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Automorphic functions - introduced by Henri Poincaré.

In view of their symmetry properties, Automorphic functions often
give rise to relations between different objects and even explain
why various classical results hold.

Langlands’s perspective - an extended definition of these functions
via harmonic analysis and group representations.
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Riemann Zeta function

C F Gauss (1777-1855) conjectured the ‘Prime Number Theorem’
in 1794:

π(x) is asymptotic to the function Li(x) :=
∫ x

1
dt

log t .

π(x)
x/ log x → 1 as x →∞ or, equivalently, the n-th prime pn

asymptotically grows like n log(n).
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Infinitude of primes in every arithmetic progression of the form
an + b with (a, b) = 1 was proved in 1837 by Lejeune Dirichlet.

Unlike Euclid’s proof, Dirichlet’s proof requires more sophisticated,
analytic techniques.

Bernhard Riemann’s 1859 memoir gave totally new impetus to
prime number theory, introducing novel techniques and giving birth
to the subject of analytic number theory.

Riemann lived less than 40 years (September 17, 1826 - July 20,
1866) and wrote just one paper on number theory and it was 7
pages long.
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Key difference between earlier workers and Riemann’s paper:

Considered the series
∑∞

n=1
1
ns as a function of a complex variable

s which varies over the right half-plane Re (s) > 1.

Riemann proved meromorphic continuation and functional
equation for this Riemann zeta function.

The key point of viewing the zeta function as a function of a
complex variable s allowed Riemann to prove an ‘explicit formula’
connecting the complex zeroes of the zeta function and the set of
prime numbers!

Riemann also made 5 conjectures, four of which were solved in the
next 40 years; the one-unproved conjecture is the Riemann
Hypothesis.
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Riemann’s memoir

The Riemann zeta function defined by the infinite series
ζ(s) :=

∑∞
n=1

1
ns for Re (s) > 1 satisfies:

(I) Meromorphic continuation: ζ(s) can be defined for all s ∈ C as
a holomorphic function except for the single point s = 1 where it
has a simple pole with residue 1:

For (I), Riemann uses Jacobi’s theta function

θ(z) =
∞∑

n=−∞
e−n

2πz

which has the transformation property θ(1/z) =
√

zθ(z) for
Re(z) > 0 (here,

√
z is chosen with argument in (−π/4, π/4)).
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(II) Functional equation: The continued function (again denoted
ζ(s)) satisfies

π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1− s)/2)ζ(1− s).

The mysterious appearance of the Gamma function was explained
very satisfactorily as the ”factor corresponding to the infinite
prime” by Tate using adeles; will mention this later but one part of
the explanation is:
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π−s/2Γ(s/2) is the Mellin transform (a multiplicative version of the
Fourier transform) of e−πx

2
which is its own Fourier transform; the

Poisson summation formula applies.
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As the Gamma function has poles at all negative integers, the zeta
function has zeroes at all −2n for natural numbers n.

s = 1 simple pole of ζ(s) and s = 0 simple pole of Γ(s/2), we
obtain ζ(0) = −1/2.

1 + 1 + 1 + · · · · · · = −1
2

1 + 2 + 3 + · · · · · · = − 1
12

ζ(−n) = (−1)n Bn+1

n+1 where Br are the Bernoulli numbers; note that
Bodd>1 = 0 which is related to ζ(−even < 0) = 0.
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Riemann’s five conjectures in his 8-page paper:

(i) ζ(s) has infinitely many zeroes in 0 ≤ Re (s) ≤ 1.

(ii) The number of zeroes of ζ(s) in a rectangle of the form
0 ≤ Re (s) ≤ 1, 0 ≤ Im (s) ≤ T equals

T

2π
log

T

2π
− T

2π
+ O(log T )

(iii) The function

ξ(s) = s(s − 1)π−s/2Γ(s/2)ζ(s)

has an infinite product expansion of the form

eA+Bs
∏
ρ

(1− s

ρ
es/ρ)

for some constants A,B where the product runs over the zeroes of
ζ(s) in the infinite strip 0 ≤ Re (s) ≤ 1.
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(iv) If Λ(n) is the von Mangoldt arithmetical function defined to be
log p if n is a power of a single prime p and zero otherwise, and if
ψ(x) =

∑
n≤x Λ(n), then

ψ(x) = x −
∑
ρ

xρ

ρ
− ζ ′

ζ
(0)− log(1− x−2)

2
.

The value ζ′

ζ (0) can be seen to be log(2π) on using the functional
equation; note that the sum over the zeroes is to be interpreted as

lim
T→∞

∑
|ρ|≤T

xρ

ρ

and is not absolutely convergent.

(v) (Riemann hypothesis) All the zeroes of ζ(s) in the so-called
critical strip 0 ≤ Re (s) ≤ 1 lie on the vertical line Re (s) = 1

2 .
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The conjectures (i), (ii), and (iv) were proved in 1895 by von
Mangoldt and (iii) was proved by Hadamard in 1893.

(iv) gives an explicit relation between prime numbers and zeroes of
ζ(s).

In 1893, Hadamard and de la vallé Poussin independently proved
that

ζ(s) 6= 0 ∀ Re (s) = 1.

