A : f(x) = 0}. Moreover, any maximal ideal is of this form for some
x.
This is a simple consequence of the compactness of [0, 1] as follows. Before
starting with the proof, observe that any finite set f1, · · · , fr of elements in
C[0, 1] must have a common zero unless they generate the unit ideal (if they
have no common zero, then 1 =

∑
i gifi with gi = fi/

∑
i f

2
i ).

Let M be a maximal ideal and suppose that no point in [0, 1] is a common zero
for all functions in M . To each x ∈ [0, 1], let gx ∈ M with gx(x) 6= 0. As gx is
continuous, there exists a neighbourhood Vx of x such that gx(y) 6= 0 for all
y ∈ Vx. Since [0, 1] =

⋃
x Vx, one may write (by compactness) [0, 1] = ∪r

i=1Vxi

for some xi ∈ [0, 1]. By the observation made in the beginning, gxi
have

a common zero; however, this cannot belong to any Vxi
, a contradiction.

Therefore, M ⊆ Mx for some x. As both are maximal, they are equal.

In fact, the analogue of the last statement is false for the ring C((0, 1),R).
For, one may consider the ideal generated by all functions which vanish
outside some compact set. A maximal ideal containing such an ideal cannot
be of the above form.
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In C[0, 1], there are prime ideals which are not maximal.
For example, let S denote the subset of A consisting of all monic polynomials.
Then, by Zorn’s lemma, one can see that there is an ideal P of A which
does not intersect S and is maximal with respect to this property. It is
trivial to see that P must be prime (see the next section on localisation for
a generalisation).
However, if it were maximal, then it would be Ma for some a ∈ [0, 1]. This
is impossible, for, then the function f(x) = x− a would be in S as well as in
P . Thus P is not maximal.

One has certain special properties for prime ideals in any commutative ring.
For instance :
If a prime ideal P contains I ∩ J , then it must contain one of I and J .
For, if a ∈ I, b ∈ J and a, b 6∈ P , then ab ∈ I ∩ J ⊆ P which implies either a
or b must be in P , a contradiction.
Under any ring homomorphism, the inverse image of a prime ideal is again
a prime ideal.
This is not true for maximal ideals; for instance consider the inverse image
of the maximal ideal {0} of Q under the inclusion of Z.

• 1.3 Chinese remainder theorem for rings

This is the following theorem and has several interesting applications. The
classical Chinese remainder theorem for which solves simultaneous congru-
ences is obtained by appllying the surjectivity of the map below applied to
the ring of integers.

Let I1, · · · , In be coprime ideals (i.e., I1 + · · · + In = A). Then, A/(∩iIi) ∼=
⊕iA/Ii.
By induction on n, this easily reduces to n = 2. Now, 1 = x1 + x2 for some
xi ∈ Ii. The homomorphism π A → A/I1⊕A/I2 which is the combination of
the two natural homomorphisms has clearly the kernel I1∩I2. The nontrivial
part is the surjectivity. For this, take any (y1 + I1, y2 + I2) ∈ A/I1 ⊕ A/I2.
This is clearly π(x1y2 + x2y1). This shows surjectivity.

Here is one nice application of the Chinese remainder theorem :
The number of ring homomorphisms from Z/m to Z/n is 2ω(n)−ω( n

(m,n)
). Here

ω(n) stands for the number of prime divisors of n.
Proof.
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Let θ : Z/m → Z/n be one such. Write n = pα1
1 · · · pαr

r . Then, Z/n ∼=
Z/pα1

1 × · · · × Z/pαr
r as rings. Write θ(1) = (a1, · · · , ar). Now, θ(1) = θ(12)

gives that ai = a2
i in Z/pαi

i for each i. As (ai, ai−1) = 1, either ai ≡ 0 or ≡ 1
mod pαi

i . Also, 0 = mθ(1) = θ(m) = (ma1, · · · ,mar). Thus, mai ≡ 0 mod
pαi

i for all i ≤ r. If, for some i, we have ai 6≡ 0 mod pαi
i , then ai ≡ 1,mai ≡ 0

gives that pαi
i |m · · · (♠).

Write n = pα1
1 · · · pαs

s · · · pαr
r where pαi

i |m for all i ≤ s and pαi
i 6 |m for all

i > s. Therefore, the above observation (♠) implies that ai ≡ 0 mod pαi
i for

all i > s and ai ≡ 0 or 1 mod pαi
i for all i ≤ s.

Hence, the number of ring homomorphisms from Z/m to Z/n is 2s. Clearly,
s = ω(n)− ω( n

(m,n)
).

An application of the Chinese remainder theorem to linear algebra arises by
considering the ring K[X] for any field K. Before stating it, recall that a
matrix N ∈ Mn(K) is said to be nilpotent if all its eigenvalues are 0. A
matrix S ∈ Mn(K) is said to be semisimple if its minimal polynomial has
distinct roots; this means that S is conjugate over the algebraic closure of K
to a diagonal matrix. We have:

(Jordan decomposition) Any matrix A ∈ Mn(K) can be written as A = S+N
with S semisimple N nilpotent and both S, N are polynomials in A without
constant term.
Note that the expression of a matrix as a sum of a semisimple and a nilpotent
matrix which commute with each other must be unique. This is because the
only matrix which is both semisimple and nilpotent is the zero matrix. So, if
A = S0 + N0 for another commuting pair, then S0 and N0 commute with A
and, therefore, with S, N also. Thus, S+N = S0 +N0 gives S−S0 = N0−N
which must be zero.
Proof of existence.
Over K̄, the characteristic polynomial χA(T ) can be written as

∏r
i=1(T−λi)

ni .
In K[T ], let us find, by the CRT, an element φ(T ) such that

φ(T ) ≡ λi mod (T − λi)
ni ,

φ(T ) ≡ 0 mod T.

If Vi = ker(A − λi)
ni , we have K̄n = ⊕r

i=1Vi. Thus, the matrix S := φ(A)
acts as the scalar λi on Vi. So, S is semisimple. Further, it is a polynomial in
A without constant term. If N := A−S, then N has only zero as eigenvalues
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and it must be nilpotent. Of course, N is also a polynomial in A without
constant term. This proves the decomposition asserted.

• 1.4 Localisation

Every domain A can be realised as a subring of a field K which is the smallest
such in the sense that any ring homomorphism from A to a field L extends
to a unique homomorphism from K to L. The field K is called the quotient
field of A and can be constructed as follows: on pairs of elements (a, b) with
b 6= 0, consider the equivalence relation defined as (a, b) ∼ (c, d) if, and
only if, ad = bc. The equivalence classes can naturally be thought of as the
fractions a/b and they form the quotient field K.
The quotient field of A[X] is Q(A)(X) for any domain A where Q(A) is the

quotient field of A and Q(A)(X) stands for the set of rational functions f(X)
g(X)

with coefficients from Q(A).
Thus, the quotient field of an integral domain is obtained by ‘inverting’ all
non-zero elements. More generally, let A be a commutative ring with unity
(not necessarily a domain) and S ⊂ A be a multiplicatively closed subset
i.e., 1 ∈ S and S is closed under mutiplication. Then, one can form a
new ring by ‘inverting the elements of S’ as follows. On pairs of elements
(a, s) ∈ A × S, define a relation (a, s) ∼ (b, t) if, and only if, ∃s0 ∈ S such
that s0(ta − sb) = 0. This is an equivalence relation and the set S−1A of
equivalence classes naturally has a ring structure. Indeed, think of the class
of a pair (a, s) as the ‘fraction’ a

s
. The ring S−1A is called the localisation

of A at S. There is a natural ring homomorphism from A to S−1A given by
a 7→ a

1
. This is, in general, not injective but it is so if A is a domain.

A typical example is when S is the complement in A of a prime ideal P .
In this case, one usually denotes S−1A by AP . Notice that when A is a
domain, then {0} is a prime ideal and the corresponding localisation is just
the quotient field.
For a general A (i.e., not necessarily a domain), the prime ideals of S−1A are
in bijective correspondence with the set of prime ideals of A which do not
intersect S. In particular, if S = A \ P for some prime ideal P , then AP is a
local ring i.e., it has only one maximal ideal S−1P .
In algebraic geometry as well as in algebraic number theory, many local rings
arise naturally. For instance, consider the ring A of ”germs” of continuous
functions at a point x on C. Here, a germ is an equivalence class of functions,
where f and g are continuous functions in some neighbourhoods of x which
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agree in a neighbourhood of x. This is a local ring whose maximal ideal is
the germ of those functions which vanish at x.
In number theory, one looks at rings like the p-adic integers for some prime
p. This consists of power series

∑∞
n=0 anp

n where 0 ≤ an < p for all p; power
series are added and multiplied and re-written again with ‘digits’ between
0 and p − 1. This is completely similar to adding and multiplying usual
decimals. This ring is a local ring and its unique maximal ideal consists of
all those power series which have no constant term. This is a PID.

