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Abstract. In this article, we discuss some of the present-day methods used

in dealing with Diophantine equations of the form f(x) = g(y) for solutions in

integers x, y, where f, g are polynomials with integer coefficients. We mention

mainly results proved in the last two decades and, point out in the last section

some unsolved questions arising from an observation of Ramanujan. This is

a survey meant for non-experts and students. The last section has some new

results for which we give complete proofs.

1. Introduction

The theory of Diophantine equations is a branch of number theory which deals

with the solutions of integer polynomial equations in integers; more generally, it

is customary to also consider solutions in rational numbers. A unique aspect of

this subject is that it is most often very easy to state the problem but it is very

difficult to guess if the problem is trivial to solve or, if it needs deep ideas from

other branches of mathematics. A well-known example is Fermat’s Last theorem

which was solved more than 350 years after it was stated, using very deep ideas

from various branches of mathematics.

Questions on counting often involve finding integer solutions of equations of

the form f(x) = g(y) for integral polynomials f, g. An example comes from count-

ing lattice points in generalized octahedra. The number of integral points on the

n-dimensional octahedron |x1| + |x2| + · · · + |xn| ≤ r is given by the expression

pn(r) =
∑n

i=0 2
i
(

n
i

)(

r
i

)

and the question of whether two octahedra of different di-

mensions m,n can contain the same number of integral points becomes equivalent

to the solvability of pm(x) = pn(y) in integers x, y. Another natural question is to

determine, for fixed distinct natural numbersm,n, how often
(

x
m

)

=
(

y
n

)

in integers

x and y. Bilu, Rakaczki, Stoll and Tichy ([3]) have established precise finiteness
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results for these equations. One more result of this kind proved by Stoll & Tichy is

that for the sequences of classical orthogonal polynomials pm(x) like the Laguerre,

Legendre and Hermite polynomials, an equation of the form apm(x) + bpn(y) = c

with a, b, c ∈ Q and ab 6= 0 and m > n ≥ 4 has only finitely many solutions

in integers x, y. Yet another classical problem is to find products of consecutive

integers which are perfect powers. Erdős and Selfridge ([9]) proved in 1975 that

any finite product of consecutive integers can never be a perfect power. In other

words, the Diophantine equation

x(x + 1)(x+ 2) · · · (x+m− 1) = yn

does not have any nontrivial solution in integers when m, n > 1. In a later section,

we will outline a proof of this classical result. Another example is the question as

to which natural numbers have all their digits to be 1 with respect to two different

bases. This is equivalent to solving

xm − 1

x− 1
=

yn − 1

y − 1

in natural numbers x, y > 1 for some m,n > 2. For example, it was Observed by

Goormaghtigh nearly a century ago that 31 and 8191 have this property

(11111)2 = (111)5 , (111)90 = 213 − 1.

However, it is still unknown whether there are only finitely many solutions in all

variables x, y,m, n. In fact, no other solutions are known.

Let us begin by discussing a beautiful theorem.

2. Erdős-Selfridge theorem

As mentioned in the introduction, Erdős and Selfridge ([9]) proved in 1975 that

any finite product of consecutive integers can never be a perfect r-th power for any

r > 1. They used a classical theorem due to Sylvester which asserts (see also [25]):

Theorem 2.1 (Sylvester). Any set of k consecutive positive integers, with the

smallest > k, contains a multiple of a prime > k.

Note that the special case of this, when the numbers are k + 1, · · · , 2k, is known

as Bertrand’s postulate. We outline the proof of the Erdős-Selfridge theorem for

the case of squares.

Suppose (n+1)(n+2) · · · (n+k) = y2 in positive integers n, y where k ≥ 2. Write

n+ i = aix
2
i with ai square-free. Clearly each prime factor of each ai is less than

k. The key point is to show that all these ai’s must be distinct.

Now, if n < k then Bertrand’s postulate gives a prime p between [(n + k)/2] and

n + k. As n < (n + k)/2, the prime p is one of the terms n + i(1 ≤ i ≤ k)

and, therefore, p2 cannot divide the product (n+ 1)(n+ 2) · · · (n+ k) which is a

contradiction.
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If n ≥ k then Sylvester’s theorem gives a prime number q > k which divides the

product (n + 1)(n + 2) · · · (n + k) = y2. So, q2 divides some n + i and hence

n+ i ≥ q2 ≥ (k + 1)2. Therefore, n ≥ k2 + 1; that is, n > k2.

But, if ai = aj for some i > j, then

k > (n+ i)− (n+ j) = aj(x
2
i − x2

j ) > 2ajxj ≥ 2
√

ajx2
j = 2

√

n+ j >
√
n,

a contradiction.

Finally, one easily bounds the product a1a2 · · · ak below by the product of the

first k s quare-free numbers and one uses the fact that each prime divisor of each

ai is < k to bound the product of the ai’s from above to get a contradiction.

3. Modus operandi-Siegel’s theorem

Many results appearing in the last ten years have been made possible by a beautiful

theorem of Bilu & Tichy which was built out of deep ideas of Michael Fried (see [11],

[12], [13]). To motivate these results, we first need to recall the basic classical

theorem due to C. L. Siegel. More generally, consider a polynomial F ∈ Z[X,Y ].

Recall that F is said to be absolutely irreducible if it is irreducible over the field

Q of algebraic numbers. Then, the celebrated 1929 theorem due to Siegel ([26])

asserts:

Theorem 3.1 (Siegel, 1929). If F ∈ Z[X,Y ] is absolutely irreducible and the

curve F = 0 has genus > 0, then the number of integral points on the curve is

finite. Further, the finiteness of the number of integer points holds good except

when the (projective completion of the) curve defined by F = 0 has genus 0 and at

most 2 points at infinity.

For the rational solutions, a finiteness theorem is the following one due to Faltings

([10]).

Theorem 3.2 (Faltings, 1983). If F ∈ Q[X,Y ] is irreducible, and if the curve

F = 0 has genus > 1, then the equation F (x, y) = 0 has only finitely many

solutiuons x, y ∈ Q.

