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In this volume, there are articles on the following topics in elliptic
curves: Mordell-Weil theorem, Nagell-Lutz theorem, Thue’s theorem,
Siegel’s theorem, `-adic representation attached to an elliptic curve over
a number field, Weil conjectures for elliptic curves over finite fields, p-
adic theta functions and Tate curves and Complex Multiplication. In
these articles, the basic theory of elliptic curves is assumed. As an in-
troduction to the basics, there are now many good texts available. The
standard texts are Silverman’s book [S] and Cassels’s book [C]. How-
ever, for the sake of self-containment and easy reference, we present here
a very brief review of the basic background and theory by assuming some
basic knowledge of field theory. We shall start with the basic definitions
in algebraic geometry for which one could consult any standard text
(for instance, [M ]). Some proofs of results on elliptic curves have been
sketched here. We have benefitted from a set of unpublished lecture
notes of an Instructional conference on elliptic curves held at the Tata
Institute of Fundamental Research, Mumbai in 1991. For more details
one may consult [S].

1. Affine and Projective Varieties

Let K be a field and K̄ be a fixed algebraic closure. The set

An
K = {x = (x1, . . . , xn)|xi ∈ K̄ (1 ≤ i ≤ n)}

is called the affine n-space over a field K. For each field L ⊇ K the set

An(L) = {x = (x1, . . . , xn) ∈ An
L |xi ∈ L (1 ≤ i ≤ n)}

is called the L-valued points of the affine n-space. Note that if L ⊇ K
is an algebraically closed field then An

L = An(L).
1Elliptic Curves, Modular Forms and Cryptography, Proceedings of the Advanced

Instructional Workshop on Algebraic Number Theory, HRI, Allahabad, 2000 (Eds.
A. K. Bhandari, D. S. Nagaraj, B. Ramakrishnan, T. N. Venkataramana), Hindustan
Book Agency, New Delhi 2003, pp. 5–31.

2000 Mathematics subject classification. Primary: 14H05, 14H52, 14K05.

5



6 D. S. Nagaraj and B. Sury

For a field L the polynomial ring L[X1, . . . , Xn] in n variables over L is
denoted by An,L. For f1, . . . , fr ∈ An,K̄ the subset V (f1, . . . , fr) of An

K

defined by

V (f1, . . . , fr) = {x ∈ An
K | f1(x) = · · · = fr(x) = 0}

is called an Affine algebraic set.

We get a topology on An
K called the Zariski topology for which the closed

sets are precisely affine algebraic sets in An
K . Thus open sets for the

Zariski topology are of the form An
K − V , where V is an affine algebraic

set. Open sets of the form D(f) = An
K − V (f), f ∈ An,K̄ form a basis

for the Zariski topology and they are known as basic open sets.

For any subset A of An
K , the Zariski topology induces a topology on A

which is called the Zariski topology on A.

The product of the affine n space An
K with the affine m space Am

K is
defined as the affine n + m space An+m

K . More generally, the product of
algebraic sets V1 ⊂ An

K and V2 ⊂ Am
K is the set V1×V2 ⊂ An

K ×Am
K with

induced Zariski topology. Thus, with the above definition the product
of algebraic sets is an algebraic set.

The Zariski topology on An+m
K is not the product topology. For example,

as a set A2
K is K̄× K̄ but the Zariski topology on A2

K is not the product
topology; in fact there are more Zariski-open sets in A2

K than there are
in the product topology. For instance, the set {(x, y) ∈ K̄2 : xy 6= 1} is
open in the Zariski topology but not in the product topology.

Given an affine algebraic set V ⊆ An
K , the set

I(V ) = {f ∈ An,K̄ |f(x) = 0, ∀x ∈ V }

is an ideal in the ring An,K̄ . If the ideal I(V ) is generated by g1, . . . , gk ∈
An,K then V is said to be defined over K.

If the affine algebraic set V ⊆ An
K is defined over K by f1, . . . , fr ∈ An,K ,

then for any field L such that K ⊆ L the set

V (L) = {x ∈ An(L) | f1(x) = · · · = fr(x) = 0}

is called the L-valued points of the affine algebraic set V .

An affine algebraic set V is said to be an affine variety or a variety if the
ideal I(V ) is a prime ideal. If an affine variety V is defined over K then
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it is called a K–affine variety or K–variety. If V and W are K-varieties
and W ⊂ V then the open set V −W of V is called a K-open set.

1) Let Q denote the field of rational numbers, let L = Q(
√

2), and
f = x−√2. Then, the variety V defined by f is defined over L but not
defined over Q.
2) Let R denote the field of real numbers. The affine variety V defined
by the polynomial X2 + Y 2 + 1 is a R–variety. Note that V (R) = ∅.
If V is an affine variety then the ring

A(V ) =
An,K̄

I(V )

is called the coordinate ring of V and elements of A(V ) are called regular
functions on V . Note that regular functions are continuous functions
from V → A1 for the Zariski topology.

If V is a K–variety then

AK(V ) =
An,K

I(V ) ∩An,K

is called the K–coordinate ring of the K–variety V and AK(V ) is a
subring of A(V ) in a natural way.

Let V be an algebraic set. Note that every f ∈ A(V ) is a restriction of a
polynomial function K̄n → K̄ and two polynomial functions f, g : K̄n →
K̄ defines the same regular function on V if and only if f − g ∈ I(V ).

For a variety (respectively, K–variety) V the quotient field K̄(V ) (re-
spectively, K(V ) ) of the coordinate ring A(V ) (respectively, K– co-
ordinate ring AK(V )) is called field of rational functions (respectively,
field of K–rational functions) on V . The elements of K̄(V ) (respectively,
K(V ) ) are called rational functions (respectively, K–rational functions)
on V . Every rational function (K–rational function) on V is a regular
function on an open set (K–open set).

If V and W are two affine varieties over K then a map φ : V → W
is said to be a morphism of varieties if and only if f ◦ φ ∈ A(V ) for
every f ∈ A(W ). A morphism φ : V → W of varieties induces an
homomorphism φ∗ : A(W ) → A(V ) of coordinate rings. Note that a
morphism of varieties is continuous for the Zariski topology.

For a variety V we denote by IdV the identity morphism of V .
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If V and W are K–varieties and if the morphism φ is such that the
homomorphism φ∗ induces a homomorphism AK(W ) → AK(V ) then φ
is said to be a K–morphism. Note that if V is a K–variety then IdV is
K–morphism.

A morphism (respectively, K–morphism) φ : V → W of varieties (re-
spectively, K–varieties) is said to be an isomorphism if there exists a
morphism (respectively, K–morphism) ψ : W → V of varieties (re-
spectively, K–varieties) such that ψ ◦ φ = IdV and φ ◦ ψ = IdW . An
isomorphism (respectively, K-isomorphism) φ : V → V is called an au-
tomorphism (respectively, K-automorphism).

A morphism (respectively, K–morphism) φ : V → W of varieties over K̄
(respectively, K–varieties) is said to be dominant if φ∗ : A(W ) → A(V )
(respectively, φ∗ : AK(W ) → AK(V )) is an injective homomorphism.

For example, consider V = {(x, y) ∈ A2
K̄ : xy = 1},W = A1

K̄ . Then, the
first projection V → W ; (x, y) 7→ x is a dominant morphism. Note that
it is not surjective.

A morphism (respectively, K–morphism) φ : V → W of varieties over K̄
(respectively, K–varieties) is said to be finite if φ∗ : A(W ) → A(V )
(respectively, φ∗ : AK(W ) → AK(V )) is an integral extension (i.e.,
every element f ∈ A(V ) (respectively f ∈ AK(V )) satisfies a polynomial
equation fn + a1f

n−1 + · · ·+ an = 0 for some n ≥ 1 with ai ∈ φ∗A(W )
(respectively, ai ∈ φ∗AK(W )), for each i(1 ≤ i ≤ n).