This non-vanishing on the vertical line Re(s) = 1 implies

immediately that the ratio ψ(x)
x → 1 as x →∞ and this is just a

rephrasing of the Prime number theorem.

Indeed, looking at (iv), we see that |xρ| = xRe (ρ) and, therefore,
the prime number theorem (ψ(x) ∼ x) is equivalent to the
assertion Re (ρ) < 1.
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Not difficult to show that the RH gives

Li(x)− π(x)√
x log(x)

' 1 + 2
∑
γ

sin(γ log(x)

γ

where the sum is over all positive real γ such that 1
2 + iγ is a zero

of ζ(s).

As the right side is a sum of periodic functions, one may think of
RH as saying that ‘the primes have music in them’!
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Weil’s explicit formula

Let ρ = 1
2 + iγ vary over the zeroes of ζ(s) - here, γ is complex,

and the RH would imply that γ is real.

Consider any analytic function h(z) on |Im (z)| ≤ 1
2 + δ satisfying

h(−z) = h(z), |h(z)| ≤ A(1 + |z |)−2−δ for some A, δ > 0.

Suppose g is the Fourier transform of h:

g(u) =
1

2π

∫
R

h(z)e−izu dz .

∑
γ h(γ) =

1
2π

∫∞
−∞ h(z) Γ′

Γ ( 1
4 + iz

2 ) dz +2h( i
2 )−g(0) log π−2

∑∞
n=1

Λ(n)√
n

g(log n).
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So, the set of prime numbers and the nontrivial zeroes of ζ(s) are
in duality!

As Weil observed, the Riemann Hypothesis is true if and only if∑
γ h(γ) > 0 for all h of the form h(z) = h0(z)h0(z̄).

This Fourier-theoretic statement is remarkably similar to Selberg’s
trace formula (which itself can be thought of as a non-abelian
generalization of Poisson’s summation formula).
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If X is a compact hyperbolic surface, the spectrum of the
Laplace-Bertrami operator is discrete

0 = µ0 < µ1 ≤ µ2 ≤ · · ·

Label eigenvalues as µn = 1
4 + r 2

n for n > 0.

Selberg’s trace formula relates the sum
∑

n h(rn) (the trace) for a
‘nice’ test function h to a sum over conjugacy classes [x ] of Γ:∑

n h(rn) =
Vol(X )

4π

∫∞
−∞ zh(z)tanh(πz)dz +

∑
[x]

log N(x)

N(x)1/2−N(x)−1/2 g(log N(x))

where g is the Fourier transform of h.
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Riemann. ψ(x) = x −
∑

ρ
xρ

ρ −
ζ′

ζ (0)− log(1−x−2)
2 .

Weil.
∑

γ h(γ) =
1

2π

∫∞
−∞ h(z) Γ′

Γ ( 1
4 + iz

2 ) dz +2h( i
2 )−g(0) log π−2

∑∞
n=1

Λ(n)√
n

g(log n).

Selberg.
∑

n h(rn) =
Vol(X )

4π

∫∞
−∞ zh(z)tanh(πz)dz +

∑
[x]

log N(x)

N(x)1/2−N(x)−1/2 g(log N(x))

where g is the Fourier transform of h.
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Weil’s explicit formula can also be interpreted as a trace formula
for the trace of an operator on a suitable space.

The space is the semidirect product of the ideles of norm one and
the adeles (to be defined later) quotiented by the discrete
subgroup Q∗ ∝ Q.

For a suitable kernel function on this space, the conjugacy class
side of the Selberg trace formula is precisely the sum over the
primes occurring in Weil’s explicit formula.

In the Langlands Program, one development is a very general trace
formula due to James Arthur and his collaborators.
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Reciprocity laws

Let p be a prime number ≡ 1 modulo 4.
The roots of the polynomials f = X 2 − p and g = X p − 1 generate
fields Kf = Q(

√
p) and Kg = Q(ζp) where ζp is a primitive p-th

root of unity.

Look at the set Spl(Kf ) of prime numbers q which ‘split
completely’ in Kf (i.e. f , considered modulo p, splits into linear
factors).

Spl(Kf ) consists of all primes q that are squares modulo p and
Spl(Kg ) consists of prime numbers q for which q ≡ 1 modulo p; in
particular, Spl(Kg ) ⊂ Spl(Kf ).
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More generally:
Theorem. Let f , g ∈ Z[X ] be irreducible polynomials and denote
by Kf and Kg , the fields generated by their roots. Then, Kf ⊂ Kg

if and only if Spl(Kf ) ⊃∗ Spl(Kg ).

The ”if” part is a deep theorem of Chebotarev.
The notation Spl(Kf ) is intended to show that its elements are the
prime numbers p which ”split into” n ”prime ideal” factors in Kf ,
where n is the degree of Kf - by a beautiful result of Dedekind and
Kummer.
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Thus, Spl(Kf ) characterizes the field Kf ; one would like to
describe Spl(Kf ) in terms of the base field Q only.

One calls a reciprocity law, any rule or description (in terms of Q)
of the set Spl(f ) of primes modulo which f splits into linear
factors; the example above captures the quadratic reciprocity law
of Gauss.

