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”The way I first visualized a K-group was as a group of classes of objects of
an abelian (or more generally, additive) category, such as coherent sheaves on
an algebraic variety, or vector bundles, etc. I would presumably have called
this group C(X) (X being a variety or any other kind of space), C the initial
letter of class, but my past in functional analysis may have prevented this, as
C(X) designates also the space of continuous functions on X (when X is a
topological space). Thus, I reverted to K instead of C, since my mother tongue
is German, Class = Klasse (in German), and the sounds corresponding to C
and K are the same” .......................Alexander Grothendieck.

.
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Introduction

In 1957, Grothendieck (handwritten notes) formulated the ”Grothendieck-
Riemann-Roch theorem”. In 1958, there was an exposition of this by Borel
& Serre. In 1959, Bott proved his periodicity theorems on stable homotopy
groups. His proof involved Riemannian geometry and Morse theory. In 1961,
Atiyah & Hirzebruch realized that Bott periodicity is related to a new K-
theory (topologial version) analogous to Grothendieck’s algebraic K-theory.
They developed the topological theory which followed a similar pattern. A
new feature was that they could define derived functors K−n and Bott peri-
odicity simplified to the statements

K−nC
∼= K−n−2

C , K−nR
∼= K−n−8

R .

This K-theory is an extraordinary cohomology theory (satisfies all the axioms
of cohomology theories save the dimension axiom).

It was observed by Swan and others that the category of vector bundles over a
compact Hausdorff space X is equivalent to the category of finitely generated
projective modules over the ring of continuous functions on X. Thus began
the study of K-theory of rings.

In these lectures, we will prove complex Bott periodicity (BP) and derive
some applications. The applications of BP include Brouwer fixed point theo-
rem, Adams’s theorem that the only spheres Sn−1 which are H-spaces (hence,
the values of n for which the sphere Sn−1 has trivial tangent bundle or, equiv-
alently, for which Rn has a bilinear multiplication with respect to which it
forms a division algebra) correspond to n = 1, 2, 4, 8.

The real and complex Bott periodicity theorems have the following con-
sequence on the homotopy groups of the infinite unitary, orthogonal and
symplectic groups U,O, Sp respectively.

πi+2(U) ∼= π(U) , πi+8(O) ∼= πi(O) , πi+8(Sp) ∼= πi(Sp).

π0(U) = 0, π1(U) ∼= Z;

π0(O) ∼= Z/2Z, π1(O) ∼= Z/2Z, π2(O) = 0, π3(O) ∼= Z,

π4(O) = π5(O) = π6(O) = 0, π7(O) ∼= Z;

π0(Sp) = π1(Sp) = π2(Sp) = 0, π3(Sp) ∼= Z,

π4(Sp) ∼= Z/2Z, π5(Sp) ∼= Z/2Z, π6(Sp) = 0, π7(Sp) ∼= Z.
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1 Recollection of facts on vector bundles

• F will denote either R or C.
• We have inclusions

F 1 ⊂ F 2 ⊂ · · · ⊂ F n ⊂ · · ·

where F n = {x ∈ F n+1 : xn+1 = 0}.
• F∞ :=

⋃
n≥1 F

n = {(x1, x2, x3, · · ·) : xr = 0 for all but finitely many r}; it
has the weak/direct limit topology - a function f : F∞ → Y is continuous if
and only if, f |F n is continuous.
• V ectn(B) denotes isomorphism classes of vector bundle of rank n over B.

• For a compact Hausdorff space B, every vector bundle E → B has a
complement; that is, a corresponding vector bundle E ′ → B such that E⊕E ′
is a trivial bundle.

• If p : E → B is a vector bundle, and f0, f1 : A → B are homotopic maps
from a paracompact space, then the induced vector bundles f ∗0 (B), f ∗1 (B) over
A are isomorphic.
Consequently,
• If θ : A → B is a homotopy equivalence of paracompact spaces, then the
induced vector bundle map θ∗ : V ectn(B)→ V ectn(A) is a bijection.