Let φ : V → W be a dominant morphism of varieties over K̄. Then the
homomorphism of φ∗ : A(W ) → A(V ) induces an inclusion of fields φ∗ :
K̄(W ) → K̄(V ). If this field extension is separable (respectively, purely
inseparable) we say that the morphism φ is separable (respectively, purely
inseparable)

Examples :
(i) Let K be a field of characteristic p 6= 0. Let V = A1

K = W,φ : V →
W ; x 7→ xp (the Frobenius morphism). Then, φ is purely inseparable.
(ii) In the above example, ψ = Id− φ : x 7→ x− xp is separable.
(iii) The morphism ψ ◦ φ is inseparable but not purely inseparable.

A K-algebra A is said to be finitely generated K-algebra if it is a quotient
of a polynomial ring in finitely many variables over K. Note that the
K- affine coordinate ring of a K-affine variety is an example of a finitely
generated K-algebra. For a finitely generated K-algebras one has the
following result:



Introduction to Algebraic Geometry and Elliptic curves 9

Nöether Normalization Lemma: Let A be a finitely generated K-
algebra. Assume A is an integral domain. Then there exists f1, . . . , fn ∈
A such that the subalgebra K[f1, . . . , fn] generated by f1, . . . , fn over K is
isomorphic to the polynomial algebra K[X1, . . . Xn] and A is an integral
extension over K[f1, . . . , fn]. The integer n depends only on A.

Let AK(V ) be the K coordinate ring of a affine K variety V . The
integer n of the Nöether Normalization lemma is called the dimension
of the affine K-variety V . Note that the dimension of the variety V
is also the transcendental degree over K of the quotient field K(V ) of
AK(V ).

For instance, An
K has dimension n. V = {(x, y) ∈ A2

K : xn + yn = 1} is
an affine variety of dimension one. An affine variety V of dimension one
is called an affine curve. An affine variety V of dimension two is called
an affine surface.

Let V ⊂ An be an affine variety over K of dimension m. A point p ∈ V
is said to be a non-singular point of V if there exist g1, . . . , gn−m ∈ I(V )
and an open subset U ⊂ An such that V ∩U = V (g1, . . . , gn−m)∩U and
the (n−m)× n matrix

(∂gi/∂xj)1≤i≤n−m,1≤j≤n

has rank n−m at every point of V ∩ U . A variety V is non-singular if
every point of V is a non-singular point. Some examples appear in § 2.

If φ : V → W is an isomorphism of varieties then it can be shown that
a point p ∈ V is non-singular if, and only if, the point φ(p) ∈ W is
non-singular. Thus, the property of non-singularity is independent of
the embedding.

The projective n-space Pn
K , over K, is the set of all lines through the

origin in the n + 1 dimensional vector space K̄n+1 over K̄. Thus

Pn
K =

K̄n+1 − {(0, . . . , 0)}
∼

where ∼ is the equivalence relation defined by x ∼ y if and only if x = λy
for some λ ∈ K̄ − (0).

For each field L ⊇ K the subset

Pn(L) = {x = [(x1, . . . , xn+1)] ∈ Pn
L|xi ∈ L (1 ≤ i ≤ n + 1)}
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is called the L-valued points of the projective n-space over L. Note that
if L is an algebraically closed field then Pn

L = Pn(L).

For a field L we denote by Ah
n+1,L the set of homogeneous polynomials in

An+1,L. If f ∈ Ah
n+1,K̄

and x ∈ K̄n+1−(0, . . . , 0) then f(x) is zero if and
only if f(λx) is zero for every λ ∈ K̄ − (0). Hence for x ∈ Pn

K it makes
sense to talk about f(x) being zero or not. For f1, . . . , fr ∈ Ah

n+1,K̄
the

subset Z(f1, . . . , fr) of Pn
K defined by

Z(f1, . . . , fr) = {x ∈ Pn
K | f1(x) = · · · = fr(x) = 0}

is called a Projective algebraic set.

We get a topology on Pn
K called the Zariski topology for which the closed

subsets are precisely projective algebraic sets. If A ⊂ Pn
K then we get

an induced topology on A which is also called the Zariski topology on
A. For any i (1 ≤ i ≤ n + 1) the open set

Ui = {[(x1, . . . , xn+1)] ∈ Pn
K |xi 6= 0}

of Pn
K can be identified with An

K by the map which sends [(x1, . . . , xn+1)]
∈ Ui to (x1

xi
, . . . , xi−1

xi
, xi+1

xi
, . . . , xn

xi
) ∈ An

K . Under this identification the
Zariski topology on Ui and the Zariski topology on An

K coincides. Thus
we see that any projective algebraic set is a finite union of affine algebraic
sets which are open.

The set theoretic map φ : Pn
K × Pm

K → P(n+1)(m+1)−1
K defined by

([(x1, . . . , xn+1)], [(y1, . . . , ym+1)]) 7→ [(x1y1, . . . , x1ym+1, x2y1, . . . , xn+1ym+1)]
is bijective onto the projective subvariety defined by the vanishing of the
2× 2 minors of the (n + 1)× (m + 1) matrix

(Zij)1≤i≤n+1,1≤j≤m+1 ,

where Zij , (1 ≤ i ≤ n + 1, 1 ≤ j ≤ m + 1) are homogeneous functions of
the homogeneous coordinate system [(z11, . . . , z1(m+1), z21, . . . , z(n+1)(m+1))]

on P(n+1)(m+1)−1
K . With the above identification we get projective va-

riety structure Pn
K × Pm

K . This projective variety is called the product
of projective spaces Pn

K and Pm
K . Using the above definition one gets

product of projective algebraic sets as a projective algebraic set.

A projective algebraic set Z in Pn
K is said to be a Projective variety

(respectively, Projective K–variety) if for each i (1 ≤ i ≤ n + 1) the
affine algebraic set Z ∩ Ui is a variety (respectively, K–variety).
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It is easy to see that product of projective varieties is again a projective
variety.

Let Z and W be two projective varieties over K. A map φ : Z → W is
said to be a morphism of projective varieties if the following holds: for
each point z ∈ Z there exist open sets Uz ⊂ Z, Vφ(z) ⊂ W such that
z ∈ Uz, φ(z) ∈ Vφ(z) are affine varieties, φ(Uz) ⊂ Vφ(z) and φ|Uz : Uz →
Vφ(z) is a morphism of affine varieties.

As in the case of affine varieties we can define isomorphism and automor-
phism for projective varieties. Moreover, K–morphisms, K–isomorphisms
and K–automorphisms of projective K-varieties are defined in a similar
fashion.

Consider F/G, with F,G ∈ Ah
n+1,K̄

of same degree and G 6≡ 0 on
V ; let us call two such elements F/G and F1/G1 to be equivalent if
FG1 − F1G ≡ 0 on V . For any V , the equivalence classes form a
field which we denote by K̄(V ). Similarly, K(V ) can be defined for
a K-variety V . For a projective variety (respectively, projective K–
variety) V ⊂ Pn we denote by Vi (1 ≤ i ≤ n + 1) the open set
V ∩ Ui (1 ≤ i ≤ n + 1). As we have remarked earlier, Vi are affine
open subvarieties of V . Then, the quotient fields K̄(Vi) (respectively,
K(Vi)) are all isomorphic to the field K̄(V ) (respectively, K(V )). We
call any one of them field of rational functions (respectively, field of K-
rational functions) on V and is denoted by K̄(V ) (respectively, K(V )).
The elements of K̄(V ) (respectively, K(V )) are called rational functions
(respectively, K–rational functions) on V . Every rational function (K–
rational function) on V is a regular function on an affine open set (affine
K–open set) of V . Given a point p on V , the local ring Op at p is defined
to be the subring. Similarly, one can define the local ring at a K-point
of a K-variety; it will be a subring of K̄(V ) consisting of all f ∈ K̄(V )
which are regular in an affine open subset of V containing p. A rational
function on V is said to be regular if it is regular on each Vi. Note that it
can be shown without too much difficulty that, on a projective variety,
the only regular functions are the constant functions. This is analogous
to the fact that there are no holomorphic non constant functions on
a compact complex manifold. For a projective variety V over K, the
transcendental degree of K̄(V ) over K̄ is called the dimension of V .