As we saw, for g = X n − 1, Spl(g) consists of primes p ≡ 1 mod n
(for n = 4, we have Fermat’s sum of two squares theorem).
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For f = X 2 − p, Spl(f ) is described by a set of congruences
modulo p via the quadratic reciprocity law.

Can Spl(f ) always be so described for any f ?

Too ambitious but the ambit of abelian class field theory is to
show:

If K is a number field, and the roots of f ∈ K [X ] generate a field
extension whose Galois group over K is abelian, then Spl(f ) can
be described via a finite set of generalized congruences.
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In 1853, Kronecker announced the remarkable theorem that every
abelian extension of Q lies in a cyclotomic field - the
Kronecker-Weber theorem.

The proof by Weber which attempts to correct Kronecker’s proof
also had errors and the first correct proof is due to Hilbert in 1896
(the year when PNT was proved!).

Kronecker used a notion of density of primes as early as 1880 and
proved that for a polynomial with d irreducible factors over Z, the
average number of roots modulo p as p varies over primes, is d . A
corollary of this is:

For a polynomial f ∈ Z[X ], the set Spl(f ) has density 1/[K : Q],
where K is the splitting field of f .

Interestingly, Kronecker used this to give a proof of irreducibility of
the cyclotomic polynomial; the above statement on density carries
over to number fields with the same proof.
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Analogous to Kronecker-Weber theorem, the abelian extensions of
all imaginary quadratic fields were also described by Kronecker
using special values of the j-function, elliptic functions and roots of
unity; this is a consequence of the theory of complex multiplication.

For instance, Abel had already shown that any abelian extension of
Q(i) lies in the field obtained by attaching the values of the
lemniscatic elliptic function sl at ω/n where ω is the lemniscatic
analogue of π.

The general expectation of describing abelian extensions of any
number field by attaching special values of some transcendental
function is the 12th problem of Hilbert - it is still open.

The 9th problem of Hilbert asks for general reciprocity laws for
non-abelian extensions - the Langlands Program concerns this.
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Abelian class field theory

Let us look at Q first - if K ⊆ Q(ζn) is an abelian extension, one
calls n, an admissible modulus for K ; the smallest possible n called
the conductor of K .

If n is an admissible modulus for K , each integer a coprime to n
defines an element of the Galois group of K over Q (simply, the
restriction to K of the map ζn 7→ ζan on the cyclotomic field); this

is denoted by

(
K
a

)
and is called the Artin symbol.

In this manner, we have the Artin homomorphism(
K

∗

)
: (Z/nZ)∗ → Gal(K/Q).

This is onto and therefore, gives Gal(K/Q) ∼= (Z/nZ)∗/IK ,n in
terms of the arithmetic of Q (where IK ,n is the kernel of the Artin
map) - the Artin reciprocity isomorphism over Q.
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For instance, if K = Q(
√

p) with p ≡ 1 mod 4, then its conductor

is p and the Artin map is simply a 7→
(

a
p

)
and the kernel is the

subgroup of squares; so, Gal(K/Q) = {±1}.

If n is a modulus for K and p does not divide n, then the order of
the coset of pIK ,n in (Z/nZ)∗ is the so-called residue class degree
at p - this is the number [K : Q]/g where g is the number of
prime ideal factors that p has in K .

In particular, for K = Q(ζn), since the kernel is trivial, we are
talking about the order of p mod n.

p splits completely in it if and only if p ≡ 1 mod n.
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Generalizing to a general number field K :

A modulus m of K is a formal product of a non-zero ideal of OK

and real embeddings.

The fractional ideals prime to m form a group Im with a subgroup
Pm consisting of principal fractional ideals αOK for α ≡ 1 mod m
(this means also that α− 1 > 0 at the real embeddings in m).

The quotient Cm := Im/Pm is called the ray class group; for the
trivial modulus, we get the ideal class group of K .
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For a Galois extension L of K , the norms of ideals of OL over m
give rise to a subgroup Nm(L/K ) of the ray class group Cm.

The index of this subgroup is at the most the degree [L : K ] and
Takagi showed in 1920 that for certain moduli (called admissible),
the index is equal to the degree.

For each modulus m of K and each subgroup Hm/Pm of the ray
class group, there is a unique abelian extension L/K so that m is
admissible for L, the norm subgroup Nm(L/K ) equals Hm modulo
Pm and Im/Hm

∼= Gal(L/K ).

When the subgroup considered is trivial, the corresponding field is
called the ray class field of K for the modulus m.
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Conversely, every abelian extension L is contained in the ray class
field for some modulus m.

The ray class field corresponding to the trivial modulus is called
the Hilbert class field of K .

It has the property that its Galois group over K is isomorphic to
the class group of K and every prime in K is unramified in it; it is
the maximal abelian, unramified extension of K .

The analogue of Dirichlet’s theorem on primes in arithmetic
progressions is the statement that for a subgroup Hm/Pm of the
ray class group, the primes in any coset of Im/Hm have density
1/[Im : Hm].
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Takagi’s result is made completely explicit by Artin through a
natural map in the following manner.

