Elliptic Curves over Finite Fields !

B. Sury

1. Introduction

Jacobi was the first person to suggest (in 1835) using the group law
on a cubic curve E. The chord-tangent method does give rise to a group
law if a point is fixed as the zero element. This can be done over any
field over which there is a rational point.

In this chapter, we study elliptic curves defined over finite fields. Our
discussion will include the Weil conjectures for elliptic curves, criteria
for supersingularity and a description of the possible groups arising as
E(F,). We shall use basic algebraic geometry of elliptic curves. Specif-
ically, we shall need the notion and properties of isogenies of elliptic
curves and of the Weil pairing. In later chapters, the theories of elliptic
curves over C, R and algebraic number fields will be studied. In contrast
to this chapter, the basic tools to be used in the later chapters will be
elliptic functions and algebraic number theory. The standard reference
is Silverman’s book [S].

2. Isogenies

The first important result dealing with curves over finite fields is the
following beautiful fact established by Serge Lang :

Lang’s theorem Any smooth cubic curve E defined over a finite field
Fy has a Fq-rational point.

Proof: We start by recalling that the Frobenius morphism ¢, on F over
F, is defined as the map (z,y) — (29,y9). Here, we are looking at the
cubic equation for F in its Weierstrass normal form. Note that a point
P € E(F4n) if, and only if, ¢7(P) = P. Further, note that on fixing
any point of E over F,, the algebraic closure of Fy, the chord-tangent

"Elliptic Curves, Modular Forms and Cryptography, Proceedings of the Advanced
Instructional Workshop on Algebraic Number Theory, HRI, Allahabad, 2000 (Eds.
A. K. Bhandari, D. S. Nagaraj, B. Ramakrishnan, T. N. Venkataramana), Hindustan
Book Agency, New Delhi 2003, pp. 33-47.

2000 Mathematics subject classification. Primary: 14G10, 14G15, 11G20.

33



34 B. Sury

process gives a group law on E(F,). Look at ¢ : E — E defined by
d(P) = ¢q(P) — P where ¢, is the Frobenius map on E over F,. As E is
complete and irreducible, the image ¢(F) is either a point or the whole
of E. The latter possibility evidently gives a F,-rational point viz., a
preimage of the ‘zero element’ of E(F,).

In the former case, write ¢(P) = P, for all P. Thus, ¢4(P) = P+ P, for
all P. Hence ¢y (P) = P+nkF for all P,n. On the other hand, E(Fgn) is
non-empty for some n since, by definition, any point of E(F,) is in E(Fgn)
for some n. Now, if @ € E(Fgn), then we get Q = ¢7(Q) = Q +nlh
i.e., nPy = O, the identity element of the group E(I_Fq
gZ)g( ) = P for all n. Thus, for some n, we get E(F;) = E
a contradiction, as E(F,) is infinite.

). But then,
(Fgn). This is

Recall from the introductory chapter [NS] that a non-constant mor-
phism ¢ : By — Es between elliptic curves Ey and Eo such that ¢(O) =
O s called an isogeny. Therefore, an isogeny must be surjective and
must have finite kernel. In fact, we noted that: An isogeny is a group
homomorphism.

We also recall the notion of a dual isogeny. This is characterized by
the following property: Let ¢ : By — Ey be an isogeny. Then, there is
a unique isogeny qﬁ Ey — Ep satisfying qﬁ ¢ = [deg ¢]. qﬁ 1s called the
dual of ¢.

In the above statement, [n] denotes the isogeny which ‘adds n times’.
Remarks
(a) A more down-to-earth description of ¢ is as follows:

() = [deginuepdll 3 2= 3 w}=[degs](2)

2€91(y) weKergp
for any y € Eo and any 2z € ¢~ (y).
(b) For K = C, an isogeny ¢ : C/L — C/L’ has degree d = [L' : ¢(L)].
Thus, dL' C ¢(L) C L. Then, ¢ : C/L' — C/L is the map d/f where ¢
is ‘multiplication by f’.
(c) If E is defined over F, and 7y g : E — E is the Frobenius morphism
(xz,y) — (z9,y7), then E(F,) = Ker (1 — ¢¢.E).

As we noted, an isogeny has finite kernel. What is the intersection
of this kernel with the F, points? Here is a rather startling fact:

Lemma Let Ey and Ey be isogenous elliptic curves defined over F,.
Then #E1(Fy) = #E3(F,).