A projective variety of dimension one is called a projective curve. Some
examples of projective curves are given in § 2. A projective variety of
dimension two is called a projective surface.
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A morphism (respectively, K–morphism) φ : V → W of projective
varieties over K̄ (respectively, K–varieties) such that φ(V ) = W in-
duces an injective homomorphism φ∗ : K̄(W ) → K̄(V ) (respectively,
φ∗ : K(W ) → K(V )). If K̄(V ) (respectively, K(V )) is separably gener-
ated field over φ∗(K̄(W )) (respectively, φ∗(K(W ))) then φ is said to be
separable. Similarly we can define purely inseparable morphisms.

Let C1 and C2 be two curves over an algebraically closed field K. Then
it can be shown that giving a non constant morphism φ : C1 → C2 of
projective varieties over K is equivalent to giving an injective homomor-
phism φ∗ : K(C2) → K(C1) of fields which is identity on K.

The following is a useful fact on fibres (See [S], Proposition 2.6):

Lemma If f : X → Y is a non constant morphism between nonsingular
algebraic curves over K̄, then, for all but a finite number of points y of
Y , the fibre f−1(y) consists precisely of [K(X) : f∗K(Y )]sep points.

Here [L : K]sep denotes the separability degree of a field extension L
over K. The integer [K(X) : f∗K(Y )]sep is called the separability degree
of f . It is denoted degsep(f) and equals deg(f) := [K(X) : f∗K(Y )] if
f is a separable morphism. The integer deg(f)/(degsep(f)) is called the
inseparable degree of f and is denoted by deginsep(f).

A point p of a projective variety V is said to be non-singular if p is a
non-singular point of an affine open subset U of V . If every point p of V
is non-singular then we say that V is a non-singular projective variety.
The following is an important property of projective varieties.
Rigidity of projective varieties: Let X, Y be projective varieties and,
θ : X ×X → Y a morphism such that θ(X ×{x0}) = {y0}. Then, there
exists a morphism φ : X → Y such that θ = φ◦π2, where π2 : X×X → X
is the second projection.

2. Plane curves

Let K be any field and let f be a non constant polynomial in two
variables X, Y with coefficients from K. If f is irreducible over the
algebraic closure K̄ of K, it defines an affine plane curve Cf over K;
for each field L ⊇ K, the L-points of Cf is the set Cf (L) = {(x, y) ∈
A2(L) : f(x, y) = 0}. Note that a point p ∈ Cf (L) is nonsingular if, not
both ∂f

∂x and ∂f
∂y are zero at p. Cf is said to be nonsingular if all points

in Cf (K̄) are nonsingular.
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For instance, the curve Cf given by f(X, Y ) = Y 2−X3− aX − b over a
field K with char K 6= 2, is nonsingular if, and only if, the discriminant
of 4a3 + 27b2 is non-zero. This discriminant is denoted by ∆(f).

Let F be a homogeneous polynomial in three variables over K which has
no multiple irreducible factors over K̄. Then, CF ⊂ P2

K defined by F is
called a projective plane curve over K. For any L ⊇ K, the L-points of
CF are defined as CF (L) = {[(x, y, z)] ∈ P2(L) : F (x, y, z) = 0}. The
degree of the homogeneous polynomial F is called the degree of the curve
CF in P2

K .
If CF , CG are two projective plane curves over K where F,G do not
have any irreducible common factor over K̄, then CF (K̄) and CG(K̄)
intersect in (deg F )(deg G) points when counted with multiplicity. This
is known as Bezout’s theorem.

The projective plane curve CF with F (X, Y, Z) = Y 2Z −X3 − aXZ2 −
bZ3 meets the line at infinity Z = 0 in P2 at the point [(0, 1, 0)] of P2

K .

A curve of degree 1 in P2
K is a line C : aX + bY + cZ = 0 with not all

a, b, c zero. Such a curve always has L-points for any L ⊇ K. In fact,
if a 6= 0, the L-points can be parametrized by P1(L) viz., the morphism
sending [(y, z)] ∈ P1(L) to [(−by−cz

a , y, z)] ∈ C(L) is an isomorphism.

A projective plane curve given by a degree 2 polynomial in three vari-
ables over K is known as a conic; it may not have any L-points for
a given field L ⊇ K. If C is a conic which does have an L-point p,
then all the points of C(L) can be parametrized by a P 1(L) (viz., the
lines in P 2(L) passing through p). For instance, if C is defined by
X2 + Y 2 − Z2 = 0, then taking p to be the point (−1, 0, 1), the points
of C(L) are [(x2 − y2, 2xy, x2 + y2)], with [(x, y)] ∈ P1(L).

Let Q be the field of rational numbers. In number theory, one often
considers curves C overQ and looks for K-points for an algebraic number
field K. If C has degree 2, there is a local-global principle showing that
existence of K-points is a question that reduces to the question over the
various completions.

In the case of the curve C : X2 + Y 2 = Z2, we parametrized the
points and this parameterizes the affine curve X2 + Y 2 = 1 (over Q
or R, say, where R is the field of real numbers,) by the non constant
rational functions t2−1

t2+1
, 2t

t2+1
in a parameter t. On the other hand, the

Fermat curve xn + yn = 1 for n ≥ 3 cannot be parametrized rationally
over a field K if the characteristic of K does not divide n. In other
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words, the analogue of Fermat’s last theorem is valid over K(t) for such
K and n. This is seen as follows.

Lemma (abc conjecture for the ring K[t])
Let K be any field and suppose a(t), b(t), c(t) ∈ K[t] are pairwise coprime
polynomials such that a(t) + b(t) = c(t) and at least one of them is non
constant. If at least one of a(t), b(t), c(t) is separable, then

Max(deg a(t), deg b(t),deg c(t)) ≤ N − 1,

where N is the number of distinct roots of a(t)b(t)c(t).
Proof: Note that the coprimality assumption already implies that none
of the polynomials a(t), b(t), c(t) is the zero polynomial. To see this, we
may assume that K is algebraically closed and, let us write

a(t) = c1

k∏

1

(t− αi)

b(t) = c2

l∏

1

(t− βi)

c(t) = c3

m∏

1

(t− γi),

where ci ∈ K and the roots may be repeated. We may assume that
c is separable without loss of generality. Recall that for any poly-
nomial u(t) =

∑r
i=0 uit

i ∈ K[t], one defines the polynomial u′(t) :=∑r
i=1 iuit

i−1. For rational functions f(t) = u(t)
v(t) ∈ K(t), one defines

f ′(t) = u(t)′v(t)−u(t)v′(t)
v(t)2

. One calls a non constant polynomial u separa-
ble if u′ is not the zero polynomial. It is easy to see that (f +g)′ = f ′+g′

and (fg)′ = f ′g+fg′ in K(t). Hence, if u(t) = c
∏r

i=1(t−ui) with c ∈ K,
then u′(t) = c

∑r
i=1

∏
j 6=i(t − vj). Therefore, in our equation, if we put

f(t) = a(t)
c(t) and g(t) = b(t)

c(t) , then f(t) + g(t) = 1 and so, f ′ + g′ = 0 in

K(t). Note that if g′ = 0, then b′c−bc′
c2

6= 0 i.e., bc′ = b′c. Since b, c are
coprime polynomials, c will have to divide c′ which is not the zero poly-
nomial (as c is separable) and has smaller degree. This contradiction
implies that g′ 6= 0. Now, a simple computation gives

b(t)
a(t)

=
g

f
= −f ′/f

g′/g
=

c′/c− a′/a

b′/b− c′/c
=
−∑k

1
1

t−αi
+

∑m
1

1
t−γi∑l

1
1

t−βi
−∑m

1
1

t−γi

.
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Call the numerator and the denominator of the right side as B(t) and
A(t). Both A(t) and B(t) can be made into polynomials by multiplying
by a common polynomial R(t) of degree N , where N is the number
of distinct roots of a(t)b(t)c(t). We have b(t)

a(t) = R(t)B(t)
R(t)A(t) which gives

b(t)R(t)A(t) = a(t)R(t)B(t). Since a(t), b(t) are coprime, their degrees
are at the most those of R(t)A(t) and R(t)B(t) respectively. The latter
degrees are at the most N − 1. Thus, Max(deg a(t), deg b(t), deg c(t)) ≤
N − 1, where N is the number of distinct roots of a(t)b(t)c(t). This
proves the lemma.