We have the following very useful way of producing prime ideals:
Let A be a commutative ring with 1 and S a multiplicatively closed subset not
containing 0. Then, there is an ideal P maximal with respect to the property
that P ∩ S = ∅. Further, P must be a prime ideal.
Zorn’s lemma implies that such a P exists; this is just the inverse image of a
maximal ideal of S−1A.
If a, b 6∈ P but ab ∈ P , we have that both P +(a) and P +(b) must intersect S.
If p+au = s ∈ S and q+bv = t ∈ S, then st = pbv+qau+pq+abuv ∈ P ∩S,
a contradiction. Thus, P is a prime ideal.

Let us use this to prove :
Nil (A) is the intersection of all prime ideals of A.
First, each nilpotent element a ∈ P for each prime ideal since ar = 0 ∈ P
implies a ∈ P . Conversely, suppose that a ∈ A is not nilpotent. Then, the
set of powers ai, i ≥ 0 forms a multiplicative subset S of A. Any prime ideal
of S−1A is of the form S−1P for some prime ideal P of A which does not
intersect S. In other words, a is not in P . This proves the above assertion.
Now, this immediately gives by going to quotient rings, the following asser-
tion :
If I ⊂ A is an ideal, then its ‘radical’ ideal

√
I := {x ∈ A : xr ∈ I for some r >

0} is the intersection
⋂

P⊃I P of all prime ideals containing I.
Another application is :
In any A, the set Z of zero divisors contains all the non-zero elements of
some prime ideal.
Consider S to be the complement of Z ∪ {0}. It is easy to see that S is
multiplicatively closed. Thus, by the above result, there is some prime ideal
contained in Z ∪ {0}.
For any ring A, one defines the Jacobson radical Jac (A) to be the intersec-
tion of its maximal ideals. Since maximal ideals are prime, we have Jac (A)
⊃ Nil (A).
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In fact, an interesting fact is :
Jac A[X] = Nil A[X].
Here is the proof. We need to show that any f ∈ Jac A[X] is nilpotent.
Write f =

∑n
i=0 aiX

i. Now 1 + Xf must be a unit since it cannot be in any
maximal ideal of A[X] (as Xf is in each maximal ideal). Thus, by what we
proved in the beginning, all ai are nilpotent. Hence f is nilpotent.

§ 2 Factorisation in domains

In this section, we assume that A is an integral domain.
We shall write a/b (and say a divides b) if ac = b for some c ∈ A.

• 2.1 Euclidean and principal ideal domains

A domain A is said to be a Euclidean domain if it has a Euclidean (division)
algorithm i.e., there is a function d : A \ {0} → N such that: (i) a/b implies
d(a) ≤ d(b) and (ii) a, b 6= 0 implies ∃q, r ∈ A with a = qb + r and either
r = 0 or d(r) < d(b).
Any field K is a Euclidean domain (with d(a) = 1 for all a 6= 0). So also is
K[X] (with d as degree).
For a field K, the formal power series ring K[[X]] is a Euclidean domain with
d(

∑
i≥n aiX

i) = n if an 6= 0.
It is easy to see that Z,Z[i] are Euclidean domains.
It is also easy to see that any Euclidean domain (without assuming that
1 ∈ A to begin with) must contain 1. For, an element a with d(a) minimum
among all d(x) for x 6= 0, is seen to be 1.

A = {a + b
√

3i : a, b ∈ Z} is not Euclidean. Similarly, {a + b
√

5i : a, b ∈ Z}
is not Euclidean.
Note that to prove a domain is Euclidean, we need only produce some Eu-
clidean size function but to prove that a certain domain is not Euclidean
is much more difficult. For, one has to rule out any size function d as in
the definition. Therefore, not surprisingly, the above two statements will
be proved by proving a stronger one viz., that these are not UFDs (to be
discussed shortly).

A domain A is a principal ideal domain (PID for short) if every ideal is
principal i.e., is of the form {ax : a ∈ A} for some x.
For instance, Z is a PID but Z[X] is not. Indeed, A[X] is a PID if, and only
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if, A is a field as implied by the following :
(i) Every Euclidean domain (A, d) is a PID. In particular, Z[X] is not a
Euclidean domain.
(ii) For a domain A, A[X] is a PID if and only if A is a field.
Proof.
(i) Let (A, d) be a Euclidean domain. Suppose I 6= 0 is an ideal. Let
d(a) = Min{d(x) : x ∈ I, x 6= 0}. If b 6= 0 is in I, then b = qa+ r with either
r = 0 or d(r) < d(a). If r 6= 0, this means that r = b − qa ∈ I and satisfies
d(r) < d(a), an impossibility. Thus r = 0 i.e., b ∈ (a). So, I ⊆ (a) ⊆ I i.e.,
I = (a) i.e., A is a PID.
(ii) Now, if A is a field, then A[X] is a Euclidean domain and hence a PID
by (i). Conversely, suppose that A is not a field. If 0 6= a ∈ A is not a unit,
then the ideal (a,X) cannot be principal.

Let ζ = e2iπ/23. Then, the ring A23 = {∑21
i=0 aiζ

i : ai ∈ Z} is not a PID. This
is difficult to prove unless one uses algebraic number theory, and is the main
reason that Fermat’s last theorem is not trivial to prove for the 23rd power,
for instance.
In fact, if we consider for a prime p, the corresponding ring Ap (with p
replacing 23 above), then if this ring is a PID, it is elementary to prove that
the equation Xp +Y p = Zp has only the solutions XY Z = 0 in integers. For
p = 23, it turns out that the ring A = {a + b1+

√−23
2

: a, b ∈ Z} is contained

in A23 and that the nonprincipal ideal generated by 2 and 1+
√−23
2

in A is the
intersection of A with a nonprincipal, prime ideal of A23.

If d is a square-free (positive or negative) integer and D =
√

d or (1 +
√

d)/2
according as d ≡ 2, 3 mod 4 or ≡ 1 mod 4, then look at the ring A = {a+bD :
a, b ∈ Z}. It is still an unsolved conjecture that A is a PID for infinitely many
d.

Usual prime integers are characterized by either of the two equivalent prop-
erties :
p|ab implies either p|a or p|b.
p = uv implies either u = ±1 or v = ±1.
Contrastingly, it will be seen that these two properties are not equivalent in
more general domains. Therefore, we have the following two notions.
An element a in a ring A is said to be prime (respectively irreducible) if it
is a non-zero, non-unit such that whenever a/bc (respectively, when a = bc),
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either a/b or a/c (respectively, b or c must be a unit).

In any domain, prime elements are irreducible.
The reason is that if p is prime and p = ab, then p|ab and so p|a or p|b.
Suppose pc = a without loss of generality. Then, p = ab = pcb i.e., p(1−cb) =
0 i.e. 1 = cb. So, b is a unit.

Note that a is a prime if, and only if, the principal ideal (a) is a non-zero
prime ideal and that b is irreducible if, and only if, (b) is maximal among
non-zero, principal, proper ideals. Thus, in a PID, all non-zero prime ideals
are maximal and prime elements and irreducible elements coincide.
In particular, if K is a field, then an ideal I of K[X] is maximal if, and only
if, I = (f) for some irreducible element f in K[X].

Now, we discuss a number-theoretic application of the above results:

(Corollary of the fact that ZZ[i] is a E.D.)
Any prime number p ≡ 1 mod 4 is a sum of two square of integers.
Proof:
We first claim that ∃a such that a2 ≡ −1 mod p.
In fact, we show that a =

(
p−1
2

)
! works. By Wilson’s theorem, (p − 1)! ≡

−1 mod p.
A simple proof of this is as follows. Multiply out all the elements of the
group ZZ∗p. Each element cancels off with its inverse except for 1 and p − 1
which are their own inverses. Thus, this product (which is (p − 1)!) is just
p− 1 in ZZ∗p. Therefore, (p− 1)! ≡ p− 1 mod p.
But

(p− 1)! = 1 · 2 · 3 . . . (p− 3)(p− 2)(p− 1)

= 1 · (p− 1) · 2 · (p− 2) . . .
p− 1

2
· p + 1

2

≡ (−12) · (−22) · (−32) . . .