Proof: Note that any isogeny ¢ : E; — FEs commutes with the
Frobenius morphisms on F; and Es. Now, ¢ is surjective. So, we
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have y € Ex(Fy) & mm,(y) = y © 7p(0(2)) = ¢(z) & x € Ker
(1 — 7y.m,)¢). Now, each ¢~1(y) has degsep¢ elements. Thus,

#EQ(F(]) = #Ker ((1 - ﬂ-q,E2)¢)/degsep¢ = #Ker (gb(l - 7Tq7E2))/degsep¢
= degsep(¢(l - 7[-(17E1))/degsep¢ = degsep(l - Tr‘LEl) =#E (Fq)

We also recall the following useful facts on degrees and dual maps:
)o+v=06+1

if) n] = [n}
iii) deg [n

(i
(
(
(iv) deg ¢ deg ¢
(
(
(

2

v) ¢

vi) deg ( ¢) = deg ¢

vii) d(¢, ) := deg (¢ + )— deg ¢— deg 1 is symmetric, bilinear on
Hom(El, E») , where E.1, E are elliptic curve over a field

(viii) deg ¢ > 0 for any isogeny ¢.

3. Riemann hypothesis for elliptic curves

For an elliptic curve E defined over a finite field F,, the most important
parameter and the most obvious one that one can think of is the number
of points in E(F,). Let us heuristically estimate #E(F,); this will be
one (corresponding to the point at infinity) more than the number of
solutions (x,y) of the equation Y2+a1 XY +a3Y = X3+as X2 +a4 X +ag
with z,y € F,. Each value of x yields at the most two values of y and thus
#E(F,) < 1+ 2q. Heuristically, one might expect a random quadratic
equation (for y in terms of x) to have a solution with probability 1/2.
Thus, perhaps #E(F,) ~ ¢+ 1. As a matter of fact, we shall prove that
this is true for any £ upto an error of 2,/q i.e., |#E(F,) —q—1] < 2,/q.
This is a theorem of Hasse and, when rewritten in terms of the so-called
zeta function of F, turns out to be analogous to the classical Riemann
hypothesis as we shall see.

Let E be an elliptic curve defined over Fy. Let 7y g : E — E denote the
Frobenius endomorphism.

Exercise Prove that g g is a purely inseparable isogeny with deg mq g =
q.

Riemann hypothesis for elliptic curves - Hasse 1934. Let E be an
elliptic curve defined over Fy. Then,

[#E(Fp) —1—q" <2¢"? ¥n > 1.
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Proof: Choose a Weierstrass equation with coefficients in F,. Since
Gal(F,4|F,) is topologically generated by X4 24, a point P of E(F,)
lies in B(F,) iff 7,5(P) = P. Thus, P € E(Fg) & n'p(P) = P ie.,
E(Fgn) = Ker(1 —m ). Now 1 —m}' p is a separable morphism (since
its differential is the identity). Thus #E(F¢n) = deg(l — 7y ).

We noted that, for any two elliptic curves E7, Fs over a field, the
function d : Hom(FE1, E2) x Hom(E1, Ey) — Z

(¢,¢) — deg(¢ + 1) — deg ¢ — deg ¥y

is a positive definite bilinear form.
By the Cauchy Schwarz inequality, we get (since B(¢, ¢) = 2deg(¢))

|deg(1 — 7 p) — deg(1) — deg(myp)| < 2/den(1) deg(ry )
ie., |[#EFm) —1-q" < 2¢V2

4. The Weil conjectures

In 1949, A. Weil made a series of general conjectures about varieties
defined over finite fields. We shall state them in general and prove them
for elliptic curves.

Let us use the notation K, = Fgm. If V is a projective variety
defined over K (i.e., the zero set of a collection of homogeneous polyno-
mials with coefficients from K ), we want to keep account of the number
#V (K,,). The natural way to do this is by means of a generating func-
tion which codifies the data. This is known as the zeta function of V'
and is defined as the formal power series

o Tn
Z(V/Ky;T) = exp (z #vu(n)n)
n=1
Note that #V(K,) = ﬁdd%log Z(V/K1;T)|r=0. The reason for
defining the zeta function in this manner is that the series Y~ #V(K,) %
n>1
often looks like the log of a rational function of 7' -