As this article is meant for students also, we will explain the notions involved and

how one computes the relevant things. Before that, we explain how the theorem

is used in proving finiteness of solutions of Diophantine equations. It should be

pointed out that Siegel’s theorem is, unfortunately, ineffective - in other words, no

explicit bound for x, y can be determined beyond which there are no solutions.

To determine finiteness or otherwise of the integral solutions of a given equation

F (x, y) = 0 using Siegel’s theorem, one splits F (x, y) into irreducible factors in

Q[x, y], and for each factor which is irreducible over Q̄ one finds the genus and the

number of points at infinity. Then, for each of those factors which have genus 0
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and ≤ 2 points at infinity, one can try to determine whether the number of integral

solutions is finite or not.

4. Genus of the curves f(X) = g(Y )

In order to keep the discussion as elementary as possible, we do not go into general

definitions of genus but merely recall how the genus is determined. As mentioned

at the outset, we will stick to curves of the form f(X) = g(Y ). Recall that a

complex zero of f ′ is called a stationary point of the polynomial f ; we denote by

Sf , the set of stationary points of f . The classical Riemann-Hurwitz formula can

be applied to the function field extension C(X,Y )/C(Y ) given by f(X)− g(Y ) to

deduce ([4]) the following explicit result.

Lemma 4.1. Let f, g ∈ C[X ] be two polynomials such that the polynomial f(X)−
g(Y ) ∈ C[X,Y ] in two variables is irreducible. Suppose the stationary points of f

and g are simple. For each stationary point a ∈ Sf , define

ra := |{b ∈ Sg : f(a) = g(b)}|.

Then, the genus g of the curve f(X) = g(Y ) is given by

2g =
∑

a∈Sf

(deg(g)− 2ra)− deg(f) + 2−GCD(deg(f), deg(g)).

Let us see how useful this is by means of the following simple example.

Example 4.2. For any λ ∈ C∗, consider the equation

x(x + 1) = λy(y + 1)(y + 2). (4.1)

If f(X) = X(x + 1) and g(Y ) = Y (Y + 1)(Y + 2) then Sf = {−1/2} and Sg =

{2
√
3/9,−2

√
3/9}. Now g(±2

√
3/9) = f(−1/2) if, and only if, λ = ±3

√
3/8, and

in this case r−1/2 = 1. Therefore, the genus is 0 for λ = ±3
√
3/8, and 1 for other

λ. Hence, it follows from Siegel’s theorem that the equation (4.1) has only finitely

many integral solutions unless λ = ±3
√
3/8.

Definition 4.3 (Points at infinity). Given F ∈ Q[X,Y ], one may homogenize

this polynomial to a homogeneous polynomial of three variables X,Y, Z. Then, the

points in the projective space corresponding to the solutions of F (x, y, 0) = 0 are

called the points at infinity of the curve F = 0.

In Siegel’s theorem, finiteness of integral solutions follows if either genus of the

curve is positive or, if the genus is 0 but there are at least three points at infinity.

Therefore, to check for finiteness of integral solutions, one computes the genus

and, when it is 0 and there are at most two points at infinity, check separately for

finiteness of integral solutions.
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5. Congruent numbers

In this section, we discuss the classical congruent number problem which leads

to an equation of the form f(x) = g(y); more precisely, an equation of the form

y2 = x(x+n)(x−n) where n is a positive integer. However, in this case, we will be

interested in solutions in rational numbers. The curve Y 2−X(X+n)(X −n) = 0

arising in this manner has genus 1 as we can easily check from the above lemma

on genus computation. Therefore, Siegel’s theorem shows finiteness of the number

of integer solutions. However, Faltings’s theorem quoted above for finiteness of

rational solutions does not apply as the genus is 1.

A positive integer d is said to be a congruent number if there is a right-angled

triangle with rational sides and area d.

It is an ancient Greek problem to determine which positive integers are con-

gruent numbers and which are not. Firstly, the property of being a congruent

number for a positive integer d turns out to be equivalent to the existence of an

arithmetic progression of three terms which are all squares of rational numbers

having the common difference d. Here is an argument to show the equivalence.

Indeed, let u ≤ v < w be the sides of a right triangle with sides rational. Then

x = w/2 is such that (v − u)2/4, w2/4, (u+ v)2/4 form an arithmetic progression.

Conversely, if x2 − d = y2, x2, x2 + d = z2 are three rational squares in arithmetic

progression, then z−y, z+y are the legs of a right angled triangle with legs rational,

area (z2 − y2)/2 = d and rational hypotenuse 2x because 2(y2 + z2) = 4x2.

For example, 5, 6 and 7 are congruent numbers. This can be seen by considering

the following three right-angled triangles:

with sides 3/2, 20/3 and 41/6 having area 5;

with sides 3, 4 and 5 having area 6;

and, with sides 35/12, 24/5 and 337/60 having area 7.

On the other hand, 1, 2 and 3 are not congruent numbers. The fact that 1, 2 are

not congruent numbers is essentially equivalent to Fermat’s last theorem for the

exponent 4.

Indeed, if a2 + b2 = c2, 1
2ab = 1 for some rational numbers a, b, c then x =

c/2, y = |a2 − b2|/4 are rational numbers satisfying y2 = x4 − 1. Similarly, if

a2 + b2 = c2, 1
2ab = 2 for rational numbers a, b, c, then x = a/2, y = ac/4 are

rational numbers satisfying y2 = x4 + 1.

These equations reduce to the equation x4 ± z4 = y2 over integers which was

proved by Fermat, using the method of descent, not to have nontrivial solutions.

The unsolvability of y2 = x4 ± 1 in rational numbers is exactly equivalent to

showing 1, 2 are not congruent.
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In fact y2 = x4 − 1 for rational x, y gives a right-angled triangle with sides

y/x, 2x/y, (x4 + 1)/xy and area 1. Similarly, y2 = x4 + 1 for rational x, y gives a

right-angled triangle with sides 2x, 2/x, 2y/x and area 2.