{
−

(
p− 1

2

)2
}

mod p

Thus, the claim is proved.
So, a2 + 1 = dp for some d ∈ ZZ. Now, we view this equation in ZZ[i]. We
have (a + i)(a− i) = dp.
If p were irreducible as an element of ZZ[i], it would be a prime element since
ZZ[i] is a Euclidean domain. Since p/(a+ i)(a− i) in ZZ[i], we would then have
p/(a+i) or p/(a−i). Thus ∃x+iy ∈ ZZ[i] such that p(x+iy) = a±i. This gives
px = a, py = ±1 which is impossible. Therefore, p cannot be irreducible. In
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other words, there are a + bi, c + di ∈ ZZ[i] so that p = (a + bi)(c + di) and
neither a + bi nor c + di is a unit in ZZ[i].
Taking absolute values, we have

p2 = (a2 + b2)(c2 + d2)

This implies that either a2 + b2 = 1, c2 + d2 = p2 or a2 + b2 = p = c2 + d2 or
a2 + b2 = p2, c2 + d2 = 1.
The first and the third options do not occur since a + bi and c + di are not
units. Thus a2 + b2 = c2 + d2 = p.

What we have proved above is that a prime number p ≡ 1 mod 4 is not a
prime element in ZZ[i].

For d square-free in Z, let us write θd for the set of complex numbers of the
form x = a + b

√
d with a, b ∈ Q such that x satisfies a monic polynomial

over the integers.

Exercise: Show that θd is Z[
√

d] or Z[1+
√

d
2

] according as d ≡ 2, 3 mod 4 or
d ≡ 1 mod 4.
The ring θd is called the ring of integers in Q(

√
d).

The following facts require some knowledge of algebraic number theory.

Fact I:
θd is a Euclidean domain ⇔

d = −1,±2,±3, 5, 6,±7,±11, 13, 17, 19, 21, 29, 33, 37, 41, 57

θd (for d < 0) is a PID ⇔
−d = 1, 2, 3, 7, 11, 19, 43, 67, 163

Conjecture (Siegel):
There are infinitely many d > 0 for which θd is a PID.

Fact II:
Let p be a prime number, and let ζ = e2πi/p. Consider the ring ZZ[ζ] =[

p−2∑
r=0

arζ
r : ar ∈ ZZ

]
⊆ CI . If ZZ[ζ] is a PID, then Fermat’s equation Xp +Y p =

Zp has only the trivial solutions XY Z = 0 in integers X,Y, Z.
Kummer proved that ZZ[ζ] is not a PID for p = 23. This is why ‘Fermat’s
last theorem’ is not trivial.
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Fact III:
(Deep) Using the so-called ‘generalized Riemann hypothesis’ (GRH), it can
be proved that for an algebraic number field K whose dimension as a Q-
vector space is ≥ 3, the ‘ring of integers’ of K satisfies θK is a ED ⇔ θK is a
PID. In fact, if K is a Galois extension of Q and has rank > 3, it has been
proved by Harper & Ram Murty without using GRH that OK is a PID if
and only if it is a Euclidean domain.

The following statement can be deduced quite easily using basic algebraic
number theory, but since we have not discussed that theory, the proof below
will be somewhat long.

Example of a PID which is not a ED

Consider the ring A = ZZ
[

1+
√

19
2

]
. We shall prove that this is a PID and is

not a ED. We first show that A is not a Euclidean domain. The proof works
more generally as indicated after this . Suppose, if possible, A is a E.D. and
N : A\{0} → ZZ ≥ 0 is a size function.
Let α ∈ A be such that α is not a unit and N(α) = min{N(x) : x is not a
unit }. Now, ∀x ∈ A we have x = qα + r with either r = 0 or N(r) < N(α).
So, if r 6= 0 then N(r) = 0 since N(r) < N(α). But N(r) = 0 ⇒ r is a unit.
Let us find the units in A. We claim ±1 are the only units. Suppose a + bθ
is a unit (where θ = 1+

√−19
2

for short).
Therefore 1 = (a+bθ)(c+dθ) ⇒ 1 = (a+bθ̄)(c+dθ̄) taking conjugates. Hence

1 = (a + bθ)(a + bθ̄)(c + dθ)(c + dθ̄) = (a2 + ab + 5b2)(c2 + cd + 5d)

We note that a2 + ab + 5b2 = (2a+b)2+19b2

4
≥ 0. Hence a2 + ab + 5b2 = 1 =

c2 + cd + 5d2.
Therefore, (2a+ b)2 +19b2 = 4. If b 6= 0, the LHS would be ≥ 19. This b = 0
and so 4a2 = 4 i.e. a = ±1. Hence a + bθ = ±1 are the only units in A.
Therefore, the statement that ∀x ∈ A, we have x = qα + r with either r = 0
or r a unit, gives us that the quotient ring A/(α) has atmost three elements

(the cosets of r = 0, 1,−1). [We note that this goes through for ZZ
[

1+
√−d
2

]
if

d ≡ 1 mod 4].

Let us compute #(A/(α)) in another way.
First, A = ZZ + ZZθ is a free abelian group with {1, θ} as a basis [since if
a + bθ = 0, then (a + b

2
) + b

2

√−19 = 0 i.e. a = b = 0] Under the group

isomorphism A
π→ ZZ× ZZ; a + bθ 7→ (a, b) let us see what the image of (α) is.
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Write α = a + bθ. Then,

(α) = {αβ : β ∈ A} = {(a + bθ)(c + dθ) : c, d ∈ ZZ}
= {(ac− 5bd) + (ad + bc + bd)θ : c, d ∈ ZZ}

since θ2 = θ − 5.
Therefore,

π((α)) = [(ac− 5bd, bc + (a + b)d) : c, d ∈ ZZ]

=
[(

a −5b
b a + b

) (
c
d

)
: c, d ∈ ZZ

]
.

So,

|A/(α)| = |ZZ2/π((α))| =
∣∣∣∣ZZ2/

(
a −5b
b a + b

)
ZZ2

∣∣∣∣ =
∣∣∣∣det

(
a −5b
b a + b

)∣∣∣∣ = a2+ab+5b2.

Thus, we have a2 +ab+5b2 ≤ 3 i.e. a2 +ab+5b2 = 1, 2 or 3. In other words,
(2a+ b)2 +19b2 = 4, 8 or 12. This implies b = 0 as, otherwise, the LHS ≥ 19.
[Note that this carries over with 19 replaced by any d ≥ 13]. So 4a2 = 4, 8
or 12, i.e. a2 = 1, 2 or 3. This gives a = ±1 i.e. α = a + bθ = ±1. This is a
contradiction, since α is chosen to be a non-unit of minimal size.
Therefore, A is not a Euclidean domain. This proof carries over to show that
ZZ

[
1+
√−d
2

]
for d ≡ 3 mod 4 and d > 12, is not a Euclidean domain.

The full list of such quadratic fields was given earlier as fact I.

Now, we prove that A = ZZ
[

1+
√−19
2

]
is a PID. The proof is easy if we use

some algebraic number theory but we give an elementary proof.

Idea of proof that A is a PID
If A had been a E.D., the most natural size function we would have thought
of is the function N(a + bθ) = |a + bθ|2. What we do is to prove that give
any α 6= 0 in A either an element β is in (α) or ∃r ∈ (α, β) so that r 6= 0 and
N(r) < N(α).
This would prove that A is a PID, as follows. If I is any ideal, consider
α ∈ I with α 6= 0 and N(α) = min[N(x) : 0 6= x ∈ I]. If (α) 6= I, pick any
β ∈ I, β 6∈ (α). By the above, we would get hold of r ∈ (α, β) with r 6= 0
and N(r) < N(x). Since r ∈ (α, β) ⊆ I, we will have a contradiction. Thus,
indeed I = (α).
So, let us now proceed to prove the following:
Let N : A\{0} → ZZ≥0; a + bθ 7→ |a + bθ|2 = a2 + ab + 5b2. If α 6= 0 and
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B 6∈ (α), then ∃r ∈ (α, β) with r 6= 0 and N(r) < N(α).
Equivalently, we find a, b ∈ A so that

N

(
βa

α
− b

)
and

βa

α
− b 6= 0

(then r = βa− αb would work).