Example Let V = P? considered over F,. Then, a point of V(K,,) is
the equivalence class of a (d + 1) - tuple [(xo,...,zq)] with ; € Fgn not

all zero. Here [(zo,...,zq)] and [(yo,...,yq)] are in the same class if
3t # 0 in Fyn such that y; = tx;, ¥ i. Thus,

n(d+1) _ q d )
¢ —1 i=0
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Hence,
d ’anTL
log Z(V/Ki;T) = ZZ
n>1
d
1
= 2l — 7
=0 q
|
ie., Z(V/Ky;T) =
ViKs?) = 11—
Remark

(I) One can prove that Z(V/Ky;p~®) = 3. ¢ 98P where the sum is
D>0

over I -rational effective divisors. This is analogous to the Euler factor
of the Riemann zeta function ((s).

1
1-p—s
(IT) We notice that in the example above, Z(V/K1;T) is in Q(T). Fur-
ther, from the proof, we see that if 3 a1,...,a, € C with #V(K,,) =
o £...£ 0] ¥V n, then the zeta function will be rational function of 7T'.
The following four conjectures are known as the Weil conjectures.

Let V' be any smooth, projective variety of dimension n, defined over
K; =F,. Then:

Rationality conjecture
Z(V/Ki;T) € Q(T)

Functional equation
There exists an integer y such that

1
Z(V/Ky; — ) = £¢™PTXZ(V/K; T
( / 1, an> q ( / 1,
Factorisation
Py (T)Ps(T)...Pan_1(T)

There exists a factorisation Z = Po(T) Po(T) .- Pon—a (T) o (T)
with Py =1—T, Py, =1 — ¢"T, each P;(t) € Z[T] and

b;

1 -1

f% () ::Ibn_iﬁf) 7 ,bi::deg}% ::deglﬁn_i
q’nT an—§

Riemann hypothesis
Each root a of Py(T) satisfies |a| = ¢~/
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The conjecture in its entirety was proved by the efforts of Weil, Dwork,
M. Artin, Grothendieck, Lubkin, Deligne, Laumon. But, the first case
of elliptic curves was solved by Hasse in 1934 before the conjectures were
formulated in this generality by Weil in 1949. It should be pointed out
that F.K. Schmidt was the first one to define the zeta function of a curve
over a finite field in 1931 and he also proved some parts of the conjec-
ture. Weil pointed out that if one had a suitable cohomology theory for
abstract varieties analogous to the usual cohomology for varieties over
C, the standard properties of the cohomology theory would imply all the
conjectures.

For instance, the functional equation would follow from the Poincaré
duality property. Such a cohomology theory is the étale cohomology
developed by M. Artin and Grothendieck.

5. Tate modules and the Weil pairing

Before proving the Weil conjectures for elliptic curves, we need to recall
the Tate module and its relation to isogenies on an elliptic curve. Let FE
be an elliptic curve defined over F,. Suppose £ is a prime not dividing
g. We know that the ¢"-division points of E i.e., E[("] < Ker (0] is
~ Z/0" x Z/¢". The inverse limit of the groups E[¢"] with respect to
the maps E[("H] K E[¢"] is the Tate module Ty(E) = lim E[¢"]. Since
each F[¢"] is naturally a Z/¢"-module, it can be checked that T;(E) is
a Z¢(=1limZ/¢")-module. It is clearly a free Zs-module of rank 2.

Evidently, any isogeny ¢ : E1 — FE5 induces a Zj-module homomor-
phism ¢y : Ty(E1) — Ty(E2). In particular, we have a representation :
End (E) — M2(Z¢); ¢ — ¢y, if £ fq. Note that End F — End T(FE) is
injective because if ¢y = 0, then ¢ is 0 on E[¢"] for large n i.e., ¢ = O.

Finally, let us recall the Weil pairing. This is a non-degenerate, bilinear,
alternating pairing

d 1. ~
e Tg(E) X TK(E) — Tg(u) = l}ln/,l,gn = Zy.

It has the important property that e(¢xz,y) = e(z, ¢y).

Remarks For any general curves C, D, and a non-constant morphism
¢ : C — D, recall that ¢* : Div(D) — Div(C) is a homomorphism
defined by
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where e4(Q) is the ramification index at Q.

For C'= D an elliptic curve, all the e4(Q) = deg;;, s, ¢-

For a general C and D, Ordp(f o ¢) = ey(P)Ordyp(f) for every non
constant rational function on D.