• For n ≤ N (including infinite N), the space

En(FN) := {(V, v) ∈ Gn(FN)× FN : v ∈ V }

is a vector bundle over Gn(FN) via the projection map En(FN)→ Gn(FN);
(V, v) 7→ V . In the case when N is infinite, we write only Gn, En.
Consequently,
• If B is paracompact, then every vector bundle of rank n over B can be
obtained as the pull-back f ∗(En) where f : B → Gn. Moreover, homotopic
maps f0, f1 : B → Gn gives us isomorphic vector bundles and vice versa.

2 Clutching construction

• Clutching construction
Let X = X1 ∪ X2 be a compact, Hausdorff space where X1, X2 are closed
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subspaces and, suppose A = X1 ∩ X2. Given vector bundles pi : Ei → Xi

(i = 1, 2) and an isomorphism

φ : E1|A
∼=→ E2|A

there is a vector bundle p : E1 ∪φ E2 → X defined as follows:
• the space E1 ∪φ E2 = (E1 t E2)/ ∼ where v ∼ φ(v) for all v ∈ E1|A; and
• p is induced by E1 → X1 ↪→ X and E2 → X2 ↪→ X.
This is called a clutching construction.
Proof.
We need to show that the bundle is locally trivial. Now,

(E1 ∪φ E2)|(X \ A) ∼= E1|(X \ A) t E2|(X \ A)

which implies local triviality holds around points of X \ A. So, let a ∈ A.
Consider neighbourhoods U1, U2 of a in X1, X2 respectively, such that

hi : Ei|Ui
∼=→ Ui × F n.

We will change h2 so as to coincide with h1 near a. Firstly, let V ⊂ A∩U1∩U2

be a neighbourhood of a. Over the closure V , we have

V × F n h−1
2→ E2|V

φ−1

→ E1|V
h1→ V × F n.

The composite map is of the form (x, v) 7→ (x, g(x)v) for some continuous
map g : V → GLn(F ).
Viewing GLn(F ) ⊂ F n2

, an open subset, and applying the Tietze extension
theorem, we get an extension of g to a map ḡ from X2 to F n2

. There exists
a neighbourhood W of V in X2 such that the restriction of ḡ to W takes
values in the open subset GLn(F ). Choose small neighbourhoods V1 ⊂ U1

and V2 ⊂ U2 ∩ W such that V1 ∩ A = V2 ∩ A = V . Then, consider the
trivializations

E1|V1
h1→ V1 × F n;

E2|V2
h2→ V2 × F n.

Compose the second one with the isomorphism

V2 × F n → V2 × F n; (x, v) 7→ (x, ḡ(x)v).
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This matches with the first trivialization under φ to give a trivialization

(E1 ∪φ E2)|V
∼=→ V × F n.

• In the case when E1, E2 above are trivial vector bundles of rank n, then
giving an isomorphism between E1|A and E2|A is equivalent to giving a map
from A to GLn(F ) - this is called a clutching function.

• With X,X1, X2, A,E1, E2 as above, let φt : E1|A
∼=→ E2|A be isomorphisms

for t ∈ [0, 1]. Then, E1 ∪φ0 E2
∼= E2 ∪φ1 E2.

Consequently,
Clutching constructions associated to homotopic maps from A to GLn(F ) are
isomorphic.
Proof.
The isomorphisms

Φ : (E1 × [0, 1])|(A× [0, 1])
∼=→ E2 × [0, 1])|(A× [0, 1]);

(v, t) 7→ (φt(v), t)

and the clutching constructions for Ei × [0, 1] → Xi × [0, 1] give rise to a
vector bundle

(E1 × [0, 1]) ∪Φ (E2 × [0, 1])→ X × [0, 1]

such that E1 ∪φt E2 is its pullback under the map

it : X → X × [0, 1];x 7→ (x, t).

In particular, since i0, i1 are homotopic, the proof is complete.