Let us write β
α

as x+yθ
z

(θ = 1+
√−19
2

before see that θ2 = θ) where x, y, z ∈
ZZ, (x, y, z) = 1 and z > 0. Want to find a = s + tθ, b = u + vθ ∈ A so that∣∣∣β
α
a− b

∣∣∣
2

< 1.
Now

β

α
a− b =

x + yθ

z
(s + tθ)− u− vθ

=
(xs + 5ty − uz) + [xt + y(s + t)− vz]θ

z

=
m + nθ

z
, say

First let us choose s, t, v so that n = 1 (can be done (x, y, z) = 1). then
β
α
a − b = m+θ

z
with m = xs − 5ty − uz. Now, choose u ∈ ZZ such that∣∣∣xs−5ty

z
− u

∣∣∣ ≤ 1
2

i.e. |m| ≤ z
2
.

So ∣∣∣∣∣
β

α
a− b

∣∣∣∣∣
2

=
|m + θ|2

z2
=

m2 + m + 5

z2
≤ z2 + 2z + 20

4z2
.

This is < 1 if 3z2 − 2z > 20 which holds if z ≥ 3. Note that β
α
6∈ A means

that z ≥ 2. If z = 2, then either x or y is odd as x+yv
z

= β
α
6∈ A. So, the

above choice of s, t, u, v works if z ≥
If z = 2, then again look at β

α
a − b = m+nθ

z
, where m = xs − 5ty − uz

and n = xt + y(s + t)− vz. Now, choose s + t = x, t = −y and v = 0 so that
n = 0. Then m = x2 + xy + 5y2 − 2u (remember z = 2). So, since either x
or y is odd, m is odd, no matter what u is. Choose u so that m = 1. Then∣∣∣β
α
a− b

∣∣∣
2

=
∣∣∣m

n

∣∣∣
2

< 1.
This completes the proof.

• 2.2 Unique factorisation domains

A domain A is called a unique factorisation domain (UFD for short) if, and
only if, each non-zero element is uniquely (i.e. upto units) a product of a
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unit and finitely many irreducible elements.
It is easy to see in any domain A that an element a is irreducible if, and only if,
the principal ideal (a) is maximal among principal, proper ideals. Using this
easy observation, it is also easy to see that in any PID, irreducible elements
and prime elements are the same. Further, it is equally easy to note that a
factorisation domain (that is, a domain in which each nonzero, nonunit can be
expressed as a finite product of irreducible elements) has unique factorisation
if, and only if, all irreducible elements are prime. The phrase ‘irreducible
polynomial’ should be understood as meaning an irreducible element of the
corresponding polynomial ring. For instance, the polynomial 2X is not an
irreducible element in Z[X] although it is so in Q[X]. These simple remarks
are extremely useful as we shall soon see.

Every PID is a UFD.
For the proof, one needs Zorn’s lemma. Recall what Zorn’s lemma asserts. If
a partially ordered set satisfies the property that any totally ordered subset
has an upper bound, then there is an element in the original set which is
maximal with respect to the partial order. Let A be a PID and suppose, if
possible, there are non-zero elements in A which are not expressible as finite
products of irreducible elements. Consider the non-empty set Ω of all such
elements and the set Σ = {(a) : a ∈ Ω} of the corresponding principal ideals.
Inclusion of ideals defines a partial order on Σ. Also, if C is any totally ordered
subset of Σ, let us look at the ideal I0 =

⋃
I∈C I. If I0 = (a0), then a0 ∈ I for

some I ∈ C. Thus, I0 = I i.e., I is an upper bound for C. Applying Zorn’s
lemma, Σ has a maximal element, say (a). As a ∈ Ω, a is not irreducible.
Suppose a = bc where b and c are non-zero non-units. Then, clearly (a) is
properly contained in (b) as well as in (c). By maximality, c, b 6∈ Ω. In other
words, both b and c are finite products of irreducible elements. Thus, a = bc
is also so, which contradicts the fact that a ∈ Ω. Therefore, we have shown
that Ω is empty. Finally, the uniqueness is a consequence of the remark
above.

In the following paragraph, we allow A to be any commutative ring with
unity. Then, we have the following characterisation for a ring to have only
principal ideals :
Let A be a commutative ring with unity. Suppose that all prime ideals are
principal. Then, all ideals in A are principal.
Proof.
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Suppose there do exist non-principal ideals in A. Partially order the set of
such ideals by inclusion. If Iλ; λ ∈ Λ is a totally ordered subset of these, then
their union I0 is clearly also another such ideal. By Zorn’s lemma, there
is an ideal M which is maximal with respect to the property that it is not
principal. Since M cannot be prime by the hypothesis, there are a, b 6∈ M
so that ab ∈ M . Thus, the ideals M + (a) = (x) and M + (b) = (y) for
some x, y ∈ A. Expressing x and y in the form m1 + aa1 and m2 + bb1

respectively, we notice that xy ∈ M while x, y 6∈ M . Consider the ideal
(M : (x)) = {t ∈ A : tx ∈ M}. This is a proper ideal (as 1 is not in it)
which properly contains M as it contains y as well. Thus, (M : (x)) = (z)
for some z. If m ∈ M ⊂ M + (a) = (x), we write m = xx1 and thus,
x1 ∈ (M : (x)) = (z) i.e., x1 = zz1 for some z1. Thus, M = (xz), a
principal ideal. This is a contradiction which proves that there are, indeed,
no non-principal ideals.

Cohen’s theorem.
(Here is a variant of the above argument to show:)
If, in a ring, all prime ideals are finitely generated, then the ring must be
Noetherian (that is, all ideals must be finitely generated).
Proof.
Let P be an ideal, maximal with respect to the property it is not finitely
generated. Let ab ∈ P and a, b 6∈ P . Write P + (a) = (x1, · · · , xr), P : (a) =
(z1, · · · , zs). If xi = pi + aai, then it is easy to see that

P = (p1, · · · , pr, az1, · · · , azs).

In a UFD, irreducible elements and prime elements are the same.
Let us see why. We already know that prime elements are irreducible in any
domain. Conversely, let p be an irreducible element in a UFD A. If p/ab,
then pc = ab for some c. Expressing a, b, c as products of irreducibles, the
uniqueness of decomposition into irreducibles shows that p is, upto a unit,
an irreducible factor of a or of b. Thus, p|a or p|b i.e., p is prime.

From this one can observe that {a+b
√

3i : a, b ∈ Z} and {a+b
√

19i : a, b ∈ Z}
are not UFDs.
To see this for the first ring Z[

√−3], note that the only units are 1 and −1
since these are the only solutions of a2 + 3b2 = 1. Moreover, 1 +

√
3i is not a

prime since it divides (1+
√

3i)(1−√3i) = 4 = 2×2 while it does not divide
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2. We show that 1+
√

3i is irreducible. If not, write 1+
√

3i = (a+b
√

3i)(c+
d
√

3i). Taking the squares of absolute values, we have 4 = (a2+3b2)(c2+3d2)
which has only the solutions a + b

√
3i = ±1 or c + d

√
3i = ±1. Hence, the

ring Z[
√−3] is not a UFD. A similar proof works for Z[

√−19].

The domain of all complex entire functions is not a UFD.
In fact, this is a domain which does not have factorisation. For, the irre-
ducible elements are simply the linear polynomials and evidently there are
entire functions which are not polynomials.
The ring A = {∑n

i=0(aiCosix + biSinix) : ai, bi ∈ R, anbn 6= 0, n ≥ 0} ∪ {0}
is not a UFD. (Here, each element of A is a real, trigonometric polyno-
mial of some degree). The reason for this is an equation like Cos2(x) =
(1 + Sinx)(1− Sinx) holds.
In fact, this ring is also realised as R[X, Y ]/(X2 + Y 2 − 1).
Contrastingly, note that C[X,Y ]/(X2 + Y 2 − 1) is even a PID. The reason
is that it is isomorphic to C[Z, 1/Z] under the isomorphism Z 7→ X + iY .