6. Weil conjectures for elliptic curves

Let us prove the Weil conjectures for elliptic curves now.

Lemma Let ¢ € End (E) and ¢ fq be a prime. Then,

det ¢y = deg ¢,
trégg = 1+degop—deg (1—¢).

In particular, det ¢y, tr¢y are independent of £, and are integers.

Proof: Let (v1,v2) be a Zg-basis of Ty(F) and write ¢y = ( Z Z )
with respect to this basis.

Now, we use the Weil pairing e which is bilinear and alternating.

e(vy,v2)18? = 6((deg¢ vy, v2)
= e((9)e(p)v1,v2) = e(ppv1, dpva)
= e(avy + cvg, bvy + dvg) = e(v1, vg)ad_bc
— e(,Ul’,UQ)det (]5@

Since e is non-degenerate, we get deg ¢ = det ¢y.
Finally, tr(¢¢) = 1 + det ¢p — det (Id — ¢y) = 1 4 deg ¢ — deg(1l — o).

To prove the Weil conjectures for E, let us compute #FE(K,,), where,
as before, K, = Fgn. Now #E(K,,) = deg(1 — ¢"), where ¢ = 7y g the
Frobenius isogeny = — x9.

A consequence of the above lemma is the evident fact that the char-
acteristic polynomial of ¢, has coefficients in Z when ¢ # char F,. Write
det (Id.T — ¢y) = (T — a)(T — B);, 8 € C.

Moreover, V % € Q, we get

1 1
det (mld - ¢g> = —det(mId — n¢y) = deg(m — ng)— >0
n n n

This implies & = 3. Noting, by triangularising, that det (Id.T — ¢}) =
(T — ") (T — ("), we get:
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Theorem Foralln > 1, #FE(K,) =1—a"—a"+¢" where |a| = ¢'/2.
In particular, Z(E/K1;T) = %, where a € Z and 1 — aT +

gT? = (1 aT)(1 - aT). Further, Z (E/Ky; Jy) = Z(E/Ky;T).
Proof: As discussed above,
#E(Kn) = deg(l—¢")
det (1—¢)=1—a"—a"+q"
and |o| = 1/g.
T'I’L
log Z(B/K;T) =} (1-a"—a"+q")—

n>1

™ al)" al)™ "
_ Zn_z( n) _Z( n) +Z(qn)
(1—at)(1—aT)
(1-=T)(1 —qT)

= log

The functional equation is obvious from the expression.
The factorisation Z = £~ is with Py(T) = 1 —aT + ¢qT?; so P, (qiT) =

Po Py
P(T)(=1/T/q)*.
Remark Putting (g/p, (s) = Z(E/K1;q™°), one has

1— —s 1-2s
CE/Fq (S> = (1 o qa_qs)(l—i__qql_5> = CE/]Fq(l - S)'

Note that the Riemann hypothesis for Z(E/K;;T) is equivalent to the
fact that the zeroes of (g/g, (s) are on the line Re(s) = %

7. Supersingularity

Supersingular curves are a special class of elliptic curves which arise
naturally. One of the most useful properties they have, as we shall prove,
is that their definition forces them to be defined over a small finite field
and, over any field, there are only finitely many elliptic curves isogenous
to a supersingular one.

Before defining supersingularity, let us recall from the introductory chap-
ter [N S] that an elliptic curve E is said to have complex multiplication
if End(E) % Z. Let us also recall the following result on End (F) from
that chapter.
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Proposition

(i) End (F) has no zero divisors.

(ii) End (F) is torsion-free.

(iii) End (F) is either Z, or an order in an imaginary quadratic field or
an order in a quaternion division algebra over Q.

An elliptic curve E defined over a field of characteristic p > 0 is said to
be supersingular if E[p] = O.
The following characterisation of supersingular elliptic curves is very
useful and not hard to prove.

Proposition Let K be a perfect field of characteristic p > 0. Then, the
following statements are equivalent:

(a) E is supersingular.

(b) [p] : E — E is purely inseparable and j(E) € Fp.

(c) E[p"] = {0} for some r > 1.

(d) E[p"] = {O} for allr > 1.