This lemma can be used to prove that the Fermat equation does not
have any non constant solutions in K[t] if n ≥ 3 and is relatively prime
to the characteristic of K. But, we give below a simpler proof for this.
We prove :

Lemma Consider the generalized Fermat curve aXn + bY n = 1, where
a, b ∈ K∗. Assume that n ≥ 3 if characteristic of K is 0 and if the
characteristic of K is p > 0, then n = pdn0 where (p, n0) = 1 and
n0 ≥ 3. Then, this curve is not rational.
Proof: By replacing K by its algebraic closure, we may assume that
K is algebraically closed. Suppose the curve is rational. Then, X(t) =
p(t)
r(t) , Y (t) = q(t)

r(t) where p(t), q(t), r(t) are pairwise coprime polynomials in
K[t] satisfying aX(t)n + bY (t)n = 1. If char K = p > 0, we observe first
that we may assume that n ≥ 3 is coprime to p. The reason is as follows.
By assumption, if char K = p > 0, then n = pdn0 with (p, n0) = 1 and
n0 ≥ 3; thus a nontrivial solution to the equation aX(t)n + bY (t)n = 1
gives one for the equation a1X(t)n0 + b1Y (t)n0 = 1 where apd

1 = a, bpd

1 =
b. Thus, we may work with n0 ≥ 3 which is coprime to p. So, ap(t)n +
bq(t)n = r(t)n. Since char K does not divide n, we get ap(t)n−1p′(t) +
bq(t)n−1q′(t) = r(t)n−1r′(t). Thus, one can think of these as a system of
two linear equations for ap(t)n−1, bq(t)n−1, r(t)n−1 in K[t]. Eliminating
p(t)n−1, one has

q(t)n−1(p′(t)q(t)− p(t)q′(t)) = r(t)n−1(r(t)p′(t)− p(t)r′(t)).

Eliminating q(t)n−1, one has

p(t)n−1(p′(t)q(t)− p(t)q′(t)) = r(t)n−1(q(t)r′(t)− r(t)q′(t)).

As p(t), q(t), r(t) are coprime, one gets q(t)n−1 divides r(t)p′(t)−p(t)r′(t)
and p(t)n−1 divides q(t)r′(t) − r(t)q′(t). Similarly, we get r(t)n−1 di-
vides q(t)p′(t) − p(t)q′(t). Let us write k ≥ l ≥ m for the degrees of
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p(t), q(t), r(t) respectively. Note that q(t)r′(t)− r(t)q′(t) cannot be the
zero polynomial unless q(t), r(t) are constants. In such a case, p(t) is
also constant, which contradicts the assumption that one has a rational
parametrisation. Therefore, q(t)r′(t) − r(t)q′(t) is not the zero polyno-
mial and the fact that p(t)n−1 divides it implies (n− 1)k ≤ l + m− 1 ≤
2k − 1 on comparing degrees. Thus, (n− 3)a ≤ −1, a manifest contra-
diction of the assumption that n ≥ 3.

Non-singular projective plane curves E over K of degree 3 will be the
main topic of our discussion. Let L ⊇ K be an extension field. Given
two L-points of such a curve E, the chord/tangent through them meets
E(L) at a point of E(L) again (by Bezout’s theorem). This gives rise to
a group law and later we shall see that over a number field K, the process
produces all points of E(K) starting from finitely many points. It should
be noted that E(K) could be empty. If E(K) is non-empty, the group
law is clearly commutative. Associativity is not very obvious. Here is
an argument in a geometric vein. This uses the following observation:

Lemma Let x1, . . . , x8 be points of the plane, in ‘general position’ (i.e.,
no four lie on a line and no seven lie on a conic). Then, there is a
ninth point y such that every cubic curve through x1, . . . , x8 also passes
through y.

Proof: A cubic form F (T ) = F (T1, T2, T3) in three variables has ten
coefficients. For a point x ∈ P2 the equation F (x) = 0 imposes a
linear condition on the coefficients of F . Therefore, making it pass
through x1, . . . , x8 imposes eight conditions (the general position hy-
pothesis means that the eight conditions are linearly independent). So, if
F1, F2 are two linearly independent cubic forms passing through x1, . . . , x8,
then any other cubic form passing through these eight points must be of
the form λF1 +µF2, for some λ, µ scalars. By Bezout’s theorem, F1 = 0
and F2 = 0 have nine common points. Thus, any λF1 + µF2 passes
through these nine points.

Associativity of the group law: Let E ⊂ P2 be a non-singular cubic
curve. Let O be the point of E(K) which is identity for the group law.
Let a, b, c ∈ E(K). Let the lines l,m, n, r, s, t be as indicated in the
figure below. That is, the line l joins a and b; it intersects E(K) in the
point d. The line t joins O and d and intersects E(K) in the point e
i.e., a + b = e in E(K). Let f be the third point on the intersection of
E(K) with the line joining c and e. Then, (a+ b)+ c = e+ c is the third
point of E(K) on the line Of . Similarly, a + (b + c) = a + v is the third
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point of E(K) on Ow. We must show that both f and w are identical to
the unlabeled intersection point of m and r in the figure. Consider the
cubics F1 = lmn and F2 = rst. Since E is a non-singular cubic passing
through the eight points of intersection a, b, d, e, c, u, v, O of F1 = 0 and
F2 = 0, the above lemma implies that it passes through the ninth point
of intersection too (which is just the intersection of r and m).

r a w v

f
s b c u

t d e O

l m n

3. Riemann-Roch theorem and group law

Throughout this section unless mentioned otherwise, we denote by K a
fixed algebraically closed field.

Let C be a non-singular, projective curve over a field K. Let K(C)
be the rational function field of C. We had remarked earlier that an
element f ∈ K(C) as regular function on an open set U ⊂ C. Since
C is a curve, it is easy to see that f defines a morphism of varieties
f : C → P1. Moreover, if f is not a constant function, then the image of
C under f is equal to P1. We think of the point [(1, 0)] ∈ P1 as the point
at infinity of the open set U2 = {[(x, y)] ∈ P1 : y 6= 0} and is denoted by
∞. We identify U2 with the affine line A1 ' K in such a way that the
point [(0, 1)] ∈ U2 is identified with the origin 0 ∈ K. If p ∈ C is a point
then the subset

OC,p = {f ∈ K(C) : f(p) 6= ∞}
of K(C) is, in fact, a subring. This ring is a discrete valuation ring
(d.v.r.) with the unique maximal ideal mC,p = {f ∈ OC,p : f(p) = 0}.
Thus, if we choose an element z ∈ mC,p−m2

C,p, then an element h ∈ mC,p

can be uniquely written as h = u.zn, where n ≥ 1 is an integer and
u is a unit in the ring. For h ∈ mC,p, the integer n is independent
of the choice of z ∈ mC,p − m2

C,p, we denote this integer by ordp(h).
An element h ∈ mC,p such that ordp(h) = 1 is called a uniformizing
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parameter/local parameter of C at p. With the above identifications, we
see that K(P1) = K(t), field of rational functions in one variable t, and

OP1
,0

= {f(t)/g(t) ∈ K(t) : f(t), g(t) ∈ K[t] and g(0) 6= 0}

with maximal ideal mP1
,0

= tOP1
,0
. Also,

OP1
,∞ = {f(1/t)/g(1/t) ∈ K(t) : f(1/t), g(1/t) ∈ K[1/t] and g(0) 6= 0}

with maximal ideal mP1
,∞ = (1/t)OP1

,∞.