Interesting Remark
Let K ⊇ Q be an ‘algebraic number field’ i.e., a field which has finite di-
mension as a Q-vector space (e.g. K = Q(

√
d), K = Q(ζ)). Let OK denote

the ‘ring of integers of K’ i.e., Ok
d
= [x ∈ K : x satisfies a monic, integral

polynomial. Then, OK is a PID ⇔ OK is a UFD.
This can be proved quite easily using basic algebraic number theory (for
quadratic fields, see a proof in M. Artin’s ‘Algebra’).

(Gauss’s theorem)
A is a UFD if, and only if, A[X] is a UFD.

The nontrivial part of the theorem is the implication that if A is a UFD,
then A[X] is a UFD as well. Let us assume that A is a UFD. Once again, it
is easy to prove that every element of A[X] is a finite product of irreducibles.
The nontrivial part is really the uniqueness of the expression. For showing
uniqueness, the idea is to go to the quotient field K of A and use the fact
that K[X] is a UFD. Let us prove uniqueness.

We need the notion of content of any f ∈ A[X]. This is simply the GCD c(f)
of all the coefficients of f and is well-defined up to units (just as the GCD of
integers is well-defined up to sign). One can also define the ideal (c(f)) to be
the smallest principal containing the ideal generated by the coefficients of f .
Now, f = c(f)f0 for some f0 ∈ A[X] which is ‘primitive’ i.e., c(f0) is a unit.
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Notice also that irreducible elements in A[X] must be primitive. The proof
will use an observation and a lemma due to Gauss. First, we notice :

Observation : c(fg) = c(f)c(g).
To see this, it suffices to show that if c(f) = c(g) = 1, then c(fg) = 1. If
c(fg) 6= 1, let p be an irreducible divisor of c(fg). Write f =

∑l
i=0 aiX

i, g =∑m
i=0 biX

i. Since c(f) = 1 = c(g), there are ar, bs such that p 6 |ar, p 6 |bs

and p|ai, bj for i < r, j < s. But, since p divides each coefficient of fg, it
divides the coefficient of Xr+s in fg. This is a sum of terms each of which
is a mutiple of p except possibly for arbs. Thus, p must divide arbs which
contradicts the fact that p is irreducible (= prime).
The second piece required is:
Gauss’s lemma : If f ∈ A[X] is primitive, then it is irreducible in A[X] if,
and only if, it is irreducible in K[X].
For this, write, if possible, f = gh with g, h ∈ K[X]. Rewrite it as f = a

b
g0h0

with g0, h0 ∈ A[X] primitive and a, b coprime. So, bf = ag0h0. Comparing
contents, we get a = b× unit and, c(f) = a

b
. So, f = c(f)g0h0 = g0h0 which

means that f is reducible in A[X], which is a contradiction. This proves
Gauss’s lemma.
Finally, let us prove uniqueness of factorisation. As observed earlier also (see
the remarks before the proof of the fact that PIDs are UFDs), since factorisa-
tion holds, the uniqueness follows if one checks that irreducible elements are
also prime. To show this, let f ∈ A[X] be an irreducible element. Suppose
f/gh in A[X]. Now, by Gauss’s lemma, f is irreducible in K[X] and so it is
a prime element of K[X] as K[X] is a UFD. Thus, suppose fg0 = g where
g0 ∈ K[X]. Write g0 = a

b
g1 with a, b ∈ A coprime and g1 ∈ A[X] primitive.

So, bg = bfg0 = afg1. Comparing contents and noting that c(f) = 1 as it
is irreducible in A[X], we have a = bc(g). Thus, bg = afg1 = bc(g)fg1 i.e.,
g = c(g)fg1 i.e., f/g in A[X]. Hence f is indeed a prime element of A[X].
The proof of Gauss’s theorem is complete.

Corollary.
Let α be an algebraic integer. Then, min(α,Q) is in Z[X] where min(α,Q) :=
the monic polynomial of smallest degree in Q[X] satisfied by α.
In particular, Z[α] ∼= Z[X]/(min(α,Q)).

Over a field K, the ring K[[X]] of formal power series is a UFD as we already
saw that it is a Euclidean domain. More directly, the proof can be seen as
follows. Clearly, any power series can be written as f =

∑∞
n=r anXn with
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ar 6= 0 for some r ≥ 0. One may call r, the order of f . Note that a power
series over K is invertible if, and only if, its constant term is zero. Hence,
each element f ∈ K[[X]] is uniquely expressible as Xru for some r ≥ 0 and
some unit u ∈ K[[X]]∗. So, it is clear that upto units, the only irreducible
element is X. The question of uniqueness of decomposition into irreducibles
is equivalent to the question as to whether the order r is determined by f .
This is evidently true. Hence K[[X]] is a UFD.
A word of warning is that the analogue of Gauss’s theorem is false; that is,
there are UFDs A for which A[[X]] are not UFDs. If A is a PID, then A[[X]]
is a UFD (a proof can be given using Nagata’s criterion below).

Here is another interesting criterion for UFDs :
Let A be a domain in which each non-zero prime ideal contains a prime
element. Then, A is a UFD.
To prove this, one just needs to show that each non-zero, non-unit a ∈ A is
expressible as a finite product of prime elements (for this implies uniqueness
in terms of irreducibles). Now, the set S of such elements along with the
set of units is a multiplicatively closed subset. In fact, S is saturated (that
is, ab ∈ S if and only if a, b ∈ S). If a 6= 0 is not in S, then (a) does not
intersect S. Choosing a prime ideal P containing (a), not intersecting S,
there is a prime element p ∈ P ; this would contradict the fact that p ∈ S.
Hence A − S = (0). So, each non-zero, non-unit a is expressible as a finite
product of prime elements.

Exercise: S is saturated if and only if A− S is a union of prime ideals.

We have the following useful observation :
If A is a UFD, then so is S−1A for any localisation.
Indeed, any prime a ∈ A is either a divisor of an element of S (and so,
becomes a unit in the localisation) or remains a prime in the localisation.
Note also that A injects into −1A and any non-zero, non-unit in S−1A is
associate (in this localisation) to an element of A. Since elements of S are
products of primes in A, each non-zero, non-unit of S−1A is a product of
prime elements (easy) and this shows S−1A is a UFD.

Nagata’s criterion for UFD’s
If R is a domain and S is a multiplicative subset generated by a certain set
of prime elements, and if RS is a UFD, then A itself is a UFD.
Proof.
Since R is a FD, enough to show that every irreducible element p ∈ R is
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prime. Let p be irreducible in R. The fact that S is generated by primes,
shows easily:
Claim (i): S is saturated (i.e., ab ∈ S iff both a, b are in S).
Let us also grant:
Claim (ii): Either p remains irreducible in RS or p divides some element of
S (and so, becomes a unit in RS).
Proof continued modulo claims
Case 1: p remains irreducible.
Then p is prime in RS, i.e., pRS is a prime ideal But pRS = IS where I = pR.
Thus I is a prime ideal in R. That is, p is prime in R itself.
Case 2: p becomes a unit.
Then Rp intersects S. Since S is saturated, p ∈ S. So p is a product of n
prime factors (not necessarily distinct). As p is irreducible, we have n = 1.
That is, p is prime.
To prove claim (ii), note if a = (b/s)(c/t) for b, c ∈ R, and s, t ∈ S, then
sta = bc. Now st is a product of primes in R; so each prime divides b
or c. By repeated cancellation (in R), eventually arrive at a = de where
d = b/u, e = c/v where d, e are in R and u, v are in S. This shows either d
or e is a unit in R (as a is irreducible in R). So either b or c is a unit in RS.
So a remains irreducible in RS (if one of b, c is a unit in RS) or becomes a
unit (if both b, c are units in RS).

Corollary (application of Nagata)
The coordinate ring R[X,Y, Z]/(X2 + Y 2 + Z2 − 1) of the real unit sphere
is a UFD.
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Remarks and exercises.

1. Let A ⊂ B ⊂ K = Q(A) where A is a PID and B is a subring of K
containing 1. Then B is a PID.
Proof.
Let 0 6= I ⊂ B be an ideal. Write I ∩A = Aa. Let 0 6= u/v ∈ I be any non-
zero element. Now uA + vA = wA say. Write u = sw, v = tw, w = cu + dv.
Then cs + td = 1. So 1

t
= cs/t + d = cu/v + d ∈ B. Now s = t(s/t) =

t(u/v) ∈ I ∩ A = Aa. So, u/v = (1/t)s ∈ B(Aa) = Ba. Thus, I = Ba.