For an abelian extension L/K and a modulus m of K containing
the bad primes, Artin’s reciprocity theorem (stated as a theorem in
1927 but proved only later!) gives an explicit homomorphism - the
Artin map - from Im to Gal(L/K ) (which maps P to FrobP(L/K ))
whose kernel contains PmNm(L/K ) (when the modulus is
‘admissible’, this is the whole kernel).

The surjectivity is proved analytically; the most difficult part of the
theorem is to show that Pm is contained in the kernel of the Artin
map.

The quadratic reciprocity law can easily be recovered from Artin’s
theorem.
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Idelic formulation - shape of things to come

As we mentioned, splitting of primes in abelian extensions of a
number field K are given by generalized congruence conditions.

The ideles are a device to capture ALL congruence conditions.

The ideles of K are the locally compact ring formed by the product
of completions of K ∗ at all ‘primes’ of K with the restriction that
in an idele, the factors at all but finitely many primes P are from
the maximal compact subring of the completion KP .

The open compact subgroups of the idele ring IK are defined by
congruence conditions.
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The theorems of class field theory show that there is a bijection
between continuous homomorphisms from IK/K ∗ to C∗ and
continuous homomorphisms from the absolute Galois group
Gal(K̄/K ) to C∗.

From Langlands’s perspective, instead of the idele class group or
the absolute Galois group, it is better to consider their character
groups (one-dimensional representations).

In this manner, higher dimensional generalizations will consider
irreducible n-dimensional representations of the Galois group and
certain types of representations (called cuspidal automorphic
representations) of ‘

∏′
P GLn(KP).
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Classical L-functions

Dedekind zeta functions:

For an algebraic number field K , one has the Dedekind zeta
function

ζK (s) =
∑
I 6=0

N(I )−s =
∏
P

(1− N(P)−s)−1.

The series and the product are absolutely convergent for
Re (s) > 1.

Unlike the Riemann zeta function, the residue of ζK (s) at s = 1
carries subtle information on K like its class number etc.

ζK (s) admits a meromorphic continuation to Re (s) > 1− 1/d and
is holomorphic except for a simple pole at s = 1 with residue given
by ‘the analytic class number formula’:

lims→1+(s − 1)ζK (s) = 2r1 (2π)r2h(K)Re g(K)

|µ(K)|
√
|disc(K)|

.

B. Sury The Langlands Program



There is also a functional equation of the form
Λ(s) = |disc(K )|1/2−sΛ(1− s) which gives in particular the
location of the ‘trivial zeroes’ of ζK (s); for example, ζK (−n) = 0
for all non-negative integers n if K 6⊂ R.

Extended Riemann hypothesis: All the ‘nontrivial’ zeroes of ζK (s)
lie on Re (s) = 1

2 .
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Dirichlet L-functions

Dirichlet proved the infinitude of primes in progressions several
years before Riemann’s work and so, did not think in terms of
analytic continuation etc.

To investigate the prime distribution in residue classes modulo q,
Dirichlet considered the finite, abelian group Z∗q and the dual
group of homomorphisms from this group to C∗.

Extending it to the whole of Z (taking 0 on non-units) so as to be
periodic mod q, leads to Dirichlet characters mod q.

For any such Dirichlet character χ mod q, one has a Dirichlet
L-function

L(s, χ) =
∞∑
n=1

χ(n)

ns
=

∏
p prime

(1− χ(p)

ps
)−1.
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For example, if q = 4, the group has two elements and the
nontrivial character is the map which takes the value (−1

p ) - the
Legendre symbol - at any odd prime p.

For any a ≥ 1 which is relatively prime to q, using the Schur’s
orthogonality property for characters:∑
{ 1
p : p ≤ x , p ≡ a mod q} =

1
φ(q)

∑
p≤x

1
p + 1

φ(q)

∑
χ 6=1 χ̄(a)

∑
p≤x

χ(p)
p .

Therefore, the assertion that

L(1, χ) 6= 0 ∀ χ 6= 1

is equivalent to Dirichlet’s theorem:∑
{ 1
p : p ≤ x , p ≡ a mod q} = 1

φ(q) log log x + O(1).
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Generalized Riemann hypothesis: All the ‘nontrivial’ zeroes of
L(s, χ) lie on Re (s) = 1

2 for any Dirichlet character χ.

For the quadratic field K = Q(
√
±q) where the sign is the value

χ(−1), one has:
ζK (s) = ζ(s)L(s, χ).

This statement contains in it the quadratic reciprocity law of
Gauss.

The theorem of Kronecker-Weber asserting that K is contained in
a field of the form Q(e2iπ/m) is equivalent to writing ζK (s) as a
product of L(s, χ) for certain Dirichlet characters χ’s and of ζ(s).

A point to be noted : the RHS is defined essentially in terms of Q.
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Generalizing Dirichlet characters, associated to a number field K ,
there are Hecke characters defined on the ray class groups of K .

In order to generalize Dirichlet’s theorem on primes in arithmetic
progression to a number field, Weber followed Dirichlet’s idea from
1837.