Let C,D be two non-singular curves over K. Let φ : C → D be a non
constant morphism. Then, we have seen that φ∗ : K(D) → K(C) is an
injective homomorphism of fields. Now, if p ∈ C is a point, it is easy to
see that φ induces a homomorphism of rings

φ∗p : OD,φ(p) → OC,p,

which takes the maximal ideal mD,φ(p) into the maximal ideal mC,p. If z
is a local parameter of D at φ(p), the integer ordp(φ∗p(z)) is independent
of the local parameter z and is denoted by ep(φ). The integer ep(φ) is
called the ramification index of φ at p. If ep(φ) = 1, then we say that φ
is étale or unramified at p. If ep(φ) > 1, then we say that φ is ramified
at p. The morphism φ is étale or unramified if it is so at all p ∈ C. If φ
is a separable morphism then one can show that φ is unramified except
for finitely many points on C. Also, it can be shown that for any point
q ∈ D the number

∑
p:φ(p)=q ep(φ) is equal to the degree of the map φ

and hence independent of the point q ∈ D.

Let C be a non-singular curve over K and f ∈ K(C) be a non constant
rational function on C. As we have already noted, f can be thought of
a morphism f : C → P1. Then for a point p ∈ C such that f(p) = 0 the
ramification index ep(f) is called the order of zero of f at p. Similarly,
if p ∈ C such that f(p) = ∞ then ep(f) is called the order of pole at p.

The divisor class group of non-singular curve. Let C be a non-
singular projective curve. Let Div(C) denote the free abelian group on
C(K). An element D ∈ Div(C) is of the form D =

∑
p∈C(K) npp, with

np ∈ Z and np = 0 for all but finitely many p ∈ C(K). An element
of Div(C) is called a divisor on C. If D =

∑
p∈C(K) npp is a divisor

on C, then the integer
∑

p∈C(K) np is called the degree of the divisor
D and is denoted by deg(D). We denote by Div0(C) the subgroup
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of Div(C) degree zero divisors. An evident partial order on Div(C) is
D =

∑
p∈C(K) npp ≥ D′ =

∑
p∈C(K) mpp if, and only if, np ≥ mp for

all p ∈ C(K). Given a rational function f on C we associate a divisor
(f) by setting (f) =

∑
{p∈C(K):f(p)=0} ep(f)p−∑

{p∈C(K):f(p)=∞} ep(f)p.
Divisors of the form (f), f ∈ K(C) are called principal divisors and by
our earlier observation we see that degree of a principal divisor is zero.
Since (fg) = (f)+(g), the principal divisors form a subgroup of Div(C).
Given a divisor D, there is a K vector space

L(D) = {f ∈ K(C) : div(f) ≥ −D} ∪ {0}.
We denote by `(D) the dimension of the K-vector space L(D). We have
the fundamental:
Riemann-Roch Theorem: There exists an integer g depending only
on C so that for any divisor D, we have

`(D) ≥ deg D + 1− g.

Furthermore, equality holds if deg D > 2g − 2.

The number g is called the genus of the curve C. If C is a non-singular
projective plane curve of degree d, one can show that the genus of C
is (d−1)(d−2)

2 (see [S]). In particular, genus of a projective line or a non-
singular conic in P2 is zero and that of a non-singular plane cubic is
one.

Let us interpret the group law on a cubic curve using the above theorem.
First, let us define the Picard group of smooth curve C. The Picard
group, Pic(C), is the quotient group of Div(C) by the subgroup of of
all principal divisors. Since principal divisors are of degree zero, we see
that degree gives an onto homomorphism deg : Pic(C) → Z. The kernel
of this homomorphism is denoted by Pic0(C). One calls two divisors
D, D′ on C to be linearly equivalent if they define the same element of
the Picard group, i.e., D ∼ D′ if D −D′ = (f) for some f ∈ K(C).

The Riemann-Roch theorem implies for a curve E of genus 1 over an
algebraically closed field that, given a point O ∈ E(K), there is a bijec-
tion

σ : Pic0(E) → E

which is induced by σ̃ : Div0(E) → E ; D 7→ p where p is the unique
point of E such that the divisor (D) is linearly equivalent to (p) −
(O). Thus, the natural group structure on Div(E) will induce one on
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E itself. That this is the same group law on E defined geometrically, is
the contention of the following result:

Lemma With notations as above, let θ : E → Pic0(E) denote the map
σ−1 i.e., θ(p) is the class of (p)−(O). Then, for any p, q ∈ E, θ(p⊕q) =
θ(p) + θ(q) where ⊕ is the geometric group law on E.

Proof: Let L ⊂ P2 be the line F (X,Y, Z) = αX+βY +γZ = 0 through
p, q. If r is the third point of the intersection L ∩ E, then let us write
G(X,Y, Z) = α′X +β′Y +γ′Z = 0 for the line L′ joining r and O. Since
Z = 0 intersects E at O with multiplicity 3, we have from the definition
of ⊕ that div(F/Z) = p+q+r−3(O) and div(G/Z) = r+(p⊕q)−2(O).
Thus, (p⊕ q)− p− q +O = div(G/F ) ∼ 0 in Div0(E). This proves that
θ(p⊕ q)− θ(p)− θ(q) = 0 in Pic0(E).

Finally, on curves (or, more generally on varieties of any dimension),
there is the notion of differentials which is extremely useful.

Definition For any field K, a K-algebra A and an A-module M , one
defines a derivation to be a K-linear map D : A → M satisfying D(ab) =
aD(b) + bD(a).

It is easy to prove that given a K-algebra A, there is a unique (up to
isomorphism) A-module ΩK(A) and a derivation d : A → ΩK(A) such
that the image of d generates ΩK(A) as an A-module and any derivation
D : A → M factors through a unique A-linear map from ΩK(A) to M . In
fact, if x1, · · · , xn generate A as a K-algebra, then dx1, · · · , dxn generate
ΩK(A) as an A-module. ΩK(A) is called the module of K-differentials
of A. When A is the function field K(V ) of a variety V , then one also
calls ΩK(K(V )) the module of K-differentials of the variety V . One also
calls its elements differential 1-forms on V . The basic fact is :

Proposition Let V be a variety of dimension n over an algebraically
closed field K. Then, ΩK(K(V )) is a K(V )-vector space of dimension n.
Moreover, for any nonsingular point p of V , ΩK(Op) is a free Op-module
of rank n, where Op is the local ring at p.

Further, if p is a point of V , an element in the image under the natural
inclusion ΩK(Op) ⊆ ΩK(K(V )) is said to be regular at p.

If V is a nonsingular curve over an algebraically closed field K, then for
any 1-form ω on V and any point p in V , the order of ω at p is defined
to be the largest n for which ω ∈ tnΩK(Op) where t is a uniformising
parameter for Op. In this sense, one talks about the order of zeroes and
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of poles for an 1-form. We shall soon see that for elliptic curves, there
is an essentially unique 1-form which has neither zeroes nor poles.

4. Elliptic Curves - Definition

An elliptic curve over a field K is a non-singular, projective plane curve
of genus 1 having a specified base point O ∈ E(K). In simpler language,
an elliptic curve is the set of solutions in P2(K) of an equation of the form
Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X

2Z + a4XZ2 + a6Z
3 with ai ∈ K,

with one of three partial derivatives is non zero at any given solution. If
char K 6= 2, 3, then an elliptic curve can also be described as the set of
solutions set P2(K) of an equation of the form Y 2Z = X3+aXZ2+bZ3,
where the cubic X3 +aX + b has distinct roots. That the first definition
implies the second can be proved using the Riemann-Roch theorem. In
the last definition, a canonical point O ∈ E(K) is the “point at infinity”
(0, 1, 0).