Though it is an ancient problem to determine which natural numbers are congru-

ent, it is only in late 20th century that substantial progress has been made.

The rephrasing in terms of arithmetic progressions of squares emphasizes a con-

nection of the problem with rational solutions of the equation y2 = x3−d2x. Such

equations define elliptic curves. It turns out that

d is a congruent number if, and only if, the elliptic curve Ed : y2 = x3 − d2x

has a solution with y 6= 0.

In fact, a2+b2 = c2, 1
2ab = d implies bd/(c−a), 2d2/(c−a) is a rational solution

of y2 = x3−d2x. Conversely, a rational solution of y2 = x3−d2x with y 6= 0 gives

the rational, right-angled triangle with sides (x2 − d2)/y, 2xd/y, (x2 + d2)/y and

area d.

The set of rational solutions of an elliptic curve over Q forms a group and it is

an easy fact, from the way the group law is defined, that there is a solution with

y 6= 0 if and only if there are infinitely many rational solutions ([15]). Therefore,

if d is a congruent number, there are infinitely many rational-sided right-angled

triangles with area d.

A point to note is that even for an equation with integral coefficients as the one

above, it is the set of rational solutions which has a nice (group) structure. Thus,

from two rational solutions, one can produce another rational solution by ‘com-

position’. So, it is inevitable that in general one needs to understand rational

solutions even if we are interested only in integral solutions. For example, the

equation y2 = x3 + 54 has only two integral solutions (3,±9) but the set of ratio-

nal solutions is the infinite cyclic group generated by (3, 9).

The connection with elliptic curves has been used to show that numbers which are

1, 2 or 3 mod 8 are not congruent.

Further, assuming the truth of the weak Birch & Swinnerton-Dyer conjecture

([15]), Stephens showed this provides a complete characterization of congruent

numbers.

6. Irreducibility, indecomposability and Fried’s work

It was Michael Fried who realized the peculiarities of factorizing a polynomial of

the form f(X) − g(Y ). He used geometric methods - particularly, the theory of

monodromy groups - to deduce several striking results. Historically, one of the

earliest irreducibility results was proved by Ehrenfeucht ([8]) in 1958; it asserts :

Theorem 6.1 (Ehrenfeucht). If deg f, deg g are relatively prime, then f(X)−g(Y )

is irreducible.

The proof is not difficult and can be worked out by defining a weighted degree of
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polynomials in C[X,Y ] with weight deg(f) for X and deg(g) for Y and comparing

the top degree terms in an expression of the form

f(X)− g(Y ) = F (X,Y )G(X,Y ).

We mention in passing that Davenport, Fried, Leveque, Lewis, Runge, and Schinzel

made fundamental contributions to the question of irreducibility of f(X)− g(Y );

see [16], [7], [23], [24], [27], [28].

There are some cases when one can observe that f(X) − g(Y ) is reducible. For

instance, over C, Tn(X) + Tn(Y ) is a product of quadratic factors (and a linear

factor if n is odd) where Tn(X) is the Chebychev polynomial Tn(X + X−1) =

Xn+X−n. Another simple observation is that if f1, g1, F are polynomials with deg

F > 0, then f1(X)−g1(Y ) is a factor of F (f1(X))−F (g1(Y )). Thus, the possibility

of decomposing two given polynomials f, g in the form f = F ◦ f1, g = F ◦ g1 for

a single, nonconstant polynomial F becomes interesting and is of relevance. A

remarkable result due to Fried & MacRae (1969) ([14]) is that the converse also

holds.

Proposition 6.2. f(X) − g(Y ) has a factor of the form f1(X) − g1(Y ) if (and

only if), there is F (T ) ∈ C[T ] such that

f(T ) = F (f1(T )) , g(T ) = F (g1(T )).

Fried had made a deep study of the factors of f(X) − g(Y ) and proved in 1973

the following theorem([11]).

Theorem 6.3. Given f, g ∈ Z[X ], there exist f1, f2, g1, g2 in Z[X ] such that

(1) f(X) = f1(f2(X)), g(X) = g1(g2(X)),

(2) Splitting fields of f1(X)− t and of g1(X)− t over Q(t) (where t is a new

indeterminate) are the same, and

(3) the irreducible factors of f(X)−g(Y ) are in bijection with those of f1(X)−
g1(Y ).

6.1. Arithmetic monodromy groups. The above results follow by considera-

tions of monodromy groups. Firstly, we call f = f1 ◦ f2 a proper decomposition of

the polynomial f if f1, f2 are both nonconstant polynomials. If a proper decompo-

sition exists, one says f is decomposable; otherwise, it is said to be indecomposable.

As this notion is insensitive to linear changes of the variable, there is an evident

notion of equivalent decompositions.

Now, if f ∈ Z[X ] is a nonconstant monic polynomial, then consider a splitting

field K of the polynomial f(X)− t over Q(t); the Galois group G := Gal (K/Q(t))

viewed as a group of permutations of the roots of f(X) − t in K, is known as

the arithmetic monodromy group of f . If K = Q(t)(α), then f(α) = t. Consider
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the stabilizer subgroup H of α in G. The theorem of Luröth helps us derive the

following reformulation of decomposability of f .

Proposition 6.4 ([17], Lemma 2.7). Let f,K, α,G,H be as above. Let f =

f1(f2(· · · (fr)) · · · ) be a decomposition of f into indecomposable polynomials fi

over Q. Let Hi denote the stabilizer in G of fi(fi+1(· · · (fr(α))) · · · ) for 1 ≤ i ≤ r.

Then,

G ⊃ H1 ⊃ H2 · · · ⊃ Hr ⊃ H

is a maximal strictly decreasing chain of intermediate subgroups between G and H.

Conversely, any such strictly decreasing maximal chain of subgroups corresponds

to a decomposition of f into indecomposables.

Implicit in the above proposition are two classical theorems of Ritt ([22]) from

1922. The first theorem says that any two proper decompositions have the same

length and the second one finds all solutions of f1 ◦ f2 = g1 ◦ g2 when f1, g1 have

coprime degrees and g1, g2 have coprime degrees.