Weber defined the L-function of characters χ of the generalized
ideal class groups Hm/Pm by L(s, χ) =

∑
(m,I )=1

χ(I )
N(I )s which

converges absolutely for Re(s) > 1.
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He could obtain analytic continuation only in the half-plane
Re(s) > 1− 1/d where d is the degree of the field.

This does NOT suffice to prove the generalization of Dirichlet’s
theorem; one would need analytic continuation to Re(s) > 0 to
deduce that L(1, χ) 6= 0.

This is accomplished much later in 1918 by Hecke, who showed
these L-functions analytically continue to entire functions except
for the trivial character.

The next step is the introduction of nonabelian L-functions by
Artin which ultimately leads us to a representation-theoretic point
of view.
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Other L-functions

A definition of the zeta function of an algebraic curve over a finite
field was given by Emil Artin in his 1924 thesis.

He also proved the analogue of the RH for some 40 curves.

In 1934, Helmut Hasse established that the analogue of RH holds
for the class of zeta functions associated to elliptic curves
(nonsingular cubic curves y 2 = f (x)) over finite fields.

André Weil proved the RH for all nonsingular curves over finite
fields in 1948 by deep methods from algebraic geometry - now
simplified by Enrico Bombieri in 1972 using the Riemann-Roch
theorem to a 5-page proof!
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In 1949, Weil defined a zeta function for any algebraic variety over
a finite field and made several conjectures.

One of these conjectures is an analogue of the RH.

Amazingly a prototype already occurs in the work of Gauss - the
Last entry in his famous mathematical diary is a special case of
Weil’s RH:

Let p ≡ 1 mod 4 be a prime. Then, the number of solutions of the
congruence x2 + y 2 + x2y 2 ≡ 1 mod p equals p − 1− 2a, where
p = a2 + b2 and a + ib ≡ 1 mod 2(1 + i).
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After tremendous progress in algebraic geometry, Pierre Deligne
proved the Weil conjectures in general in 1973.

Deligne’s journey takes him through the theory of modular forms
and a beautiful conjecture due to Ramanujan turns out to be the
analogue of the RH.
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For C - a nonsingular projective curve over a finite field Fq - one
considers:

Div(C), the formal finite sums of the form D =
∑

aiPi where ai
are integers and the points Pi in C are defined over some finite
extensions of Fq where Frobq(D) = D.

Say D =
∑

aiPi effective (D > 0) if ai ≥ 0 for all i .

Prime divisor - one which is not expressible as a sum of effective
divisors.
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Homomorphism deg :
∑

aiPi →
∑

ai .

Artin-Hasse-Schmidt zeta function of C is:

ζ(C , s) :=
∑
D>0

(qdeg(D))−s =
∏
P

(1− qdeg(P))−s .

Satisfies the functional equation

q(g−1)sζ(C , s) = q(g−1)(1−s)ζ(C , 1− s)

where g is the genus of C .

The Riemann-Roch theorem implies that ζ(C , s) is a rational
function of q−s ; write ζ(C , s) = Z (C , t) where t = q−s and Z is a
rational function of t.
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Here RH is the statement that all zeroes of ζ(C , s) lie on
Re (s) = 1

2 ; this is equivalent to the assertion that the numerator

polynomial of Z has all zeroes of absolute value q−1/2.

Easy for g = 0; Hasse’s theorem when g = 1 - the case of elliptic
curves.

In the Weil conjectures for general algebraic varieties X , the RH
corresponds to the statement that the zeroes and poles of the
corresponding rational function have absolute values q±d/2 for
some integer d .

Roots are viewed as eigenvalues of the Frobenius automorphism of
Fq acting on the cohomology of the variety X .
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L-functions of modular forms

For a positive integer N and a Dirichlet character χ mod N, a
modular form of type (k , χ) on Γ0(N) is a function f on the upper
half-plane which is holomorphic at all points including the cusps
such that it satisfies the transformation formula

f
(
az+b
cz+d

)
= χ(d)(cz + d)k f (z) for all

a b
c d

∈ Γ0(N).

In particular, f (z + 1) = f (z) and thus, at i∞, it has a Fourier
expansion f (z) =

∑∞
n=1 anqn where q = e2iπz .

The subspace of cusp forms is defined as those f for which a0 = 0;
the orthogonal complement of this subspace (with respect to the
Petersen inner product) is spanned by Eisenstein series.
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We look at the vector space Sk(Γ0(N), χ) of cusp forms of type
(k , χ). One defines the L-function of f as

L(s, f ) =
∞∑
n=1

an
ns
.

Using the theory of Hecke operators, Hecke proved that for any
f ∈ Sk(Γ0(N), χ), the L-function L(s, f ) extends to an entire
function and satisfies a functional equation with a symmetry
s ↔ k − s.

He also proved that the L-function has an Euler product

L(s, f ) =
∏
p|N

(
1− ap

ps

)−1∏
p 6|N

(
1− ap

ps
+

χ(p)

p2s+1−k

)−1

which converges for Re (s) > (k + 2)/2, if and only if, f is a
(normalized) common eigenform for all the Hecke operators.
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Ramanujan-Petersson and Selberg conjectures

In its simplest form, the RP conjecture says that the Fourier
coefficients an(f ) of a normalized Hecke eigenform of weight k for
SL2(Z) satisfies

|ap(f )| ≤ 2p
k−1

2 for every prime p.