An elliptic curve is not an ellipse. The name comes from the fact that
these equations arise when one tries to measure the perimeter of an
ellipse. The above form of the equation is known as the Weierstrass
form. Let us assume that characteristic of K is 6= 2, 3 for simplicity of
notation. We have then:

Theorem
(i) E(a, b) : Y 2Z = X3 + aXZ2 + bZ3 defines an elliptic curve over K
(with O = (0, 1, 0) ∈ P2(K)) if, and only if, a, b ∈ K and 4a3 +27b2 6= 0.
(ii) Every elliptic curve over K is isomorphic to E(a, b) for some a, b ∈
K.
(iii) An elliptic curve over K is isomorphic to the curve E(a, b) if, and
only if, there exists t ∈ K∗ such that its Weierstrass form can be written
as Y 2Z = X3 + t4aXZ2 + t6bZ3.

One defines the j-invariant of E(a, b) to be j(E) = 1728 4a3

4a3+27b2
. Note

that by (iii) of the above theorem, it makes sense to define j(E) =
j(E(a, b)) if E is isomorphic to E(a, b). Here is an important fact (again
with the assumption that K = K̄) : j(E) = j(E′) if, and only if,
E ∼= E′.

Let C be the field of complex numbers. If E is an elliptic curve over
C then E(C) can also be thought of complex manifold of dimension one.
Thus, E(C) is a compact Riemann surface of genus one and hence E(C)
is just a complex torus of dimension one. i.e., C/Λ where Λ is a lattice
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in C. This follows from the classical theory of elliptic functions. In other
words, there is an isomorphism of Riemann surfaces E(C) and C/Λ.
For an elliptic curve E : y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6 over
any field, there exists a differential 1-form ω which is invariant under all
translations Tp i.e., T ∗p ω = ω for all p ∈ E. This is called an invariant
differential; it is unique up to a scalar multiple. One can write ω =

dx
2y+a1x+a3

. It is also seen to have no zeroes or poles; that is, its order at
every point is zero.

5. Torsion points of Elliptic curves and Isogenies

Let K be a field and E be an elliptic curve defined over K. A point p
of E(K) such that [n](p) = O, for some integer n ≥ 1, is called a torsion
point of E over K. Here, we have denoted by [n]p the point p + · · ·+ p
added n times (if n ≥ 0) or the inverse of the point p + · · · + p added
−n times (if n < 0). If E is an elliptic curve over a field K = K̄, and
n 6= 0, then the n-torsion subgroup is defined as

E[n] := {p ∈ E(K) : [n]p = O}.

One has:
If n 6= 0 is not a multiple of the characteristic of K, then

E[n] ∼= Z/nZ⊕ Z/nZ.

Over an algebraically closed field whose characteristic divides n, it can
happen that E[n] is not as above (see B. Sury’s article [Su] in this
volume.)
Also, over a field K which is not algebraically closed, the group of n-
torsion can be different (of course, it must be a subgroup of the above
group).

Remarks
(i) If E is an elliptic curve defined over R, then one may consider E(R)∩
E[n]. It turns out that this is either a cyclic group or it is isomorphic
to Z/2 × Z/2m for some 2m dividing n. This can be seen quite easily
on using the Weil pairing (defined in § 7) and the fact that ±1 are the
only roots of unity in R.
(ii) If E is an elliptic curve defined over Q, then the subgroup E(Q)tor of
all points of finite order in E(Q) is a finite group (by the Mordell-Weil
theorem). Using (i), it is either a cyclic group or it is isomorphic to
Z/2× Z/2m for some m.
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(iii) It is a far more difficult problem to determine which subgroups of
Z/nZ⊕ Z/nZ occur as n-torsion subgroups of an elliptic curve over K.
For example, Mazur proved that over Q, only finitely many (exactly 15)
groups can occur as torsion groups.
(iv) Over general number fields K, it is a result of Merel that the order
of the torsion group E(K)tor is bounded purely in terms of the degree
[K : Q].

We saw in the above discussion that for each integer n and any elliptic
curve E, there is a map [n] : E(K) → E(K) defined by p 7→ [n]p. This
is an example of an isogeny, when n 6= 0. Let us define this notion now.

A non constant morphism φ : E1 → E2 between elliptic curves E1 and
E2 such that φ(O) = O is called an isogeny.

Therefore, an isogeny must be surjective and must have finite kernel. In
fact, the rigidity theorem implies: An isogeny is a group homomorphism.

To see this, look at θ : E1×E1 → E2 defined as θ(x, y) = φ(x+ y)−
φ(x)− φ(y). Since φ(O) = O, we have θ(E1 × {O}) = {O}. By rigidity,
there exists ψ : E1 → E2 such that θ(x, y) = ψ(y) for all x ∈ E1. As
θ(O, y) = O, ∀y one has ψ ≡ O i.e., θ ≡ 0.

Moreover, as a trivial consequence of the fact about the fibres of a mor-
phism of curves, we see that, if φ : E1 → E2 is an isogeny, then, #
Kerφ = degsep φ.

One writes Hom(E1, E2) for the group of isogenies from E1 to E2 to-
gether with constant map O.

For E1 = E2 = E (say), this group is in fact a ring ,with composition
as multiplication, called the endomorphism ring of E and is denoted by
End(E). This ring has many important properties. In the next section,
we shall recall some properties of the ring End(E).

One has also the following important result on isogenies:

Theorem Let φ : E1 → E2 be an isogeny. Then, there is a unique
isogeny φ̂ : E2 → E1 satisfying φ̂ ◦ φ = [deg φ]. φ̂ is called the dual of φ.

Sketch of proof: For two isogenies φ1, φ2 from E2 to E1 satisfying

φ1 ◦ φ = [deg φ] = φ2 ◦ φ

one has (φ1 − φ2) ◦ φ = [0] which implies that φ1 − φ2 = 0 since φ is
surjective. The uniqueness follows thus.
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To show the existence of φ̂, for simplicity, we shall describe it when
φ is separable. By the above remark, we have in this case deg φ =
Kerφ = n, say. Now, Kerφ ⊆ Ker[n]. The isogeny φ gives rise to the
injection φ∗ : K(E2) → K(E1). This gives a Galois extension K(E1)
over φ∗K(E2) with the Galois group equal to Kerφ. (We have written
K for the underlying field over which Ei are defined). Similarly, the
injection [n]∗ : K(E1) → K(E2) gives a Galois extension with Galois
group Ker[n]. By Galois theory, there exists an injection ψ∗ : K(E1) →
K(E2) such that φ∗ ◦ψ∗ = [n]∗. The corresponding ψ : E2 → E1 can be
taken to be the required dual isogeny φ̂.

Here are some facts on duals and degrees of isogenies which will turn
out to be very useful: If φ, ψ : E1 → E2 are isogenies then
(i) φ̂ + ψ = φ̂ + ψ̂

(ii) [̂n] = [n]
(iii) deg[n] = n2

(iv) deg φ̂ = deg φ

(v) ̂̂
φ = φ

(vi) deg(−φ) = deg φ.
(vii) The function

d : Hom(E1, E2)×Hom(E1, E2) → Z

defined by d(φ, ψ) := deg(φ+ψ)−deg φ−deg ψ is symmetric and bilinear,
(viii) deg φ > 0 for any isogeny φ.