As we mentioned earlier, applying Siegel’s theorem involves checking irreducibil-

ity of f(X) − g(Y ); so, a related question is to determine when a decomposable

polynomial f1 ◦ f2 is irreducible. This is addressed by the following elementary

classical lemma.

Lemma 6.5 (Capelli). Let f1, f2 ∈ K[X ], where K is an arbitrary field. Let α be

a root of f1 in a fixed algebraic closure K̄ of K. Then, f1 ◦ f2 is irreducible over

K if, and only if, f1 is irreducible over K and f2 − α is irreducible over K(α).

Proof. Let f2(β) = α where β ∈ K̄. Then f1(f2(β)) = 0 which means that

[K(β) : K] ≤ deg(f1 ◦ f2) = deg(f1) deg(f2).

But, [K(β) : K(α)] ≤ deg(f2 − α) = deg(f2). As [K(α) : K] ≤ deg(f1), it follows

that

[K(β) : K] = [K(β) : K(α)][K(α) : K] ≤ deg(f1) deg(f2)

with equality holding in the last inequality if, and only if, [K(β) : K(α)] = deg(f2),

and [K(α) : K] = deg(f1). In other words, f1 ◦ f2 is irreducible if, and only if, f1

is irreducible over K and f2 − α is irreducible over K(α). �

In various special cases, the following elementary observation can be used to prove

indecomposability of a polynomial. First, we recall a definition.

For a polynomial P (x) ∈ C[x], a complex number c is said to be an extremum,

if P (x) − c has multiple roots. The type of c (with respect to P ) is defined to be

the tuple (µ1, · · · , µs) of the multiplicities of the distinct roots of P (x) − c.
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Lemma 6.6. Let f be any complex polynomial and suppose f = g ◦ h for complex

polynomials g, h of degrees ≥ 2. Then, if α ∈ C is such that g′(α) = 0, then the

polynomial h(x)−α divides both f(x)−g(α) and f ′(x). In particular, if f(x) ∈ C[x]

satisfies the condition that any extremum λ ∈ C has the type (1, 1, · · · , 1, 2), then
f is indecomposable over C.

Proof. The former statement implies the later one. For, it implies that if f(x) =

G1(G2(x)) is a decomposition of f(x) with deg G1, G2 > 1, then there exists λ ∈ C

such that deg gcd (f(x)−λ, f ′(x)) ≥ deg G2. But, then the type of λ (with respect

to f) cannot be (1, 1, · · · , 1, 2). So, we prove the former statement. Evidently, for

any α ∈ C, the polynomial h(x) − α divides f(x) − g(α). Moreover, if α is such

that g′(α) = 0, then consider any root θ of h(x)−α. Suppose its multiplicity is a.

Then, since the multiplicity of θ in h′(x) is a− 1 and since g′(h(θ)) = g′(α) = 0, it

follows that (x− θ)a divides f ′(x) = g′(h(x))h′(x). This completes the proof. �

We remark that the proof shows the following refined version of above lemma

holds for polynomials over Q. If f(x) ∈ Q[x] is such that each extremum λ ∈ Q̄

of degree ≤ degf
2 − 1 has type (1, 1, · · · , 1, 2), then f is indecomposable over Q.

The above observation can be used to verify, for instance, that the polynomials

1 +X + X2

2! + · · ·+ Xn

n! are indecomposable (see section 9).

7. Baker and Schinzel-Tijdeman theorems

In general, using Siegel’s theorem yields ineffective results. However, for special

cases, one might hope for effective results. In 1969, Alan Baker ([1]) considers the

equation f(x) = yn when n ∈ Z is fixed. He proves the following theorem,

Theorem 7.1. (Baker.) Assume that f(x) ∈ Q[x] has at least 3 simple roots and

n > 1, or f(x) has at least 2 simple roots and n > 2. Then, the equation f(x) = yn

has only finitely many solutions in x ∈ Z and y ∈ Q; further, the solutions can be

effectively computed.

In 1976, Schinzel & Tijdeman ([27]) proved the following beautiful effective result

where n also varies.

Theorem 7.2. Schinzel-Tijdeman Let f ∈ Q[X ] have at least two simple roots.

Then, there exists an effectively computable constant N(f) such that for any solu-

tion of f(x) = yn in integers x, n and y ∈ Q, we have n ≤ N(f).

We note that in the above theorems we are sometimes looking more generally

allowing some variables to take rational values rather than just integer values.

8. The Bilu-Tichy theorem

As Siegel’s theorem is ineffective, it is particularly difficult to use when polynomials

depending on parameters are involved in the Diophantine equation. Building on
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Fried’s work, in 2000, Bilu and Tichy proved a remarkable theorem in which they

obtained an explicit finiteness criterion for the equation f(x) = g(y). Before going

to the statement of the theorem first let us recall some concepts.

Two decompositions F (x) = G1(G2(x)) and F (x) = H1(H2(x)) are called equiva-

lent if there exist a linear polynomial l(x) ∈ C[x] such that G1(x) = H1(l(x)) and

H2(x) = l(G2(x)).

The Dickson polynomial Dn(x, a) is defined as

Dn(x, a) =

[n2 ]
∑

i=0

n

n− i

(

n− i

i

)

(−a)ixn−2i.

It has degree n.

In what follows a and b are nonzero elements of some field, m and n are positive

integers, and p(x) is a nonzero polynomial (which may be constant).

Definition 8.1. By a standard pair over a field k, we mean that a, b ∈ k, and

p(x) ∈ k[x]. A standard pair

(1) of the first kind is (xu, axvp(x)u) or (axvp(x)u, xu), where 0 ≤ v < u,

(v, u) = 1 and v + degp(x) > 0.

(2) of the second kind is (x2, (ax2 + b)p(x)2) or (ax2 + b)p(x)2, x2).

(3) of the third kind is (Dk(x, a
l), Dl(x, a

k)) where (k, l) = 1. Here Dl is the

l-th Dickson polynomial.

(4) of the fourth kind is (a−l/2Dl(x, a), b
−k/2Dk(x, a)) where (k, l) = 2.