2. x2 + 1 = y3 has only the solutions x = 0, y = 1 in integers.
Proof.
Let x, y be a solution. Clearly, x even and y odd. If π is an irreducible
element of Z[i] dividing both x + i and x− i, then |π|2 is an integer dividing
(in Z[i]) both 2i as well as the odd integer y, which is a contradiction. Hence
x+ i, x− i are both cubes (up to units) in the Gaussian ring. As all the units
here are cubes, we have x + i = (a + ib)3. Unwind to get the result.

3. The equation x2 + 2 = y3 has only the solutions (±5, 3).
The proof is similar working with the Euclidean domain Z[

√−2].

4. A prime p 6= 3 is of the form x2 + 3y2 if and only if p ≡ 1 mod 3.
Proof.
Clearly, if p 6= 3 is of the form x2 + 3y2, then it is 1 mod 3. Conversely, let
p ≡ 1 mod 3. So, 3 divides F∗p and, hence there exists a 6≡ 1 mod p but
a3 ≡ 1 mod p. Thus, p divides a2 +a+1 so that p divides |−a+ω|2. Clearly,
p is not irreducible (therefore, not prime) in Z[ω]. Hence p = (a+bω)(c+dω)
which are not units, which gives p = |a + bω|2 = a2 − ab + b2. Therefore,
either a, b are both odd or one of them (say a) is odd and the other even,
In the first case, p = ((a + b)/2)2 + 3((a − b)/2)2 and, in the 2nd case,
p = (a− b/2)2 + 3(b/2)2.

5. Z[2i] is not a UFD because X2 + 1 is a reducible polynomial over the
quotient field but irreducible in Z[2i]X.
Similarly, Z[

√
8] is not a UFD as seen by considering X2 − 2.

6. Z + XQ[X] is not a UFD.
Indeed, X is not a product of irreducibles! The only irreducibles are ± primes
and irreducible polynomials of the form ±1 + Xf .

7. X3 + X + 1 is irreducible in Z[X] as it is so in Z2[X].
8. X4 + 1 is irreducible over Z but reducible modulo each prime! (will
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not prove this latter fact here). Irreducibility over integers is checked by
Eisenstein after changing X to X + 1.

9. X10 − 6iX7 + 8X3 − 1 + 3i is irreducible in Z[i][X].
Indeed, apply Eisenstein with the prime 1 + i.
Xn − p is also irreducible in the above ring for any odd prime number p.
Indeed, p is already prime if it is 3 mod 4. If it is 1 mod 4, take an irreducible
factor of it in the Gaussian ring.

10. R[X,Y ]/(X2 + Y 2 − 1),C[X,Y, Z]/(X2 + Y 2 + Z2 − 1) are not UFDs.
(Compare with the earlier application of Nagata criterion that the co-ordinate
ring of the real 2-sphere is a UFD.)
As X.X = 91 + Y )(1 − Y ) in the former case and (X + iY )(X − iY ) =
(1 + Z)(1− Z) in the latter case, the first two statements follow.

11. X100 − 123123X28 + 110 cannot take the values ±33 over integers.
Indeed, apply Eisenstein for the prime 7 or 11 for ruling out 33 and for the
prime 11 or 13 to rule out −33.

12. Z[
√−d] is not a UFD for any square-free integer d ≥ 3.

If d is odd, (1 +
√−d)(1−√−d) = 2((1 + d)/2).

If d is even, (2 +
√−d)(2−√−d) = 2(2 + d

2
).

13. The algebraic integers in Q[
√

d] for a square-free integer d consists of

Z[
√

d] or Z[1+
√

d
2

] according as to whether d ≡ 2, 3 mod 4 or d ≡ 1 mod 4.
Proof.
The minimal polynomial of an algebraic integer α = a + b

√
d must be in

Z[X] which gives 2a, a2 − db2 ∈ Z.
If a is not an integer, write 2a = a1 an odd integer. Now, writing b = b1/c1

we have
a2

1c
2
1 − 4db2

1 ∈ 4c2
1Z

since a2 − db2 ∈ Z.
So, 4/c2

1 and c2
1/4d. Clearly then c1 is even and thus it must be equal to 2

(otherwise d is not square-free). In other words, both a, b are half-integers
which are not integers.
As 4a2 − 4db2 = a2

1 − db2
1 is a multiple of 4, d must be 1 mod 4 in case a is

not an integer. Thus, d ≡ 2, 3 mod 4 cases are done. If d ≡ 1 mod 4, then
noting that (1 +

√
d)/2 is an algebraic integer, we are done.

14. In a Euclidean algorithm δ in a Euclidean domain, the quotient and

23



remainder are all unique if and only if δ(a + b) ≤ max(δ(a), δ(b)).
Proof.
If δ(a + b) > δ(a), δ(b) for some 0 6= a, b then the two divisions

b = 0(a + b) + b

b = 1(a + b)− a

are valid (as δ(b), δ(−a) < δ(a + b)) and give different quotients and remain-
ders.
Conversely, let a = qb+r = q′b+r′ with q, q′ different or r, r′ different. Then,
(q− q′)b = r− r′ gives a contradiction in case δ(r− r′) ≤ max(δ(r), δ(−r′)).

15. In Z[
√−7], for each k ≥ 2, there is an element which is a product of

2k, 2k + 1, · · · , 3k irreducible elements at the same time!
Proof.
8 = 2.2.2 = (1 − √−7)(1 +

√−7). Raise it to the k-th power and keep
replacing (1−√−7)(1 +

√−7) by 2.2.2.

16. Express 43i− 19 as a product of irreducibles in Z[i].
Indeed, 432 + 192 = 2210 = 17.13.5.2. As 4 ± i, 2 ± 3i, 2 ± i, 1 + i and their
associates are the irreducible factors, we need to pick from them. It turns
out that

43i− 19 = (4− i)(2 + 3i)(2 + i)(1 + i)

17. The quotient field of K[[X]] is the Laurent series field K((X)) :=
{∑n≥−N αnXn}.
Note that the quotient field of Z[[X]] is strictly contained in that of Q[[X]];
for example, eX .

18. If I + J = A (A commutative with unity), and if IJ is an n-th power of
an ideal, then so are I and J .
Proof.
Let IJ = Rn. Now Ir + Jr = A for all r ≥ 1 (c0nsider (x + y)2r where
x + y = 1 in I + J = A).
In particular, In−1 + J = A.
Then (I + R)n = In + In−1R + · · ·+ Rn = I(In−1 + · · ·+ J) = IA = I.

19. Let p > 2 be a prime. Then −2 is a square mod p if and only if p ≡ 1
or 3 mod 8. From this, it follows that a prime p ≡ 1, 3 mod 8 if and only if
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p = x2 + 2y2 for some integers x, y.
Proof.
The nontrivial part is to show that if p ≡ 1 or 3 mod 8, then −2 is a
square mod p. Let a ∈ F∗p2 have order 8. Then, a + a3 clearly satisfies
(a+a3)p = a+a3 (that is, a+a3 ∈ Fp) and (a+a3)2 = −2. Therefore, there
exists an integer b such that p|(b2 + 2). Then, use the fact that Z[

√−2] is a
UFD (as it is a ED).

20. If A is a Boolean, commutative ring (not assumed to have unity), then
each finitely generated ideal is principal.
Indeed, (a, b) = (a + b− ab).

21. For a polynomial f ∈ A[X] (with A commutative ring with unity), define
the polynomial f ′ in an obvious manner. Then, f has a multiple root α in
some ring B containing A if and only if f ′(α) = 0.

22. The only idempotent elements in a local ring are 0, 1.
In fact, if e(1−e) = 0, then exactly one of e and 1−e is in the maximal ideal.
If e is in it, then 1− e is a unit which means that 0 = e(1− e)(1− e)−1 = e.