Proofs of some parts: We do not prove (i) here. The proof is a
bit involved and essentially uses the lemma in § 3 which follows the
Riemann-Roch theorem; an element

∑
[ni]pi of an elliptic curve E is

O if, and only if, the corresponding divisor
∑

nipi is the divisor of a
rational function on E.
(ii) follows by induction on |n| on using (i). (iii) is due to the fact
that [̂n] = [n] and [n] ◦ [n] = [n2]. To prove (iv), write n = deg φ.
Then, [n2] = [deg[n]] = [deg(φ̂ ◦ φ)] = [deg φ̂deg φ] = [ndeg φ̂]. Thus,
n = deg φ̂. For (v) again, write n = deg φ. Then,

φ̂ ◦ φ = [n] = [̂n] = (̂φ̂ ◦ φ) = φ̂ ◦ ̂̂
φ

which gives (v). To prove (vii), note that if φ, ψ : E1 → E2, then

[d(φ, ψ)] = [deg(φ + ψ)]− [deg(φ)]− [deg(ψ)]
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= ̂(φ + ψ) ◦ (φ + ψ)− φ̂ ◦ φ− ψ̂ ◦ ψ

= (φ̂ + ψ̂) ◦ (φ + ψ)− φ̂ ◦ φ− ψ̂ ◦ ψ

= φ̂ ◦ ψ + ψ̂ ◦ φ,

and the last expression is symmetric and bilinear.

6. Tate modules, `-adic representations and complex mul-
tiplication

Let E be an elliptic curve defined over K. Suppose ` is a prime
different from the characteristic of K. We know that the `n-division
points of E over K̄( i.e., E[`n] = Ker[`n]) is ' Z/`n×Z/`n. The inverse

limit of the groups E[`n] with respect to the maps E[`n+1]
[`]→ E[`n]

is the Tate module T`(E) = lim← E[`n]. Since each E[`n] is naturally a
Z/`n-module, it can be checked that T`(E) is a Z`(= lim← Z/`n)-module.
It is clearly a free Z`-module of rank 2.

Evidently, any isogeny φ : E1 → E2 induces a Z`-module homomor-
phism φ` : T`(E1) → T`(E2). In particular, we have a representation:
End(E) → M2(Z`); φ 7→ φ`. Note that End(E) ↪→ End(T`(E)) is injec-
tive because if φ` = 0, then φ is 0 on E[`n] for all large n i.e., φ = 0.

For an elliptic curve E over K the endomorphism [`n] is defined over K.
Hence, there is an action of Gal(K̄/K) on E[`n] for all n ≥ 0. The action
of Gal(K̄/K) on the various E[`n] gives a 2-dimensional representation

ρE,` : Gal(K̄/K) → Aut(T`(E)) ∼= GL2(Z`) ⊂ GL2(Q`),

which is called the `-adic representation of the Galois group Gal(K̄/K)
attached to E.

For K finite or an algebraic number field, there are deep theorems due
to Tate and Faltings, respectively, which assert that two elliptic curves
E1 and E2 over K are isogenous if, and only if, the corresponding `-adic
representations are isomorphic for all ` coprime to Char(K).

Recall that the isogenies from an elliptic curve E to itself form a ring
End(E) and n 7→ [n] induces an injective ring homomorphism [ ] : Z→
End(E). An elliptic curve E is said to have complex multiplication if
End(E) 6∼= Z.

Examples
(i) The curve y2 = x3 +x has complex multiplication viz., x 7→ −x, y 7→
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iy where i is a square root of −1.
(ii) y2 = x3 + 1 has complex multiplication, namely, (x, y) 7→ (ωx, y)
where ω is a primitive 3rd root of unity.

The only possibilities for End(E) are given by the following result:

Proposition
(i) End(E) has no zero divisors.
(ii) End(E) is torsion-free.
(iii) End(E) is either Z, or an order in an imaginary quadratic field over
Q or an order in a quaternion division algebra over Q

Remarks
(i) End(E) has char. 0 no matter what field E is defined over !
(ii) If Char.K = 0, then for any elliptic curve E over K, End E must
be either Z or an order in an imaginary quadratic field.

Before proving the proposition, let us see what it means for E over C.
Let λ : C/〈1, τ〉 → C/〈1, τ〉 be an isogeny 6∼= [n]. Then λ is multiplication
by a complex number, say, λ again. Then λ · 1, λ · τ ∈ Z+ Zτ .

λ = a + bτ, λτ = c + dτ.

Since we are assuming λ 6∈ Z, b 6= 0. Now (a + bτ)τ = c + dτ gives
a quadratic equation for τ i.e., τ ∈ K := Q(

√
d) for some d. Since

Im(τ) > 0, τ 6∈ R i.e., K is an imaginary quadratic field. Further,
Q(λ) = Q(a + bτ) = Q(τ) = K. Thus, End(E) is an order in an
imaginary quadratic field if End(E) 6∼= Z.

Let us prove the proposition now.

Proof of Proposition: First, we shall prove for elliptic curves E1, E2

that Hom(E1, E2) is torsion free, and that End(E) has no zero divisors.
Suppose φ : E1 → E2 is an isogeny and [n] ◦ φ = [0]. Then compare
degrees to get n2 deg φ = 0. If [n] 6= [0], then we get deg φ = 0. This is a
contradiction. The other assertion is completely similar. Now, we shall
discuss the structure of End(E) and prove part (iii).
Note that any φ ∈ End(E) satisfies a monic polynomial of degree 2 over Z
viz., the polynomial f(X) = (X−φ)(X−φ̂). Look at A = End(E)⊗ZQ.
If A 6= Q, choose α ∈ A \Q. Note that α− tr(α)

2 ∈ A \Q and so we may
assume tr(α) = 0. Now α2 < 0. So, Q(α) is an imaginary quadratic
field. If A 6= Q(α), let β ∈ A \Q(α). As β − tr(β)

2 − tr(αβ)
2α2 α ∈ A \Q(α),

we may assume that
tr(β) = 0 = tr(αβ).
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So, tr(α) = 0 = tr(β) = tr(αβ) gives

−(αβ) = (̂αβ) = β̂α̂ = (−β)(−α) = βα.

Hence, A′ = Q[α, β] = Q+Qα +Qβ +Qαβ is a quaternion algebra.
Suppose A 6= A′; let γ ∈ A\A′. Then γ− tr(γ)

2 + tr(αγ)
2α2 α+ tr(βγ)

2α2 β ∈ A\A′.
We may assume tr(αγ) = tr(βγ) = 0. Thus, αγ = −γα, βγ = −γβ. So
α · βγ = −αγβ = γαβ = −γβα = βγα i.e., α and βγ commute. But,
then the algebra generated by α and βγ is a field since it has no zero
divisors and the inverses (which exist by positive definiteness) are in the
subalgebra generated by α and βγ. Since γ 6∈ Q[α, β], βγ also 6∈ Q[α]
i.e., A contains a field extension of degree 4 over Q i.e., ∃θ ∈ A which has
degree 4 over Q. This contradicts the first observation that each element
of A satisfies a quadratic equation over Q. Thus, A = A′ = Q[α, β], a
quaternion division algebra over Q.

7. The Weil pairing

Let K be a field and ` be prime number coprime to Char(K). We
denote by µ`n the the subgroup {ζ : ζ`n

= 1} of K̄∗, where K̄∗ is
the multiplicative group of all non-zero elements of K̄. Note that, if
T`(µ) = lim← µ`n then T`(µ) ∼= Z`.

Let E be an elliptic curve over K. The Weil pairing is a non-degenerate,
bilinear, alternating pairing

e : T`(E)× T`(E) → T`(µ)

satisfying e(φx, y) = e(x, φ̂y) for all φ ∈ End(E). The Weil pairing e is
made up from maps en : E[`n] × E[`n] → µ`n and can be defined via
divisors as done below. Before that, a brief word about how e can be
described over C. For E(C) = C/L over C, there are two descriptions.
The first one is to write L = Z+ Zτ with Imτ > 0. Then

e(aτ + b, cτ + d)) = ad− bc.