(5) of the fifth kind is ((ax2 − 1)3, 3x4 − 4x3) or (3x4 − 4x3, (ax2 − 1)3).

Bilu & Tichy produced five families of pairs of polynomials such that a general pair

(f, g) of polynomials satisfying the two properties: (i) f(x) − g(y) is absolutely

irreducible and (ii) f(X) − g(Y ) = 0 is a curve of genus zero, is a standard

pair up to linear changes of the variable. The theorem allows us to consider

solutions in rational numbers with bounded denominator. If F (X,Y ) = 0 is

a polynomial in Q[X,Y ], then the equation F (x, y) = 0 is said to have infinitely

rational solutions with bounded denominators if there exists a constant C(F ) such

that there are infinitely many rational numbers x, y such that F (x, y) = 0 and

x, y ∈ 1
C(F )Z. Moreover, the Bilu-Tichy theorem showed that each pair (f, g) for

which f(x) = g(y) has infinitely many solutions with bounded denominator can

be determined from standard pairs. The precise statement of their theorem is as

follows.

Theorem 8.2 (Bilu-Tichy). For non-constant polynomials f(x) and g(x) ∈ Q[x],

the following are equivalent

(a) The equation f(x) = g(y) has infinitely many rational solutions with a

bounded denominator.
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(b) We have f = φ(f1(λ)) and g = φ(g1(µ)) where λ(x), µ(x) ∈ Q[X ] are

linear polynomials, φ(x) ∈ Q[X ], and (f1(x), g1(x)) is a standard pair over Q

such that the equation f1(x) = g1(y) has infinitely many rational solutions with a

bounded denominator.

9. Some applications of the Bilu-Tichy theorem

The theorem is particularly useful when dealing with equations of the form f(x) =

g(y) where f and/or g run through families of polynomials depending on certain

parameters. We mention some results proved using this theorem and the theorems

of Baker and of Schinzel-Tijdeman.

Theorem 9.1 ([5]). Let r be a nonzero rational number which is not a perfect

power in Q. Then, the equation x(x + 1)(x + 2) · · · (x +m − 1) + r = yn has at

most finitely many solutions (x, y, m, , n) satisfying (x, m, n) ∈ Z and y ∈ Q,

m, n ≥ 2. Moreover, all the solutions can be calculated effectively.

We may use the Bilu-Tichy theorem to study the finiteness question of solutions

of the equation fm(x) = g(y) for the polynomials fm = X(X + 1)(X + 2)...(X +

(m − 1)) where, m > 2 and g is a polynomial of degree n ≥ 2 over Q. We obtain

the following precise result.

Theorem 9.2 ([18]). The following holds true.

(i) Fix m ≥ 3 such that m 6= 4 and let g be an irreducible polynomial in Q[X ].

Then, there are only finitely many solutions of the equation x(x+1) · · · (x+m−1) =

g(y) in rational numbers x, y with any bounded denominator.

(ii) If m = 4 and g is irreducible in Q[y] then the equation x(x+1) · · · (x+m−
1) = g(y) has infinitely many solutions precisely when g = 9

16+bX2(X+c) ∈ Q[X ]

where b ∈ Q∗, c ∈ Q. Besides these, the above equation has only finitely many

solutions.

Interestingly, it turns out that we may bound m by using a simple consequence of

the Chebotarev density theorem. The simple consequence we need asserts that an

irreducible polynomial over Q has no roots modulo infinitely many primes. For

the sake of completeness, we recall the following general statement.

Chebotarev’s density theorem. Let L/K be a Galois extension of algebraic

number fields. Let C be a conjugacy class in the Galois group G. Then, the set of

prime ideals P of OK which are unramified in L and whose Frobenius automor-

phism FrP is in the conjugacy class C, has density |C|/|G|.
We prove the following theorem.

Theorem 9.3. Assume that g ∈ Q[X ] is irreducible and that ∆ is a positive

integer. Then, there exists a constant C = C(∆, g) such that for any m ≥ C, the
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equation x(x+ 1) · · · (x+m− 1) = g(y) does not have any rational solutions with

bounded denominator ∆. Moreover, C can be calculated effectively.

The information about possible decompositions of the polynomial is given by the

following computation due to Bilu et al ([2]).

Proposition 9.4. Let m ≥ 3 and fm(X) = X(X + 1)...(X + (m− 1)). Then

(1). fm(X) is indecomposable if m is odd, and

(2). if m = 2k, then any nontrivial decomposition of fm(X) is equivalent to

fm(X) = Rk((X − m−1
2 )2), where

Rk = (X − 1

4
)(X − 9

4
) · · · (X − (2k − 1)2

4
).

In particular, the polynomial Rk is indecomposable.

Let us now consider the family of Bernoulli polynomials Bm(x) defined by the

generating series

tetx

et − 1
=

∞
∑

m=0

Bm(x)
tm

m!
.

Then Bm(x) =
∑m

i=0

(

m
i

)

Bm−ix
i, where Br = Br(0) is called the r-th Bernoulli

number. They are rational numbers and can be computed from the recursive

relation
∑n−1

i=0

(

n
i

)

Bi = 0. The sum of the nth powers of the first k natural numbers

can be expressed as

1n + 2n + · · ·+ xn = Sn(x) =
Bn+1(x+ 1)−Bn+1

n+ 1
.

Bernoulli polynomials have following very interesting properties ([6]).

(i) Bn(x) = xn − n
2x

n−1 + n(n−1)
12 xn−2 + · · ·

(ii) B′
n+1(x) = (n+ 1)Bn(x).

(iii) Bn(x) = (−1)nBn(1− x).

(iv) f(x+ 1)− f(x) = nxn f(x) = Bn(x)+Constant.

The decomposability of Bernoulli polynomials was investigated in a paper by Bilu,

Brindza, Kirschenhofer, Pinter, Schinzel & Tichy with an appendix by Schinzel

([2]). They proved the following proposition.