Hecke’s work shows that the Fourier coefficients an(f ) are just the
eigenvalues for the Hecke operators Tn.

This conjecture is therefore an analogue of the RH, and was proved
by Deligne in the work on Weil conjectures alluded to earlier.
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The analogue of the Ramanujan-Petersson conjecture for Maass
forms - forms where the holomorphy assumption is dropped - is the
assertion that an(f ) = O(nε) for each ε > 0; this is still open.

The adelic formulation of the Ramanujan-Petersson conjecture
used by Satake shows that the above Ramanujan-Petersson
conjecture and the Selberg conjecture on eigenvalues are two sides
of the same coin - the latter may be thought of as an archimedean
analogue of the former.
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Eichler-Shimura correspondence and
Taniyama-Shimura-Weil conjecture

If f ∈ S2(Γ0(N)), it is clear that the differential form f (z) dz is
invariant under Γ0(N).

Then, for any fixed point z0 on the upper half-plane, the integral∫ z
z0

f (z) dz is independent of the path joining z0 to z .

Thus, for any γ ∈ Γ0(N), there is a well-defined function

γ 7→ Φf (γ) =
∫ γ(z0)
z0

f (z) dz - this function does not depend on the
choice of z0.
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Eichler-Shimura: When f is a normalized new form with integer
coefficients, the set {Φf (γ)} as γ varies, forms a lattice Λf in C.
There is an elliptic curve Ef defined over Q which becomes
isomorphic to the complex torus C/Λf over C. Moreover

L(s,Ef ) = L(s, f ).

The converse result that every elliptic curve E over Q comes from
a modular form of weight 2 for Γ0(NE ) as above was conjectured
by Taniyama-Shimura-Weil and is now a famous theorem of Taylor
and Wiles for square-free N and of Breuil, Conrad, Diamond &
Taylor for other N.
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Artin L-functions

Let L/K be a Galois extension of number fields with Gal
(L/K ) = G .

For a prime ideal P of OK , write

POL = (P1P2 · · ·Pg )e

with Pi prime ideals.

The decomposition groups DPi
= {σ ∈ G : σ(Pi ) = Pi} are all

conjugate, and there is a surjective natural homomorphism to the
Galois group of the residue field extension

DPi
→ Gal

(
OL/Pi

OK/P

)

Kernel is trivial for all but finitely many prime ideals P.
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As the Galois group of an extension of finite fields is cyclic with a
distinguished generator, the Frobenius automorphism, there is a
conjugacy class σP in G corresponding to any unramified prime
ideal P - this class is called the Artin symbol of P.

For a finite-dimensional complex representation of G ,
ρ : G → GL(V ), Artin attached an L-function defined by

L(s, ρ; L/K ) =
∏

P det(1− ρ(σP)N(P)−s |V IP )−1 where V IP , the
subspace fixed by IP is acted on by the conjugacy class σP .

B. Sury The Langlands Program



Artin showed that these L-functions have nice properties like
invariance under the induction of representations and posed:

Artin’s Conjecture: L(s, ρ; L/K ) extends to an entire function
when the character of ρ does not contain the trivial character.

Thus, the pole of a Dedekind zeta function ought to come from
that of the Riemann zeta function.

Artin’s conjecture is still open; a consequence of Artin’s reciprocity
law is the statement that these L-functions extend to meromorphic
functions for any s.
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Automorphic L-functions and Langlands program

The whole point of view ever since Artin defined his L-functions
shifted to viewing everything in the powerful language of
representation theory.

Classical modular form theory for subgroups of SL2(Z) can be
viewed in terms of representations of SL2(R).

More generally, representations of adele groups surfaced as the
principal objects of study as we will see.
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A natural way to arrive at the adeles is via harmonic analysis; for
example, a generalization of the duality between Z and R/Z,
viewing Q as a discrete group, the compact abelian dual group
turns out to be the quotient group AQ/Q.

The adele ring AK of a number field K is defined as the set of all
tuples (xv )v with xv ∈ Kv where all but finitely many of the xv are
in Ov .

To define the topology on adeles, consider any finite set S of
places of K containing all the archimedean ones; the product ring∏

v∈S Kv ×
∏

v 6∈S Ov is locally compact as S is finite.

As S varies, these products form a basis of neighbourhoods of zero
for a unique topology on AK for which it is a locally compact ring.
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Tate’s thesis made a single Fourier-analytic computation
”adelically” to recover the functional equation of the Riemann zeta
function, explain the Gamma factor as the term corresponding to
the ”infinite prime” and pave the way to obtain functional
equations for more general L-functions.

Indeed, the Gaussian function f∞(x) = e−πx
2

is its Fourier
tranform, and its Mellin transform is π−s/2Γ(s/2).

Similarly, in the p-adic ring Zp, the characteristic function χp is its
own Fourier transform and its Mellin transform turns out to be
(1− 1/ps)−1.
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Thus, taking the ”Schwartz” function f = f∞
∏

p χp on the adele
ring, the corresponding Poisson summation formula (for the lattice
Q in AQ) is ∑

a∈Q
f (at) =

∑
a∈Q

f (t/a)

whose Mellin transform gives the functional equation for ζ and also
explains that the Gamma factor is the contribution at the infinite
prime of Q.