Then, by the fact that T`(E(C)) is isomorphic to L ⊗Z Z`, we get a
description of the Weil pairing e. The other is to view L as H1(E(C),Z)
and en is the homology intersection pairing on the real surface E(C)
with Z/`n coefficients. As above this gives Weil pairing e on T`(E(C)).
Let us describe e in general now. Using the Riemann-Roch theorem, it is
a nice little exercise to see that for p1, . . . , pk ∈ E(K̄) the divisor

∑
nipi
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is the divisor of a function if, and only if,
∑

ni = 0 and
∑

[ni]pi = O in
E(K̄). Let m ≥ 1 be an integer coprime to char(K) and t ∈ E[m]. Then
∃ f ∈ K̄(E) such that (f) = m(t)−m(O). If t′ ∈ E with [m]t′ = t, then
∃ g ∈ K̄(E) with

(g) =
∑

r∈E[m]

(t′ + r)−
∑

r∈E[m]

(r)

(note #E[m] = m2 and m2t′ = 0). Thus, f ◦ [m] and gm have the same
divisor. Multiplying f by an element of K̄∗, we may, without loss of
generality, assume f ◦ [m] = gm. Let µm = {ζ ∈ K̄∗ : ζm = 1}. Define
em : E[m]×E[m] → µm by

em(s, t) 7→ g(x + s)
g(x)

,

where x is any point such that g(x + s), g(x) are both defined and non-
zero. Notice that the image indeed belongs to µm as g(x + s)m = (f ◦
[m])(x + s) = (f ◦ [m])(x) = g(x)m. Although g is defined only up
to multiplication by an element of K̄∗, the ratio is independent of its
choice. That the choice of x is immaterial, is known as Weil reciprocity.
The Weil pairing has the following properties:

(a) em is bilinear
(b) em is skew-symmetric
(c) em is non-degenerate
(d) em is Gal (K̄/K)- invariant i.e., em(sσ, tσ) = em(s, t)σ.
(e) emn(s, t) = em([n]s, t) if s ∈ E[mn], t ∈ E[m].
(f) em is surjective.

The most important property of em is proved in the following :

Proposition Let s ∈ E1[m], t ∈ E2[m] and let φ : E1 → E2 be an
isogeny. Then, em(s, φ̂(t)) = em(φ(s), t).
Proof: Let (f) = m(t) − m(O) and f ◦ [m] = gm as before. Then,
em(φ(s), t) = g(x+φ(s))

g(x) . Choose h ∈ K̄(E1) such that

(φ̂(t))− (O) + (h) = φ∗((t))− φ∗((O)),

where φ∗ : Div(E2) → Div(E1) is the map defined by p 7→ ∑
{q:φ(q)=p} eq(φ)q.

The right hand side is, by definition, equal to

deginsep(φ)


 ∑

w∈Kerφ

(t0 + w)−
∑

w∈Kerφ

w



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for any t0 ∈ φ−1(t).
Now ((f ◦ φ)/hm) = φ∗(f)−m(h) = m(φ̂(t))−m(O).

Hence,

(
g ◦ φ

h ◦ [m]
)m =

f ◦ [m] ◦ φ

(h ◦ [m])m
=

f ◦ φ

hm
◦ [m].

So, from the definition of em,

em(s, φ̂(t)) =
g◦φ

h◦[m](x + s)
g◦φ

h◦[m](x)

=
g(φ(x) + φ(s))

g(φ(x))
h([m]x)

h([m]x + [m]s)

=
g(φ(x) + φ(s))

g(φ(x))
= em(φ(s), t).

8. Elliptic curves over number fields

The first main theorem over number fields K is the Mordell-Weil theorem
which asserts that E(K) is a finitely generated Abelian group for an
elliptic curve E over K.
Elliptic curves arise naturally often in the context of classical number-
theoretic problems like the so-called congruent number problem. One
defines a natural number d to be a congruent number if there is a right-
angled triangle with rational sides and area d. For example, 6 and 157
are congruent numbers. The following shows the connection with elliptic
curves:
Lemma Let d be a natural number. Then, d is a congruent number if,
and only if, the elliptic curve Ed : y2 = x3 − d2x has a Q-rational point
(x, y) with y 6= 0.

Proof: Let u ≤ v ≤ w be the sides of a right triangle with rational
sides. Let d be the area 1

2uv. Then, P = (d(u−w)
2 , 2d2(u−w)

v2 ) ∈ Ed(Q).
Conversely, if P = (x, y) ∈ Ed(Q) be such that y 6= 0. Then, u =
|x2−d2

y |, v = |2dx
y |, w = |x2+d2

y | gives a right triangle with rational sides
and area d.
A connection with the Fermat’s two-squares theorem (namely, every
prime p ≡ 1 mod 4 is a sum of two squares) can be seen already in
Gauss’s study of the elliptic curve E : y2 = x3 − x. For each prime p,
let Np be the cardinality of the set {(x, y) : 0 ≤ x, y ≤ p − 1 , y2 ≡
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x3 − x mod p}. Gauss proved that N2 = 2, Np = p if p ≡ 3 mod 4, and
Np = p− 2r if p ≡ 1 mod 4 where p = r2 + s2 with r odd and r + s ≡ 1
mod 4.
Loosely speaking, if an elliptic curve E over Q has a nice pattern of
Np’s (as in the curve y2 = x3 − x studied by Gauss), one finds that E
comes from a modular form. The Shimura-Taniyama-Weil conjecture
(see below) - proved completely now - asserts that this is true for any
elliptic curve over Q.
Given an elliptic curve E over a number field K, one can look at the
nonsingular points Ens of the curve obtained by “reducing modulo prime
ideals”. The L-function of E over K encodes information about the
number of points that the reduced curve has over the various finite
fields; it is a Dirichlet series defined by an Euler product. For E over Q,
this looks like

L(E, s) =
∏

p|N

(
1− ap

ps

)−1 ∏

p6|N

(
1− ap

ps
+

1
p2s−1

)−1

,

where N is an integer known as the conductor of E and ap = p + 1 −
|Ens(IFp)| for each prime p. It is not hard to prove that isogenous curves
over Q have the same L-function. The famous Birch and Swinnerton-
Dyer conjecture asserts that for E over Q, the L-function L(E, s) defined
above extends to an entire function and its order at s = 1 is precisely
the rank of the Mordell-Weil group E(Q).

We end with a famous conjecture which is now solved.

Shimura-Taniyama-Weil Conjecture : If E is an elliptic curve de-
fined over Q, then there exists N > 0 and a non constant Q-morphism
F : X0(N) → E.

Here, the so-called modular curve X0(N) is the projective curve defined
over Q whose C-points are obtained by compactifying the Riemann sur-

face Γ0(N)\H where Γ0(N) := {
(

a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N}.

The conjecture was solved for semi stable curves by Taylor and Wiles
and was enough to give Fermat’s last theorem as a consequence. Now,
it has been solved in its full generality by Breuil, Conrad, Diamond and
Taylor.

We end with the remarkable statement that eπ
√

163 is almost an integer.
A popular myth credits Ramanujan with this but the authors have not
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been able to verify the veracity of this attribution. One computes to
find that

eπ
√

163 = 262537412640768743.9999999999992 · · · (!)
Here is the explanation.
Look at the Fourier expansion of the j-function

j(τ) =
1
q

+ 744 + 196884q + · · · · · ·

where q = e2πiτ . From the theory of complex multiplication, it follows
that for τ = 1+

√−d
2 , the number j(τ) is an algebraic integer of degree

equal to the class number of the imaginary quadratic field Q(
√−d).

There are only finitely many imaginary quadratic fields with class num-
ber 1; the largest such d is 163. Thus, j(1+

√−163
2 ) ∈ Z. Feeding this

in the Fourier expansion and noting that q = e−π
√

163, we get that
1
q = eπ

√
163 is very close to the integer j(1+

√−163
2 ) + 744 as the terms

involving positive powers of q are small.
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