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Some arithmetic properties of the sequence M, of subgroups of index n in some free 
product. are studied. For the free product 212 * 212 * 212, an explicit recurrence relation 
is obtained for the M,'s from which one deduces the corollary: Mn is always odd. For 
the free product 213 * 213, again an explicit recurrence is obtained for the Mn's from 
which one deduces: M, is odd if, and only if, n is of the form 2 '-3. The mod 3 behaviour 
of M, is periodic viz., Mn m M,+ 8 mod 3; the first eight values of M, are 1,0,1,2,2,0,2,1 
mod 3. 
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INTRODUCTION 

Our purpose is to study some arithmetic properties of the sequence Mn 
of subgroups of finite index in free products of some cyclic groups. The 
modular group is one example that has been studied by several authors 
([St, GIR]). Recently, Grady and Newman ([GNl, GN2, GN31) have 
made a study of the free products of cyclic groups of prime orders. In 
contrast with the earlier papers, they study properties of the sequence 
M,, modulo appropriate primes p without actually getting a recurrence 
for the M,. Here, and in what follows, Mn stands for the number of 
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348 B. SURY 

subgroups of index n in the given group. They prove the existence of 
a linear recurrence for Mn modulo p when (Zlp) * (Elp) is a free factor 
and p > 3. For the prime p = 2 (respectively 3), they prove that a 
similar recurrence exists mod p provided (212) * (212) * (212) * (212) 
(respectively (213) * (213) * (213)) occurs as a free factor. In this note, 
we prove some results complementing those of [GNI, GN2, GN3] viz., 
the following. 

We get explicit recurrence formulae for Mn for the groups (212) * 
(212) * (212) and (213) * (213). 

Then, we use these to prove: 
For G = (212) * (212) * (2/2), M, is odd for all n. 
For G = (213) * (2/3), M, is odd if, and only if, n is of the form 2"- 3. 
The mod 3 behaviour of M, is periodic viz., Mn = M, + mod 3; the 

first 8 values of M, modulo 3 are 1,0,1,2,2,0,2,1. 
The starting point is a formula of Dey. 
Let G be any finitely generated group. Denote by h,, the number of 

homomorphisms of G into S,, and by a,, the number h,/n!. Dey's 
formula states that the sequences M, and a, are related by 

where a. is taken to be 1. 
The method of [GN3] is to prove that when G is a free product of 

cyclic groups, the rational numbers a, are in pZP for n >p, provided 
Z/p occurs as a factor at least 2 times (respectively 4, 3 times) when 
p > 3 (respectively p = 2 or 3). 

This elegant method does not work in our cases - indeed, for (213) * 
(2/3), a y  $ 2 3  and similarly, for (212) * (212) * (2/2), a 2 k  $ 2 2  for 
arbitrarily large k. So, one has to get an appropriate recurrence 
relation among the M, 's themselves. 

Let p be a prime. Let us recall that the number rP(n) of elements of 
exponent p in S, is given recursively by 

(n - I)! 
rp (n) = rp (n - 1) + ---- 7- (n -PI 

(n -p)! 

with ~ ~ ( 0 )  = . . - = rp(p- 1) = 1. 
Thus, if G = +/pl * Z/p2 * . . . * Z/p, is a free product, the number 

h,(G) of homomorphisms of G into S, is T,, (n) . . . rp,(n). One can 
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SUBGROUP COUNTING 349 

prove that the numbers a ,  = h,/n! satisfy a recurrence (with polyno- 
mials in n as coefficients)' of order, at the most p,p2. . .p,. 

1. ON THE GROUP G = (212) * (212) * (212) 

Let a, = r2(n)/n!, where the number r2(n) of involutions in S, is given 
recursively by r2(n) = r2(n - 1 )  + (n - 1 )  r 2  (n - 2). Then, nu, = an- 1 

2 2 2  2 + an- 2. This gives, a :-, = (nu, - a,-l) = n a ,  + a,-l - 2nanan-1. 
On the other hand, a, + a,- = (n + l)a,+ gives, on squaring, an 
expression for anan - Eliminating the anan - term from the two 
equations, one gets the recurrence 

where b, = (n!)a: = r2(n12/n!. We notice that this gives easily the 
generating function C ,  + " for the group (212) * (212) to be 
( 1  + 2t - t 2 ) / ( 1  - t12(1 7 t ) .  This leads us to the well known result for 
G = (212) * (212) that, M, is n or n + 1 according as n is odd or even. 
This was first proved by Stothers by a graphical method. 

Let us return to the case G = (212) * (212) * (212). We have the two 
recurrences for a, = r2(n)/n! and b, = ~ ~ ( n ) ~ / n ! :  

3 We are interested in a recurrence for a ,  = h,(G)/n! = r2(n) /n! = 

(n!)a,b,. We will write c, = a,b,. The Eqs. (1) and (2) give, 

Therefore 

'This observation has already been made in [GIR]. 
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350 B. SURY 

using (2) with n replaced by n + 1, we get on simplifying 

Let us write L3 and L4 for the left hand sides of these two equations. 
Changing n to n + 1 in (3) and adding- with (4), one gets 

Here, we have written Lf to mean the expression for L3 when n is 
changed to n + 1. We shall adopt this convention for any Li. 