The above was generalized to ideles also by Tate.
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More generally, for a matrix group like GLn(K ) (or an algebraic
subgroup G ⊂ GLn defined over K ), one can naturally consider the
groups G (Kv ) and G (Ov ) for all places v of K .

The groups GLn(Kv ) are locally compact.

One has the ‘adelic group’ G (AK ) which has a basis of
neighbourhoods of the identity given by
GLn(AS) =

∏
v∈S G (Kv )×

∏
v 6∈S G (Ov ) as S varies over finite

sets of places containing all the archimedean places of K - for
n = 1 this is the idele group of K .
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The diagonal embedding of G (K ) in G (AK ) embeds it as a
discrete subgroup.

Unlike AK/K which is compact, the quotient space
GLn(AK )/GLn(K ) (this is not a group) is not compact; it does not
even have finite ‘measure’ for a Haar measure of the adele group.

However, the finiteness of measure holds modulo the group Z of
scalar matrices.

In fact, the double coset space GLn(A∞)\GLn(A)/GLn(K ) can be
identified with the class group of the number field K .
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For a Grossencharacter ω (a character of GL1(AK )/GL1(K )), it
makes sense to consider the following Hilbert space consisting of
measurable functions on the quotient space GLn(AK )/GLn(K )
with certain properties which remind us of transformation
properties of modular forms.

This is the Hilbert space L2(GLn(AK )/GLn(K ), ω) of those
measurable functions φ which satisfy:

(i) φ(zg) = ω(z)φ(g), z ∈ Z ;

(ii)
∫
GLn(AK )/Z .GLn(K) |φ(g)|2dg <∞.

B. Sury The Langlands Program



The subspace L2
0(GLn(AK )/GLn(K ), ω) of cusp forms is defined by

the additional conditions corresponding to any parabolic subgroup.

The latter are conjugates in GLn of ‘ladder’ groups

Pn1,··· ,nr =


g1 · · · · · ·
0 g2 · · ·
...

. . .
. . .

...
0 · · · 0 gr


The standard parabolic Pn1,··· ,nr is a semidirect product of its
unipotent radical

U =


In1 · · · · · ·
0 In2 · · ·
...

. . .
. . .

...
0 · · · 0 Inr


and GLn1 × · · · × GLnr .

B. Sury The Langlands Program



Any parabolic subgroup P has a similar semidirect product
decomposition P = M ∝ U.

The parabolic subgroups are characterized by the condition that
they are closed subgroups such that GLn(C)/P(C) is compact.

The additional ‘cuspidality’ condition for a parabolic subgroup P is∫
UP(AK )/UP(K)

φ(ug)du = 0 ∀ g ∈ GLn(AK ).
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The adele group acts as unitary operators by right multiplication
on the Hilbert space L2(GLn(AK )/GLn(K ), ω) and leaves the space
of cusp forms invariant.

By definition, a subquotient of this representation is called an
automorphic representation of GLn(AK ).

Moreover, a sub-representation of the representation on cusp forms
is said to be a cuspidal automorphic representation.

One further notion is that of an admissible representation of the
adele group - this is one which can contain any irreducible
representation of a maximal compact subgroup of the adele group
only finitely many times.
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A theorem of D.Flath tells us: Any irreducible, admissible
representation of the adele group is a ‘restricted’ tensor product of
unique irreducible representations of GLn(Kv ).

Further, for an admissible automorphic representation π = ⊗vπv ,
the representation πv belongs to a special class known as the
unramified principal series for all but finitely many v .

An unramified principal series representation πv is one whose
restriction to GLn(Ov ) contains the trivial representation; a certain
isomorphism theorem due to Satake shows that corresponding to
πv , there is a conjugacy class in GLn(C) of a diagonal matrix of
the form

Av = diag(N(v)−z1 , · · · ,N(v)−zn)

for some n-tuple (z1, · · · , zn) ∈ Cn.
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Corresponding to an admissible, automorphic representation
π = ⊗vπv , Langlands defined an L-function.

If S is the finite set of places outside of which πv is unramified
principal series, define for v 6∈ S ,

L(s, πv ) = det(1− AvN(v)−s)−1.

If LS(s, π) :=
∏

v 6∈S L(s, πv ), then Langlands proved that this
product has a meromorphic extension to the whole complex plane.

Defining L(s, πv ) for v ∈ S in a suitable manner, it also follows
that L(s, π) =

∏
v L(s, πv ) has meromorphic continuation, and a

functional equation.
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If π is cuspidal automorphic also, Godement & Jacquet showed:

L(s, π) is an entire function unless n = 1 and π = |.|t for some
t ∈ C.

Generalized Ramanujan-Petersson conjecture: If π is cuspidal
automorphic, then the eigenvalues of Av have absolute value 1 for
all v . Equivalently, for such a π, the matrix coefficients of πv , for
each prime p, belongs to L2+ε(GLn(Qp)/Z (Qp)) for any ε > 0.