Here is another nice application of the fact that K[t] is a UFD for any field
K. This is the analogue of Fermat’s last theorem. We have:
Let n ≥ 3 be not divisible by the characteristic of K. Then, for any a, b, c ∈
K∗, there are no solutions of afn + bgn = chn for coprime nonconstant poly-
nomials f, g, h ∈ K[t].
To prove this, we observe that we may assume K is algebraically closed.
Further, since n is not a mutiple of Char. K, one can extract n-th roots of
a, b, c in K∗ and thus we may assume that a = b = c = 1. The coprimality
assumption means clearly that they are pairwise relatively prime. Also, evi-
dently this is equivalent to the assumption that the sets of roots of f, g, h are
disjoint. Now, let us say deg g is maximal among the three and let us write
the equation fn + gn = hn as

fn =
n∏

i=1

(h− ζ ig)

where ζ = e2iπ/n.
If h − ζ ig and h − ζjg have a common root s for some i 6= j ≤ n, then
g(s) = 0 = h(s), a contradiction. Hence h− ζ ig, i ≤ n are pairwise coprime.
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Since K[t] is a UFD, we must have

h− ζ ig = cif
n
i

for some ci ∈ K and fi ∈ K[t]. Now, since n ≥ 3, the three polynomials
h − ζ ig for i = 0, 1, 2 are distinct, and hence, there is a linear dependence
relation between them since they are in the two-dimensional vector space
spanned by g, h. Such a relation clearly gives a relation of the form

a1f
n
1 + a2f

n
2 + a3f

n
3 = 0.

Once again, we may take n-th roots of the ai’s and we have an identity of
the form

gn
1 + gn

2 = gn
3

where deg gi = deg fi ≤ (deg g/n). Thus, we may apply induction on the
maximal degree deg g to prove the result.

We observed in UFDs that there are natural notions of the GCD and the
LCM of a finite set of elements. These were defined as they are done for
integers in terms of prime numbers - here one uses the prime elements. Of
course, the GCD and LCM are defined only upto units; this is also just as in
Z, where these are defined upto sign. Moreover, in integers, the GCD of a
and b is expressible as ax + by. This is true in PIDs but not true in general
UFDs. For instance, in K[X, Y ], where K is a field, X and Y are coprime
but there is no relation of the form 1 = Xf + Y g in K[X,Y ].
In a general integral domain, the GCD or LCM may not exist. We ask the
following questions (the following discussion is due to Dinesh Khurana and
appears in an article in Resonance) :
Q 1. Does the existence of GCD of two elements in a domain imply the
existence of their LCM?

Q 2. Does the existence of LCM of two elements in a domain imply the
existence of their GCD?
While the answer to the second question is in the affirmative, the answer to
the first one is in the negative. In fact, we show the existence of two elements
in each Z[

√−d], d ≥ 3 an integer, which have a GCD but fail to have an
LCM. As we observed above that in a UFD any two elements have an LCM,
it follows immediately that Z[

√−d], d ≥ 3 is not a UFD. It is well known
that Z[i] and Z[

√−2] are UFDs (in fact, they are even Euclidean domains).
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In Z[
√−d], d ≥ 3, we also use the proof to exhibit an irreducible element

which is not prime. This again reproves that Z[
√−d], d ≥ 3, is not a UFD.

Before going into our proof, we point out an important fact. In number
theory, one studies the rings Z[

√
d] for square-free d. Note that any element

of this ring is u = a + b
√

d which is a root of the polynomial (X − a)2 − db2;
this is a polynomial which has integer coefficients and is monic (i.e., has top
coefficient 1). Such complex numbers go under the name of algebraic integers.
Thus, elements of Z[

√
d] are algebraic integers. However, in number theory

one actually needs to study the set of all the algebraic integers in a particular
number field like Q[

√
d]. In Q[

√
d], which consists of all complex numbers of

the form s+ t
√

d with s, t rational numbers, the ring of all algebraic integers
may be larger than Z[

√
d]. For instance, for d = −3, the number 1

2
+

√−3
2

is

also an algebraic integer. Indeed, the ring of algebraic integers in Q[
√

d] is
Z[
√

d] or Z[(d +
√

d)/2] according as whether d ≡ 2 or 3 mod 4 or as d ≡ 1
mod 4. One calls the set of all algebraic integers in K = Q[

√
d] the ring of

integers of K. It was proved by Gauss that the ring of integers of quadratic
field Q[

√−d] is a UFD for d = 1, 2, 3, 7, 11, 19, 43, 67 and 163. Gauss also
conjectured that for no other positive d is the ring of integers of Q[

√−d] a
UFD. This conjecture was proved, after about 150 years, in 1966 by Baker
and Stark independently. As the ring of integers of Q[

√−d] is Z[
√−d] if

d ≡ 2 or 3(mod 4), so an easy proof of Gauss conjecture follows in these two
cases.

The first observation is:
Let D be an integral domain and a, b, r ∈ D. If (ra, rb) exists then (a, b)
exists and r(a, b) = (ra, rb).
Here is the proof. As r divides both ra, rb, g = (ra, rb)/r is in D. Now as
(ra, rb) divides ra and rb, g divides a and b. Now if d divides a and b, then
dr divides ar and br and thus dr divides (ar, br). This implies that d divides
(ar, br)/r.

The second observation is:
Let a, b ∈ D. Then [a, b] exists if and only if (ra, rb) exists for all r ∈ D.
Here is the proof. Suppose [a, b] exists. We show that d := ab/[a, b] equals
(a, b). As a = d[a, b]/b and b = d[a, b]/a, d divides both a and b. Now suppose
that h is a common divisor of a and b. Now as a, b both divide ab/h, [a, b]
divides ab/h which implies that h divides ab/[a, b] = d. Thus if [a, b] exist
then so does (a, b) and equals ab/[a, b].
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Now we show that if [a, b] exists then so does [ra, rb] for all in D. First note
that ra, rb both divide r[a, b]. Now suppose m is a common multiple of ra, rb.
Then r divides m and a, b both divide m/r. Thus [a, b] divides m/r and so
r[a, b] divides m. Thus [ra, rb] = r[a, b].
Now, we claim that if (ra, rb) exists for all r, then [a, b] exists and equals l :=
ab/(a, b). Clearly a, b both divide l. Now suppose a, b both divide m. Then
ab is a common divisor of ma and mb and so ab divides (ma, mb) = m(a, b)
by the earlier result above. This implies that ab/(a, b) divides m. Thus, we
have :
If [a, b] exists then (a, b) exists and [a, b](a, b) = ab.

Let us now prove :
In each Z[

√−d], d ≥ 3 an integer, there exist two elements a, b such that
(a, b) exists but [a, b] does not exist. In particular, Z[

√−d], d ≥ 3, is not a
UFD.
Proof.
First suppose that d + 1 is not a prime number. Let d + 1 = pk, where p
is a prime and k ≥ 2. Clearly a2 + db2 6= p for any a, b ∈ Z because the
left hand side is bigger than p if b 6= 0. If p = (a + b

√−d)(u + v
√−d)

in Z[
√−d], then taking complex conjugates we see that u = a, v = −b.

Thus, p = a2 + db2, which is impossible as observed above. Therefore, p is
an irreducible element in Z[

√−d]. Also p does not divide 1 +
√−d because

p(a+b
√−d) = 1+

√−d gives pa = 1 which is impossible. Thus, (p, 1+
√−d)

exists and equals 1. We shall show that (pk, (1 +
√−d)k) does not exist.

If it did, then by the first observation, (pk, (1 +
√−d)k) = k. Then as

1 +
√−d divides pk = 1 + d and (1 +

√−d)k, 1 +
√−d divides k. Let

k = (1 +
√−d)(a + b

√−d) = (a− bd) + (a + b)
√−d. This gives a = −b and

a− bd = a + ad = k. Thus apk = a(1 + d) = k which is a contradiction. In
view of the second observation, it follows that [p, 1 +

√−d] does not exist.
Now suppose that d+1 is a prime. Then d and d+4 are even integers. Let

d + 4 = 2k, for some k > 1. As above, one easily checks that 2 is irreducible
and 2 does not divide 2 +

√−d. Thus (2, 2 +
√−d) exists and equals 1. We

show that (2k, (2+
√−d)k) does not exist. If it did, then as above, 2+

√−d
divides k and which in turn implies that 4 + d divides k = (4 + d)/2 in Z.
This contradiction shows by above that [2, 2 +

√−d] does not exist.

In the above proof, note that when d+1 = pk, p divides d+1 = (1+
√−d)(1−√−d) but p clearly does not divide either of 1+

√−d and 1−√−d, showing
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that p, which is irreducible, is not prime. Similarly in the second part of the
proof, 2 divides d + 4 = (2 +

√−d)(2 −√−d) but does not divide either of
them, which shows that 2 is not prime. This also proves that Z[

√−d], d ≥ 3,
is not a UFD.