(e) Endgi(E) is an order in a quaternion division algebra over Q.
Proof: Let us prove the step (a) implies (b). Moreover, we show
that if Fy and F, are supersingular, and if ¢ : £ — Fs is a cyclic,
separable isogeny of prime degree | # p, then ¢ is defined over F.
Supersingularity implies that degsep([p]) = Ker [p] = Elp] = O ie.,
[p] is purely inseparable. Let ¢p be the Frobenius isogeny. Then, we
know that [p| = ¢g o ¢p. This implies that ¢ is purely inseparable
as well and has degree p. Therefore, by Galois theory, ¢g = ¢ o 0 for
some separable map 6. As the degree of 6 has to be 1, it has to be
an isomorphism. In particular, F is isomorphic to its image under the
Frobenius automorphism of F2. Hence, j(E) € F 2.

The other statement about isogenies being defined over F,2 is proved
similarly as follows. By the Galois theory argument as above,

Pp, 00 =1 oop
and - -
GOm0 = o dp,
for some 1, a. Then,
[(] 0 ¢, =P otpodp =1hodp 0 =dg 0dog.

But, [¢] commutes with everything. This gives us

¢p 0 (¢ —a)od=0.
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A composition of isogenies can be zero only if one of them is zero. There-
fore, since ¢ and ¢p, are nonzero, we get ¢ = « i.e., ¢ commutes with
the action of the Frobenius morphism over F In other words, ¢ is
defined over F 2.

p2.

Remark By the above proposition, upto isomorphism there are only
finitely many elliptic curves isogenous to a supersingular curve. For
p=2Y2+Y = X3 is the unique supersingular curve. For p > 2, we
have the following theorem.

Theorem Let K = F, with char K =p > 2.
(i) Let f(X) € K[X] be a cubic polynomial with distinct roots in K and
E be the elliptic curve defined by the equation Y? — f(X) =0. Then E

is supersingular < coefficient of XP~ in f(X)pT_1 is 0.
p—1 .
(ii) Consider the Deuring polynomial Hy(t) = Y ( 3 ) t'. Let \ €

K, )\ # 0,1. Then, the elliptic curve E : Y? = X(X — 1)(X — \) is

supersingular < H,(\) = 0.

Proof: (i) Let x : K* — {£1} be the unique non-trivial character

of order 2; extend y to K by defining x(0) = 0. Then, it is easy to

see that each z € K yields 0,1 or 2 points (z,y) on E accordingly as

f(z) is a non-square, 0 or a square i.e., #E(F,) = 1+ > (x(f(x)) +
zeEK

H=14q+ X x(f(z)) =1+ X f(x)q%l = 1- A, in K, where
zeK zeK

A, = coefficient of X97! in f(X)q%1 since f is a cubic and >z is
]Fq

—1 or 0 according as whether ¢ — 1 divides i or not. But #E(F,) =

deg(l—mgp) =1—a+qg=1—aie,a=A;in K. Thus 4y =0 a=0

in K. As a € Z, this means a = 0(p). But 7y p = [a] — 7y p; sO

a = 0(p) & 7q,g purely inseparable < E supersingular. We still need to
prtlo1 p -1 p—l)pT

show A, =0 4 A, = 0. Writing f(X)= = f(X)"= (f(0)"T
and equating coefficients and keeping in mind the fact that f is a cubic,
one gets Ajrr1 = Apr -Agr. By induction, we get A, =0 < A, = 0. The
proof of (ii) follows from (i).

Corollary The j-invariant 0 gives supersingular curves if, and only if,
p = 2 mod 3. The j-invariant 1728 gives supersingular curves if, and
only if, p = 3 mod 4.

Proof: E:Y? = X3+ 1 has j(E) = 0 and, the coefficient of XP~1 in

(X34+1)P=1/2 45 (Egjgﬁ) or 0 according as p = 1 mod 3 or p = 2 mod 3.



Elliptic curves over finite fields 43

This proves the first assertion since (g :Bg) # 0 mod p. For the next,
notice that £ : Y2 = X3 4+ X has j(E) = 1728 and, the corresponding
coefficient of XP~! in this case is (g :Bﬁ) or 0 according as p = 1 mod
4 or p =3 mod 4. This proves the corollary.

As other corollaries, here are two criteria for an elliptic curve over a field
of positive characteristic to be supersingular.

Corollary Let K =TF,. Then the elliptic curve E) defined by the equa-
tion Y? = X(X — 1)(X — ) is supersingular if and only if #E\(F,) =
p+ 1.