Selberg’s (1/4)-eigenvalue conjecture can be interpreted as
asserting that π∞ is a tempered representation of GLn(R).
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Langlands Reciprocity conjecture: Let L/K be a Galois extension
of number fields and let G be the Galois group. Let (ρ,V ) be an
n-dimensional complex representation of G . Then, there is a
cuspidal automorphic representation π of GLn(AK ) such that
L(s, ρ; L/K ) = L(s, π).

This is just Artin’s reciprocity law when ρ is 1-dimensional.

Grand Riemann Hypothesis: All the zeroes of L(s, π) for a cuspidal
automorphic representation π, lie on Re (s) = 1/2.

The Grand Riemann Hypothesis has several concrete
number-theoretic consequences; for instance, it implies the Artin
primitive root conjecture which asserts that any non-square
a 6= −1 is a primitive root for infinitely many primes.
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Langlands Functoriality Conjecture

Let G be a reductive algebraic group over a global field K .

The complex group Ĝ defined by the Dynkin diagram dual to that
defined by G plays the role of a parameter space for
representations of G ; this information has to be augmented by
another piece as G is not always split.

Given an isomorphism φ of a maximal torus with the product of
GL1’s that is defined over the algebraic closure of Q, for elements
σ in the absolute Galois group GQ of Q, σ(φ)φ−1 give the
obstruction to φ being defined over Q.

This map determines a homomorphism from GQ to the group
Out(G ) of outer automorphisms of G (which is also Out(Ĝ ).
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Langlands introduced the semidirect product group LG := GQ ∝ Ĝ
- called the Langlands dual group of G .

For instance, for G = GLn, Ĝ = GL(n,C) and so,
LG = Gal(K̄/K )× GL(n,C).

For G = SO2n+1, Ĝ = Sp(2n,C) and so,
LG = Gal(K̄/K )× GL(n,C).

For G = Sp2n, Ĝ = SO(2n + 1,C) and so,
LG = Gal(K̄/K )× SO(2n + 1,C).

If G is a unitary group defined by a quadratic extension of K , the
group Ĝ is GL(n,C) but the action of the Galois group is nontrivial
and the group LG is a semidirect product Gal(K̄/K ) ∝ GL(n,C)
now.
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For general G , the action of GQ factors through a finite quotient
Gal(K/Q).

Similar to the GLn case, unramified representations πp can be
defined on G (Qp) if G is quasi-split (which happens for almost all
primes p).

Therefore, one has semisimple conjugacy classes c(πp) in
Gal(K/Q) ∝ Ĝ for almost all p.
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Thus, for an automorphic representation π = ⊗pπp of G (A), one
has the data of the family of conjugacy classes c(πp) for almost all
p; say p 6∈ S(π).

This is viewed as analytic data.

The conjugacy classes c(πp) are to be viewed as eigenvalues of
(general) Hecke operators.

The principle of functoriality describes deep (conjectural)
relationships among automorphic representations of different
groups by means of the corresponding families of semisimple
conjugacy classes:
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Langlands Functoriality Conjecture: Suppose G ,G ′ are reductive
with G quasi-split, and suppose ρ :L G ′ →L G is an algebraic
homomorphism. Then, for any automorphic representation π′ of
G ′, there is a corresponding automorphic representation π of G
such that c(πp) = ρ(c(π′p)) for p 6∈ S(π) ∪ S(π′).

When G ′ is trivial, G = GLn and ρ : Gal(K/Q)→ GLn(C), the
functoriality conjecture is quite concrete and asserts that there is
an automorphic representation π of GLn such that
c(πp) = ρ(Frobp) for all p 6∈ S .

Thus, for a faithful ρ, one obtains a ”nonabelian reciprocity law”:

Spl(K ) = {p 6∈ S : c(πp) = 1}.
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For n = 1, this reduces to the theorem of Kronecker-Weber.

For n = 2, when K is a solvable extension, this was proved by
Langlands and Tunnel; this was an important ingredient of Wiles’s
proof of FLT.

For general n, when K is a nilpotent extension, this was proved by
Arthur and Clozel using something called Base Change.
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We saw that functoriality entails producing an automorphic
representation form a Galois representation but the converse is not
true!

There are more automorphic representations than those which
correspond to Galois representations.

Langlands conjectured the existence of a universal group LQ whose
n-dimensional representations parametrize automorphic
representations of GLn.
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Local Langlands Correspondence

Langlands himself proved the LLC over R and C via his Langlands
classification.

For GLn over a local field of positive characteristic, it was proved
by Laumon, Rapoport and Stuhler in 1993.

Later, in 2000, Harris, Taylor and Henniart proved the LLC for GLn

over nonarchimedean local fields of characteristic 0.

One feature of representation theory over local fields is the
complication coming from L-indistinguishability (two groups having
the same L-functions) and one studies L-packets (finite sets of
representations of one group corresponding to each representation
of the other).
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Langlands conjectures for function fields

A geometric Langlands Program - analogue of the Langlands
functoriality conjecture over global function field - was formulated
by Drinfeld and Laumon. Due to the efforts of Drinfeld, Laumon,
Lafforgue and Lomeli, these have been proved for classical groups.
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THANK YOU!
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