Proposition 9.5 ((BBKPT)). Let m ≥ 2. Then

(i) Bm is indecomposable over Q if m is odd, and

(ii) if m = 2k, then any nontrivial decomposition of Bm is equivalent to Bm(x) =

φ((x − 1
2 )

2) for a unique polynomial φ over Q.

For a general g ∈ Q[X ] we obtain ([19]) the following theorem.

Theorem 9.6. Let g ∈ Q[X ] have degree n ≥ 3 and let m ≥ 3. The equation

Bm(x) = g(y) has only finitely many rational solutions x, y with any bounded

denominator apart from the following exceptions.
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(i) g(y) = Bm(h(y)) where h is a polynomial over Q;

(ii) m is even and g(y) = φ(h(y)), where h is a polynomial over Q, whose square-

free part has at most two zeroes, such that h takes infinitely many square values

in Z and φ is the unique polynomial satisfying Bm(x) = φ((x − 1
2 )

2);

(iii) m = 3, n ≥ 3 odd and g(x) = 1
8(33(n+1)/2)

Dn(δ(x), 3
3);

(iv) m = 4, n ≥ 3 odd and g(x) = 1
22(n+3)Dn(δ(x), 2

4)− 1
480 ;

(v) m = 4, n ≡ 2 mod 4 and g(x) = −β−n/2

64 Dn(δ(x), β) − 1
480 .

Here δ is a linear polynomial over Q and β ∈ Q∗. Furthermore, in each of the

exceptional cases, there are infinitely many solutions with a bounded denominator.

Although the above theorem treats a general equation of the form Bn(x) = g(y),

it is often possible to obtain more precise results for special g for a more general

equation. For instance, consider a polynomial C over Q, and the Diophantine

equations of the form

aBm(x) = bBn(y) + C(y)

with m ≥ n >deg C + 2, or of the forms

ax(x+ 1) · · · (x +m− 1) = bBn(y) + C(y)

and

ax(x+ 1) · · · (x+m− 1) + C(x) = bBn(y)

for solutions in integers x, y when a, b are non-zero rational numbers. In these

cases, we have the following more precise theorems ([19], [20]).

Theorem 9.7. For nonzero rational numbers a, b and a polynomial C ∈ Q[X ], if

m ≥ n > deg C + 2 then the equation

aBm(x) = bBn(y) + C(y)

has only finitely many rational solutions with bounded denominators except when

m = n, a = ±b and C(y) ≡ 0. In these exceptional cases, there are infinitely many

rational solutions with bounded denominators if, and only if, a = b or a = −b and

m = n is odd.

In particular, if c is a nonzero constant, then the equation

aBm(x) = bBn(y) + c

has only finitely many solutions for all m,n > 2.

Theorem 9.8. Let a, b be nonzero rational numbers. For m ≥ n > deg(C) + 2,

the equation

aBm(x) = by(y + 1) · · · (y + n− 1) + C(y)

has only finitely many rational solutions with bounded denominator except in the

following situations.
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(i) m = n,m+ 1 is a perfect square, a = b(
√
m+ 1)m,

(ii) m = 2n, n+1
3 is a perfect square, a = b(n2

√

n+1
3 )n.

In each case, there is a uniquely determined polynomial C for which the equation

has infinitely many rational solutions with a bounded denominator. Further, C is

identically zero when m = n = 3 and has degree n− 4 when n > 3.

Theorem 9.9. Let a, b be nonzero rational numbers. For m ≥ n > deg(C) + 2,

the equation

ax(x+ 1) · · · (x +m− 1) = bBn(y) + C(y)

has only finitely many rational solutions with bounded denominator excepting the

following situations when it has infinitely many.

m = n, m+ 1 is a perfect square, b = a(
√
m+ 1)m.

In these exceptional situations, the polynomial C is also uniquely determined to be

C(x) = afm((±
√
m+ 1)x+

1−m∓
√
m+ 1

2
)− bBm(x)

and has degree m− 4.

The next theorem addresses the equations of the form En(x) = g(y) where En =

1+X+ X2

2! + · · ·+ Xn

n! . Recall lemma 6.5 on the indecomposability of polynomials

f whose extrema have the type (1, 1, · · · , 1, 2). We need to show that En has this

property for each n. Here is how that is verified.

Proposition 9.10 ([21]). Each extremum of the polynomial

En(x) = 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!

has the type (1, 1, · · · , 1, 2). In particular, En(x) is indecomposable for all n. More-

over, En has only simple roots for any n.

Proof. Note that E′
n+1 = En for any n ≥ 0. Therefore, it is clear that, for each

n ≥ 0, the roots of En are simple, for En+1(α) = 0 implies

E′
n+1(α) = En(α) = En+1(α) − αn+1/(n+ 1)! = −αn+1/(n+ 1)! 6= 0.

Now, let λ be a complex number such that En+1(x) − λ has a multiple root α.

Then En(α) = 0 and λ = En+1(α) = αn+1/(n+ 1)!. If β is another multiple root

of En+1(x) − λ, then αn+1 = βn+1. This implies that there exists θ 6= 1 with

θn+1 = 1 such that En has two roots α, αθ. We show that this is impossible.

Note that n must be > 1. Let ζ be a primitive (n + 1)-th root of unity. Then

θ = ζi for some 0 < i ≤ n. It is a well-known result of Schur that En is irreducible

over Q and that the Galois group of its splitting field K is An or Sn according as

to whether 4 divides n or not.

Now, write K = Q(α, αθ, α3, · · · , αn) for the splitting field of En.



Auth
or'

s c
op

y

DIOPHANTINE EQUATIONS OF THE FORM f(x) = g(y) - AN EXPOSITION 149

First, let n 6≡ 0 mod 4. We shall use the fact that the Galois group contains the

n-cycle σ = (α, αζi, α3, · · · , αn).

Since σ(ζi) must be a power of ζ, it follows that each αj with 3 ≤ j ≤ n must be

αζk for some k. Thus, the set {α, αζi, α3, · · · , αn} of all the roots of En is the set

of all αζr (0 ≤ r ≤ n) with one αζm missing for some 1 ≤ m ≤ n.