Proof: Writing #E)(F,) = 1 — A, (where A, is as above), E) is
supersingular if, and only if,

#E)\(Fp> =1 in Fp = #E)\(Fp) = 1(p>

& #E5\(Fp,) = p+ 1 by Hasse’s theorem (Riemann hypothesis).

Corollary F is supersingular < the invariant differential w is exact.

Proof: For p = 2, we can write the equation of F as Y2 +Y 4+ aXY =
X3, Then, w = lfi’;z is exact ©® a =0 < Eis Y24+Y = X3 which
is supersingular. For p > 2, we can write the equation of F as Y2 =

X(X —1)(X = A). Then w = 62% is exact < ypflz% is exact < yP~ldx
is exact & {z(x — 1)(x — )\)}%16& is exact < coefficient of XP~! in

{X(X -1)(X — )\)}pTil is zero < FE is supersingular.

Finally, here is an interesting counting formula similar to the ‘mass
formula’ for quadratic forms:

(Mass formula) % =3 ﬁ(E) where the sum is over isomorphism

classes of supersingular elliptic curves over a field of characteristic p >
0.

8. Structure of E(F,)

In this final section, we discuss what possible groups can arise as groups
of rational points of elliptic curves over finite fields. We prove :

Theorem A group G of order N = q+1—m is isomorphic to E(Fy) for
some elliptic curve E over Fy if, and only if one of the following holds:
(i) (g;m) = 1,|m| < 2,/q and G = Z/A X ZL/ B where B/(A,m — 2).
(ii) q is a square, m = £2,/q and G = (Z/A)* where A = /g F 1.
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(iii) q is a square, p = 1(3),m = £,/q and G is cyclic.

(iv) q is not a square, p =2 or 3, m = £,/pq and G is cyclic.

(v) q is not a square, p % 3(4), m =0 and G is cyclic

or q is a square, p # 1(4),m =0 and G is cyclic.

(vi) q is not a square, p = 3(4),m = 0 and G is either cyclic or G =
Z|/M x Z/2 where M = ‘1'5—1.

For proving this, we shall use the following result without proof (see
[TV], Theorem 2.4.30) :

Proposition The set of isogeny classes of elliptic curves over Fy is in
a natural bijection with the set of integers m such that |m| < 2,/q and
one of the following holds:

(i) (g, m) =1,

(ii) q is a square and m = £2,/q,

(iii) q is a square, p # 1(3) and m = £,/q,

(iv) q is not a square, p =2 or 3 and m = x,/pq

(v) q is not a square and m =0 or q is a square, p # 1(4) and m = 0.
Moreover, #E(F;) = q+ 1 —m for any curve from the isogeny class
corresponding to m.

Proof of the Theorem: Firstly, let £/ be any elliptic curve over F,
and let N = #E(F,). We start with some observations which would be
useful eventually even in the proof of the converse assertion that groups
with properties as in (i) to (vi) of the theorem do correspond to some E
over Fy.

Now E(F,) C E[N]| = Z/N xZ/N so E(F,) ~ Z/AXZ/B with B/A. Let
us choose a basis of E[N]| ~ Z/N x Z/N such that E(F,) is generated

by ( 1(4)1 ) and ( g ) Look at the Frobenius ¢, on E[N]; write the

a b
d

Z/N. Now, write #FE(F;) = ¢+ 1 — m; then m = a +d mod N. Also

¢q fixes E(Fy); so aA = A,dB =B mod N and so a = 1,d =1 mod B

since B/A.

Thus, m—2=a+d—2=0mod B ie., B/(m—2).

corresponding matrix in End (E[N]) as M = with a,b,c,d €

Before proceeding further, let us look also at the converse assertion of
the theorem. Let us look at any finite abelian group G satisfying any
one of the six conditions of the theorem. We would like to show that
G is isomorphic to E(F,) for some E. From the fact that G is as in
the theorem, it is clear that the integer m satisfies one of the conditions
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of the proposition and so there is indeed some elliptic curve E’ over

F, which is determined (uniquely upto isogeny) by m. Note that G and

E'(F,) have the same order N. In cases (ii) to (v) of the theorem, clearly

the group is determined by its order and we immediately get G = E'(F,).