A general criterion available to check irreducibility of a polynomial over a
UFD is the Eisenstein criterion. Even over Z, this is the only general cri-
terion. However, before stating and proving it, we mention a very simple
but important general method of concluding that an integral polynomial is
irreducible. This works ‘by hand’. To illustrate it, consider the polynomial
p(X) = X4 + 3X2 + 7X + 4. Modulo 2, we have p(X) = X(X3 + X + 1) and
both factors are irreducible over the field ZZ/2. We say that decomposition
type of p(X) mod 2 is 1, 3. Therefore, either p is irreducible over ZZ or if not,
it is a product of a linear factor and an irreducible factor of degree 3 over ZZ.
But, modulo 11, we have p(X) = (X2 + 5X − 1)(X2 − 5X − 4) where both
factors are irreducible over the field ZZ/11. That is, the decomposition type
of p mod 11 is 2, 2. Thus, it cannot be that p has a linear factor over ZZ. In
other words, p must be irreducible over ZZ.

(Eisenstein’s criterion)
If A is a domain and 0 6= f =

∑n
i=0 aiX

i ∈ A[X] is monic such that there is
a prime element p ∈ A satisfying p/ai; 0 ≤ i < n, p 6 |an, p2 6 |a0, then f is an
irreducible element.
The proof is easy. Indeed, reduce the coefficients of f modulo the prime ideal
(p) in A. Thus, we have a homomorphism from A[X] to (A/(p))[X] and let
us denote the image of any a ∈ A in A/(p) by ā and that of a polynomial
u ∈ A[X] by ū. Now, if f = gh in A[X] with the degrees of g and h less than
n, we have Xn = ḡh̄. Writing

g = g0 + g1X + · · ·+ grX
r,

h = h0 + h1X + · · ·+ hsX
s,

we have ḡ0h̄0 = 0. As A/(p) is a domain, one of these is zero. Exactly
one of them only can be zero since p2 does not divide a0 = g0h0. Suppose
ḡ0 = 0 6= h̄0. Then, recursively, comparing the coefficients of X,X2 etc. in
the equation Xn = ḡh̄ we obtain ḡ1 = 0 = ḡ2 etc. Finally, we obtain ḡr = 0
which contradicts the fact that gr is a unit in A because grhs = 1. Therefore,

§ The basis theorem

29



In this section, we discuss the following basic result due to Hilbert which,
together with Hilbert’s nullstellensatz, gave birth to modern algebraic ge-
ometry. The proof is existential and prompted one top mathematician of
those times to remark ”das is nicht mathematik; das ist theologie” (this is
not mathematics; it is theology).

Hilbert Basis theorem
Let A be a ring in which each ideal is finitely generated. Then, the same
holds for A[X].
In particular, ideals in Z[X] are finitely generated; we already saw that this
is not a PID although Z is.
Proof :
Let I ⊂ A[X] be any non-zero ideal. We consider the subset Jn of A con-
sisting of zero along with all those elements which occur as the top coeffi-
cient of some non-zero polynomial of degree ≤ n in A[X]. Then, Jn is an
ideal of A and, Jn ⊂ Jn+1 for each n. Note that if a monic polynomial of
some degree n exists in I, then all Jm for m ≥ n are unit ideals. Let also
J =

⋃
n≥0 Jn. By hypothesis, there are generators a1, · · · , ar of J . Choose and

fix f1, · · · , fr ∈ A[X] which have top coeficients a1, · · · , ar. Suppose N is the
maximum of the degrees of the fi’s. Now, we consider the ideals J0, · · · , JN−1.
Choose a finite set of generators for each of them and choose corresponding
polynomials in I whose top coefficients are these generators. Call the poly-
nomials corresponding to Jk to be fk1, · · · , fk,tk for each k = 0, · · · , N−1. We
claim that the polynomials f1, · · · , fr along with these polynomials generate
I. This will be proved by induction. Let f ∈ I. If deg f = 0 then f ∈ J0

and we are done. Suppose deg f > 0. If deg f ≥ N , then we write a for
the top coefficient of f . Then, since a =

∑r
i=1 biai for some bi ∈ A, we have

f −∑
i biX

degf−degfifi is an element of I with degree < deg f . By the induc-
tion hypothesis, we get the assertion for f . Now, if deg f = n < N , clearly
its top coefficient c is expressible as a A-linear combination of generators
of Jn. But then subtracting from f , the same A-linear combination of the
elements fn1, · · · , fn,tn , we have a polynomial in I of smaller degree than f .
By the induction hypothesis, we are through.

From the above, we have in K[X1, · · · , Xn] for any field K, that ideals are
finitely generated. The usefulness of this result is that in Kn, the set of points
of intersection of an infinite set of polynomial equations in n variables, is also
the set of points of intersection of finitely many polynomials.
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Note that if I ⊆ K[X1, · · · , Xn] is a nonzero ideal, the above proof involves
the set

LT (I) := {cX i1
1 · · ·X in

n : ∃f ∈ I, cX i1
1 · · ·X in

n = LT (f)}

where LT (f) denotes the leading term of f . Notice that if f1, · · · , fr generate
I, then the ideal generated by LT (fi), i = 1, · · · , n is contained in the ideal
generated by LT (I).
It may very well happen that these are unequal. For instance, if f1 = X3 −
2XY, f2 = X2Y − 2Y 2 + X and I =< f1, f2 >⊂ K[X, Y ], then X2 ∈ I. So,
X2 ∈< LT (I) > but it is easy to see that X2 6∈< LT (f1), LT (f2) >.
But, in general, it is a fact that one may choose generators f1, · · · , fr for any
ideal I such that

< LT (I) >=< LT (f1), · · · , LT (fr) > .

Such a basis is called a Gröbner basis and it has nowadays grown to be a
very powerful method of doing constructive algebraic geometry.
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Some questions on commutative rings for UGC course Nov. 2003

B.Sury

In what follows, A is a commutative ring containing 1.

Q 1.
Let I be a finitely generated ideal of A in which each element a can be ex-
pressed as a finite sum b1c1 + b2c2 + · · · + bncn for some bi, ci ∈ I and some
n ≥ 1. Prove that I can be generated by a single element e satisfying e2 = e.

Q 2.
Suppose every ideal in A is finitely generated. Let θ : A → A be a ring
homomorphism which is onto. Prove that θ must also be 1− 1.

Q 3.
Suppose A is an integral domain. Then prove that A is a UFD if, and only
if, every nonzero prime ideal contains a prime element.

Q 4.
Show that if every prime ideal of A is finitely generated, then so is every
ideal.
Show that if every prime ideal is principal, then so is every ideal.

Q 5.
Suppose A is a UFD and K denotes its quotient field. If f is a monic integral
polynomial, say f(X) = a0 + a1X + · · · + an−1X

n−1 + Xn with ai ∈ A and,
if f(a/b) = 0 for some a/b ∈ K, prove that a/b ∈ A.
Apply this to A = ZZ to deduce that

√
2 is irrational.

Q 6.
Find all the ideals of the ring ZZ[X].

Q 7.
Prove the following generalisation of Eisenstein’s criterion.
Let f(X) = a0 + a1X + · · · + anXn be an integral polynomial satisfying the
following property with respect to some prime p. There exists 0 < t ≤ n be
such that the prime p divides a0, a1, · · · , an−t but does not divide an. Also,
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assume that p2 does not divide a0. Then, f is either irreducible or it has a
nonconstant factor of degree less than t.

Q 8.
Show that the quotient ring K[X, Y ]/(X2 + Y 2 − 1) is a UFD if K = CI and
is not a UFD if K = IR.

Q 9.
Let A ⊂ B be domains and assume that each b ∈ B satisfies a monic poly-
nomial with coefficients in A. Prove that A is a field if, and only if, B is a
field.

Q 10.
Let d be any (positive or negative) integer such that |d| = p1p2 · · · pr where
pi are distinct primes. If K = {a + b

√
d ∈ CI : a, b ∈ QI }, then show that

the subset B := {z ∈ K : z satisfies a monic integral polynomial } equals,

respectively, {a + b
√

d ∈ CI : a, b ∈ ZZ}, or {a + b1+
√

d
2

∈ CI : a, b ∈ ZZ}
according as whether d ≡ 2, 3 mod 4 or d ≡ 1 mod 4.
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