Now, the sum of the roots of En gives

−n =
∑

r 6=m

αζr = −αζm.

Therefore, α = nζ−m. The product of all roots of En gives

(−1)nn! = αnζn(n+1)/2−m = nnζn(n+1)/2−m−mn = nnζn(n+1)/2.

Hence 1 = |ζn(n+1)/2| = n!/nn, which is impossible for n > 1.

Finally, let 4|n. Then, the Galois group, which is An, contains each (n− 1)-cycle

of the form (α, αζi, αi1 , · · · , αin−3) where αi1 , · · · , αin−3 are any n − 3 among

α3, · · · , αn. Therefore, each αj with 3 ≤ j ≤ n is of the form αζk for some k and,

the argument above goes through as it is. This proves the proposition. �

In view of this proposition, we have the following finiteness results for equa-

tions of the form En(x) = g(y) as an application of the Bilu-Tichy theorem. As

noted above, it works slightly more generally for f which have each extremum to

be of the type (1, 1, · · · , 1, 2).

Theorem 9.11 ([21]). Let f, g be polynomials of degrees n,m respectively, with ra-

tional coefficients. Suppose each extremum (with respect to f) has type

(1, 1, · · · , 1, 2). Then, for n,m ≥ 3, the equation f(x) = g(y) has only finitely

many rational solutions (x, y) with a bounded denominator except in the following

two cases.

(i) g(x) = f(h(x)) for some nonzero polynomial h(x) ∈ Q(x),

(ii) n = 3,m ≥ 3 and f(x) = c0 + c1D3(λ(x), c
m), g(x) = c0 + c1Dm(µ(x), c3) for

linear polynomials λ and µ over Q and ci ∈ Q with c1, c 6= 0.

In each exceptional case, there are infinitely many solutions.

10. An observation of Ramanujan

In this last section, we begin with the following wonderful observation due to

Ramanujan.

2 + (1/2)2, 2.3 + (1/2)2, 2.3.5 + (1/2)2, 2.3.5.7 + (1/2)2, 2.3.5.7.11.13.17+ (1/2)2

are, respectively, the perfect squares

(3/2)2, (5/2)2, (11/2)2, (29/2)2, (1429/2)2

of rational numbers. The natural question arises as to whether there are other

solutions to the equation p1p2 · · · pk + r2 = y2 where r, y are non-zero rational
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numbers and pi’s are primes. Diophantine equations seeking prime number solu-

tions are notoriously difficult to solve compared to solutions in arbitrary integers.

Wadim Zudilin asked whether for a given non-zero rational number r, the equation

1.3.5 · · · (2m− 1) + r = y2

has only finitely many solutions in m and y. Here, we show that a stronger

finiteness result holds for any arithmetic progression under some conditions on r.

Indeed, it can be deduced from an earlier work ([5]) with some modifications; at the

time of writing that paper, this question was not asked; otherwise, we could have

added the assertions made here. More precisely, we prove the following theorem.

Theorem 10.1. Let c, d be positive integers and r be a rational number which is

not a perfect power such that vp(r) = 0 for each prime p dividing d. The number

of 4-tuples (x, y,m, n) with m > 2 (m 6= 4), n > 1, x ∈ Z, y ∈ Q such that

cx(cx + d)(cx+ 2d) · · · (cx+ (m− 1)d) + r = yn

is finite.

Here, vp(r) denote the integer power of p dividing the rational number r.

10.1. A lemma on stationary points. For positive integers c, d and m > 2,

consider the polynomial

fm = cX(cX + d)(cX + 2d) · · · (cX + (m− 1)d).

For a rational number r, we look at the polynomial fm+r and, for n > 1, consider

the equation

fm(x) + r = yn

for solutions in integers x and rational numbers y.

Now

fm(x) = cX(cX + d)(cX + 2d) · · · (cX + (m− 1)d)

clearly satisfies

fm(x) = dmgm(
cx

d
),

where

gm(x) = x(x + 1)(x+ 2) · · · (x+m− 1).

Therefore, the derivative satisfies

f ′
m(x) = cdm−1g′m(

cx

d
).

The following lemma on stationary points of the polynomial gm is elementary.
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Lemma 10.2. For any complex number a, the set

S(gm, a) := {α : g′m(α) = 0, gm(α) = a}

has cardinality at most 2 (respectively, at most 1) if m is even (respectively, if m

is odd).

Remark. As fm(x) = dmgm( cxd ) and f ′
m(x) = cdm−1g′m(cx/d), we have

dS(gm, a)

c
= S(fm, dma) ∀ a ∈ C.

Therefore, cardinality of S(fm, b) is at the most 2 when m is even and at the most

1 when m is odd.

From this, following can be deduced immediately.

Corollary 10.3. For each r ∈ Q, the polynomial fm(x) + r has at least three

simple roots when m ≥ 5 is odd or if m > 6 is even.

For the smaller cases m = 3, 4, 6, we have

Lemma 10.4. (i) If m = 3, then for any r ∈ Q, the polynomial f3(x) + r has

simple roots. (ii) If m = 4, then for any rational number r 6= d4, −9d4

16 , the

polynomial f4(x) + r has distinct roots.

The polynomial f4(x) + d4 has two double roots d(−3±
√
5)

2c .

The polynomial f4(x) − 9d4/16 has one double root 3d
2c and two simple roots

(−3 +
√
10)d/2c, (−3−

√
10)d/2c.

(iii) If m = 6, the polynomial f6(x) + r has simple roots if r 6= (15d
3

8 )2.

The polynomial f6(x) + 152d6/82 has one double root −5d/2c and four simple

roots −5d
2c ± d

c

√

35±8
√
7

2
√
3

.

The Schinzel-Tijdeman theorem recalled above implies for the polynomial fm(x) =

cX(cX + d)(cX + 2d) · · · (cX + (m− 1)d) the following result.

Proposition 10.5. (i) Let m > 2 (m 6= 4), r ∈ Q, and let c, d be positive integers.

Then, the equation

fm(x) + r = yn

has only finitely many solutions in (x, y, n) for n > 1, integers x, and rational

numbers y.