Changing n to n + 2 in (3) and eliminating a, - 2bn- 1 from the 
resulting equation and (5), we have 

Similarly, we have 

Thus, we see from Eqs. (5), (6) and (7) that 

Writing out the expressions for the L's in terms of the cis, we have two 
recurrences: 
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SUBGROUP COUNTING 

The corresponding recurrences for an = (n!)cn are: 

One can translate these recurrences into equations for the gene- 
rating function f ( t )  = En antn. Further, Dey's formula can be 
rewritten as f ' ( t ) / f  ( t )  = M ( t )  := CnrO Mn+ltn, and, in fact one can 
write any f ( k ) ( t ) / f  ( t )  in terms of M(t). For example, f ( 2 ) ( t ) / f  ( t )  = 
M1( t )  + M(t12, f ( 3 ) ( t ) / f  ( t )  = ~ ( t ) ~  + 3M(t )M1( t )  + ~ ( ~ ) ( t ) ,  f (4)( t) /  
f ( t )  = M(t14 + 6 M l ( t ) ~ ( t ) ~  + 4 M ( t ) ~ ( ~ ) ( t )  + 3(M1(t)12 + ~ ( ~ ) ( t )  
etc. When we do that, we get: 

THEOREM 1 For the group G = (212) * (212) * (Z/2), the numbers Mn 
of subgroups of index n satisfy the equations 

Here M(t) is the formal power series En 0 Mn + 1 t ". 

As a matter of fact, we can obtain (12) (but not (13)) by directly 
finding a recurrence for a i. Equations (12) and (13) can be regarded as 
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3 52 B. SURY 

recurrence equations for the M, if we compare like powers of t. As we 
shall see shortly, it is Eq. (13) that proves useful for us. 

COROLLARY M, is odd for any n. 

Proof We read Eq. (13) modulo 2. To start with, we can compare the 
coefficients of t ', 0 5 i 1 4  to obtain M1 = 1, M2 = 7, M3 = 21, 
M4 = 107 and M5 = 425. Let n 2 5 and we assume that M, is odd for 
all r 5 n. Let us read the coefficient of t n  modulo 2 in (1 3). 

For n even and n odd, we get, respectively, the congruences 

and 

It follows by induction that M,+ is odd. This proves the corollary2. 

2. ON THE GROUP G = (213) * (213) 

In this section, we denote by a,, the rational number r3(n)/n!. Then, 
we have 

ZInterestingly, (12) turns out to be not amenable for a similar argument as it gives 
only an expression of nM, + I in terms of Mi, i 5 n. 
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SUBGROUP COUNTING 353 

Multiplying by (n - 1 )  and using (14) with n replaced by n - 1, one gets 

Squaring, we get 

Equation (14) with n replaced by n + 1 gives, on squaring, 

Similarly, we have 

Feeding the expressions for a,a, - and for a, - 3a, - from these 
equations into (16), one has a recurrence for the a: .  Writing it in terms 
of a, = (n!)a:,  one gets 

This can be written in terms of the generating function f ( 2 )  = C ,  o 
a, tn  which, in turn, yields for the generating function M(t): = C,  0 

M,+ tn,  the following: 

THEOREM 2 For the group G = 213 * 213, the generating function 
M(t) : = En 2 0 M, + , tn  satisfies the equation 
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354 B. SURY 

Remark The first values of Mn are 1,0,4,8,5,36,98,112,490, 1560, 
2464,8768, . . .. This suggests the curious question as to whether Mn - 0 
mod n whenever n f 0 mod 3. 

From the theorem, we get: 

COROLLARY 1 M,, isoddiS,andonlyif, nisofthe f0rm2~-3.  

Proof As before, we can compare the coefficients of the first few 
powers of t in (18) to get M 1  = 1, M2 = 0, M3 = 4, M4 = 8, M5 = 5 
and M6 = 36, and will apply induction to prove the corollary. We read 
(18) modulo 3, and look at the coefficient of t n  for n > 6. Assume that 
the assertion of the corollary holds for M, when r 5 n. We have 

where a is 0 or 1 according as n is odd or even, and b is 1 or 0 
according as n = 4k + 10 for some k, or not. 

This implies immediately that M,+ is even, for any odd n. 
If n = 2k > 6, this reads 

where a = 1 if k > 5 is odd, and, a = 0 otherwise. Hence, it follows by 
another induction argument that Muc + f Mk - is even. 

Now, 2k + 1 is of the form 2S - 3 if, and only if, k - 1 is of the same 
form. This proves the corollary. 

We prove now 

COROLLARY 2 The mod 3 behaviour of M,, is periodic viz., Mn -= 
Mn+* mod 3.  

The $rst 8 values of Mn modulo 3 are 1, 0,1,2,2,0,2,1. 

Proof As before, we can read the Eq. (18) for the Mn's mod 3. Now, 
we apply induction to prove the statement 
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SUBGROUP COUNTING 355 

This is easily checked for the first few values of n. We assume 
the induction hypothesis that the above congruence holds for any 
2 5 r  < n. 

The Eq. (18) reads mod 3, 

0 Mn+1 - Mn-2 - Mn-3 + Mn-4 + Mn-6 

{ 
+Mn + Mn-3 - Mn-4 - Mn-6 if n -0 

-Mn-2  + Mn-4 if n ~l 

-Mn + MnV2 - Mn-3 + Mn-6 if n r 2  

+Mn-3 - ~ i - ~ , ~  if n = 0 

otherwise 

On using the induction hypothesis, this easily proves Mn+l  = 
Mn - - M n ,  and the corollary follows. 
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