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de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes
qui peuvent les produire, J. Math. Pures Appl. 5 (1840) 380–440.

24. J. Synge, Classical dynamics, in Encyclopedia of Physics. Vol. III/1. Edited by S. Flügge. Springer,
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A Heuristic Argument for Hua’s Identity Using Geometric Series

In a ring, Hua observed the identity

x − xyx = (x−1
+ (y−1

− x)−1)−1

when the inverses above exist. He used this to deduce that an additive homomor-
phism θ of a division ring which satisfies θ(1) = 1, θ(x−1) = θ(x)−1, is either
a ring homomorphism or an anti-homomorphism. A folklore trick is to use an
analogy with geometric series to deduce in a ring that if a, b are such that 1− ba
is a unit, then so is 1− ab and

(1− ab)−1
= 1+ a(1− ba)−1b.

Indeed, the way to discover this is to write informally

(1− ab)−1
= 1+ ab + abab + · · ·

= 1+ a(1+ ba + baba + · · · )b

= 1+ a(1− ba)−1b.

This heuristic argument enables us to discover the equality of the expressions
(1− ab)−1 and 1+ a(1− ba)−1b. A formal proof is seen by simple verification!
Hua’s identity follows using this as:

(x − xyx)−1
= ((1− xy)x)−1

= x−1(1− xy)−1

= x−1(1+ x(1− yx)−1 y) = x−1
+ (1− yx)−1 y

= x−1
+ (y−1(1− yx))−1

= x−1
+ (y−1

− x)−1.
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