(ii) If m = 4, then for r 6= d4,= 9d4/16, the equation f4(x) + r = yn has only

finitely many solutions in x, y, n for n > 1.

The equation f4(x)− 9d4

16 = yn has only finitely many solutions in x, y, n with

n > 2.
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10.2. Bounding n for given r. For given m > 2 (with m 6= 4), r ∈ Q, we have

already seen that there are only finitely many n, x, y such that

cx(cx+ d)(cx + 2d) · · · (cx + (m− 1)d) + r = yn.

Now, we show that n can be bounded in terms of r alone.

Proposition 10.6. Let m > 2 (with m 6= 4), let c, d be positive integers and let

r ∈ Q with r 6= 0, 1,−1 and vp(r) = 0 for each prime p|d. Then, there exists

a constant C(r) depending only on r such that for any integers x and rational

number y satisfying

cx(cx+ d)(cx + 2d) · · · (cx + (m− 1)d) + r = yn,

we have n ≤ C(r).

Proof. As r 6= ±1, there exists a prime p such that vp(r) = t 6= 0. Note by

hypothesis that (p, d) = 1. If m ≥ p, one of the integers

cx, cx+ d, · · · , cx+ (m− 1)d

is a multiple of p since (p, d) = 1. In fact, if m ≥ (t+1)p then pt+1 divides fm(x).

Thus, vp(fm(x)) ≥ t+ 1 which means (since vp(r) = t) that

vp(fm(x) + r) = t = vp(y
n) = nvp(y).

Hence, for m ≥ (t+ 1)p, we have n ≤ |t|.
Now, the proposition 10.5 shows that there is some constant C(m) depending

on m so that for any solution (x, y) of the equation, n ≤ C(m). Now, take

C0(r) = max(C(m) : m < (t+1)p) if t > 0 and take C0(r) = 0 if t < 0. Then, for

any solution of

cx(cx + d)(cx+ 2d) · · · (cx+ (m− 1)d) + r = yn

we have n ≤ C(r) where C(r) = max(C0(r), |t|). This completes the proof. �

10.3. Bounding m absolutely. In this section, we show that m itself is bounded

for a solution to exist.

Proposition 10.7. Let r be any rational number such that vp(r) = 0 for all

primes p|d and such that r is not an n-th power. Then, there are only finitely

many x, y,m (for m > 2, m 6= 4) with fm(x) + r = yn.

Proof. As r is not an n-th power and vp(r) = 0 for each prime p|d, either n is even

and r = −sn or there is a prime p divisor of n such that vp(r) is not a multiple of

n. In the latter case, note that (p, d) = 1 by hypothesis. In the former case when

n is even and r = −sn, choose a prime number p ≡ 3 mod 4 such that vp(r) = 0.

Then, choosing m ≥ p, the equality

fm(x)− sn = yn
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shows that −1 ≡ (yn/2)2 mod p. This is a contradiction. Hence m < p and

proposition 10.5 shows finiteness of solutions x, y.

In the latter case, there is a prime p such that vp(r) 6= 0 and is not a multiple

of n. Choose m ≥ (vp(r) + 1)p if vp(r) > 0 and let m be arbitrary if vp(r) < 0.

Then

vp(cx(cx + d)(cx+ 2d) · · · (cx+ (m− 1)d)) ≥ vp(r) + 1.

Here, we have used the fact that (p, d) = 1. This gives

vp(fm(x) + r) = vp(r) = nvp(y)

which is a multiple of n, a contradiction to the choice of p.

Hence, m ≤ vp(r) and, once again, proposition 10.5 implies that there are only

finitely many solutions in x, y. This completes the proof. �

Combining the propositions 10.6 and 10.7, we have the following main theorem.

Theorem 10.8. Let r be any rational number such that vp(r) = 0 for all primes

p|d and such that r is not a perfect power. Then, there exist only finitely many

tuples (m,n, x, y) for m > 2(m 6= 4), n > 1, x ∈ Z, y ∈ Q such that

cx(cx + d)(cx + 2d) · · ·+ (cx+ (m− 1)d) + r = yn

Further, for m = 4 and r 6= d4,−9d4/16, the number of solutions in x, y, n is

finite.

Proof. For r as above, the number of n > 1’s admitting a solution is bounded by a

constant C(r) by proposition 10.6. For each of these finitely many n, proposition

10.7 shows that there are only finitely many (x, y,m) for m > 2 (with m 6= 4).

The last assertion was already noted above. �

We observe here that finiteness of the number of solutions of the equation f(x)+r =

yn for a given rational number r and an integral polynomial f implies finiteness of

the number of solutions of a related equation with integer coefficients. We observe:

Proposition 10.9. Let f ∈ Q[X ] be a polynomial which takes integer values at

all integer points. Let a/b be a non-zero rational number and n > 1 be a positive

integer. Then, for each solution x ∈ Z, y ∈ Q of the equation f(x) + a
b = yn

satisfies byn = un for some u ∈ Z and x, u ∈ Z satisfy the equation bf(x)+a = un.

Proof. Start with x ∈ Z, y = u
v ∈ Q such that

f(x) +
a

b
= yn =

un

vn
.

While writing the rational numbers a/b and u/v, we may assume that b, v > 0.

Then

bf(x) + a =
bun

vn
.
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As vn divides bun, and (vn, un) = 1, we have that vn divides b. Write c = b
vn ;

then bf(x) + a = cun. Note that c > 0. If c 6= 1, look at any prime p dividing

c; then p|b. So, the equality bf(x) + a = cun implies that p divides a, which is a

contradiction. Therefore, b = vn and we have bf(x) + a = un. �

Remarks. (i) It is not clear if there are only finitely many solutions in integers

x, y and n > 1 for the equation bf(x) + a = un if it is known that there are only

finitely many integers x, rationals y and n > 1.

(ii) The question as to whether Ramanujan’s observations above are

the only solutions is a difficult open question. It is hard to tackle equations of the

form f(x) + r = yn when r is a perfect power of a rational number.
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