If G is as in case (i) of the theorem, we argue as follows. Consider the
m—1 —A

matrix M’ = B 1 ] Since trM’ = m,detM’' = ¢ mod N and

since (¢, m) = 1, it can be shown that M’ is the matrix of the Frobenius
endomorphism on some elliptic curve F over F,. This can be proved
in a manner similar to the proof of the proposition on the structure of
endomorphisms of elliptic curves. The reason for choosing the matrix
M’ is the following. Note that

(@)= (@)= = (F)

The last congruence is due to the fact that B/(m — 2) as we are in case

(i). Similarly,
(0N _ /0
M )=\p mod N.

As G is generated by these two elements, we have the fact that M'g = ¢
mod N ie., G C E(F,) as M’ is the Frobenius corresponding to E. As
both groups have the same order N, it follows that G = E(F,).

If G is as in case (vi), we argue as follows. Given a prime p = 3 mod 4
and an odd power ¢ of p, we want to find elliptic curves E, E’ over F,
such that E(F,) 2 Z/(¢+1) and E'(F,) = Z/(%51) x /2. To do this, it
suffices to prove :

(a) for any E with E(F,) cyclic, there is an isogeny 0 : E — E’ of degree
2 such that E'(F,) is not cyclic and

(b) for any E’ over F, with E'(F,) D Z/2 x Z/2, there is an isogeny
0 : E' — E such that E(F,) is cyclic.

Suppose E is as in (a). Then, since E[4] N E(F,) is also cyclic, it has
a generator v, say. Then, one can write E[2] as {0,2v,e, f = e + 2v}.
Thus, E[2] € E(F,), the Frobenius of £ permutes e and f. Consider
the isogeny 0 : E — E’ whose kernel is generated by 2v. Therefore, the
Frobenius of E’ preserves §(v) and 6(e) = 6(f) which gives E'[2](F,) =
Z/2 x Z/2. In other words, E'(F,) is not cyclic.

Conversely, let E’ be as in (b). Since E'(F;) C Z/2 x Z/N, we have that
E'[4](F,) 2 Z/2x Z/2 or E'[4](F,) = Z/2 x Z/4. In the former case, any
isogeny E' — E of degree 2 has the property that E(F,) is cyclic. In the
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latter case, let us write E'[4](F,) =< u,v >= Z/2 x Z/4. Considering
the isogeny 6 : E' — E of degree 2 whose kernel is generated by u + 2v,
it follows that E(F,) is cyclic. This completes the proof that in all cases
that any group G as in the theorem can be realized as E(F,) for some
E over Fy.

Let us now turn to the proof of the assertion that if F is any elliptic
curve over Fy, the group E(F,) satisfies one of the six conditions of the
theorem. We shall argue according to the case of the proposition that
the corresponding m, g satisfy.

If m,q are as in case (i) of the proposition, we have already shown at
the beginning of our proof that we have the properties asserted in case
(i) of the theorem.

Suppose now that we are in case (ii) of the proposition. The corre-
sponding matrix M for the Frobenius homomorphism can be shown
without too much difficulty to be a scalar matrix. Let us write ¢ = p?".
Then, m = 42p" and E(F,) has order N = (p” F 1)2. Therefore, if
A, B are the elementary divisors of E(F;) where B|A, then AB = N,

- p" 0 AN _ (A 0\ _ /0
M-:l:(opr>andM<0>_(O)andM(B>_(B>modulo

N = (p" F 1)2. This gives us that both A = B = 0 mod p" ¥ 1. As
AB = N = (p" ¥ 1)?, this gives A = B = p" F 1. We have case (ii) of
the theorem.

If we are in case (iii) of the proposition, then g = N+1—m =1 mod B
as m = 2 mod B. But, we have g = m?> =4 mod Bie., B=1or B =3.
If we had B = 3, then we would have m = 2,5 or 8 mod 9 andso g =4,7
or 1 mod 9 respectively. Thus, we would have N = ¢+ 1 —m = 3 mod
9 which contradicts the fact that B2|N. Therefore, B = 1 and so E(F,)
is cyclic i.e., we have case (iii) of the theorem.

If m, g are as in case (iv) of the proposition, we have

either

p=2 m=2mod B, N,Bodd, 2¢=m?>=4, ¢=2, N=1mod B

or
p=3, (B,3)=1, m=2, 3¢g=m?=4, 3N =1mod B.

In either case, it is obviously forced that B = 1.

In case (v) of the proposition, we have m = 0 and so 0 = 2 mod B gives

B =1or B=2.If B=1 we have case (v) of the theorem and if B = 2,

then 4| N and we have case (vi).

This completes the proof of the theorem.
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