Key proposition on clutching constructions.
(i) (E1 ∪φ E2)|Xi = Ei (i = 1, 2);
(ii) If E → X is a vector bundle, and E|Xi = Ei (i = 1, 2), then E is
isomorphic to E1 ∪id E2, where id is the identity isomorphism from E|A to
itself;
(iii) If βi : Ei → E ′i (i = 1, 2) are isomorphisms and φ : E1|A → E2|A, φ′ :
E ′1|A→ E ′2|A are isomorphisms satisfying φ′ ◦β1 = β2 ◦φ, then (E1∪φE2) ∼=
(E ′1 ∪φ′ E ′2);
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(iv) Given clutching data (E1, E2, φ) and (E ′1, E
′
2, φ
′), we have:

(a) (E1 ∪φ E2)⊕ (E ′1 ∪φ′ E ′2) ∼= ((E1 ⊕ E ′1) ∪φ⊕φ′ (E2 ⊕ E ′2));
(b) (E1 ∪φ E2)⊗ (E ′1 ∪φ′ E ′2) ∼= ((E1 ⊗ E ′1) ∪φ⊗φ′ (E2 ⊗ E ′2));
(c) (E1 ∪φ E2)∗ ∼= E∗1 ∪(φ∗)−1 E∗2 .

Special case when Ei are trivial

The assertions (a),(b),(c) above reduce in the case of trivial vector bundles
Ei (write εri for the rank r trivial bundle over Xi) to the following statements:
Let φ : A→ GLm(F ), ψ : A→ GLn(F ). Then,
(a’) (εm1 ∪φ εm2 )⊕ (εn1 ∪ψ εn2 ) ∼= (εm+n

1 ∪φ⊕ψ εm+n
2 ); where

φ⊕ ψ : A→ GLm+n(F );

a 7→
(
φ(a) 0

0 ψ(a)

)
.

(b’) Identifying Fm ⊗ F n with Fmn, we have (εm1 ∪φ εm2 ) ⊗ (εn1 ∪ψ εn2 ) ∼=
(εmn1 ∪φ⊗ψ εmn2 ); where φ⊗ ψ : A→ GLmn(F ) is the map that sends a to the
matrix of the map

Fmn ∼= Fm ⊗ F n φ(a)⊗ψ(b)→ Fm ⊗ F n ∼= Fmn.

(c’) (εm1 ∪φ εm2 )∗ ∼= εm1 ∪(φt)−1 εm2 where

(φt)−1 : A→ GLmn(F );

a 7→ (φ(a)t)−1.

Important example.
We consider the canonical line bundle γ1 onX = CP 1 and its dualH = (γ1)∗.
An alternative way of looking at CP 1 is to identify it with C ∪ {∞} = S2

by means of the homeomorphism [z1 : z2] 7→ z1/z2. Consider the subspaces

D0 = {z ∈ S2 : |z| ≤ 1};

D∞ = {z ∈ S2 : |z| ≥ 1}.
Both D0, D∞ are homeomorphic to the closed unit disc which is contractible
and their intersection is the equatorial great circle S1 = {z ∈ S2 : |z| = 1}.
We have the trivializations of γ1 over D0 and D∞ as:

γ1|D0
h0→ D0 ×C;
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(z, λ(z, 1)) 7→ (z, λ),

γ1|D∞
h∞→ D∞ ×C;

(z, λ(1, z−1)) 7→ (z, λ).

The composite h∞h
−1
0 |S1 of the two isomorphisms h−1

0 |S1 : S1 ×C→ γ1|S1

and h∞|S1 : S1 ×C→ γ1|S1 is

(z, λ) 7→ (z, λz).

Calling the trivial line bundles D0×C and D∞×C as ε0 and ε∞ respectively,
we have

γ1 ∼= ε0 ∪φ ε∞
where φ : S1 → GL1(C) is the inclusion map z 7→ z.
Let us apply the observation (c’) above to obtain

H ∼= ε0 ∪ψ ε∞

where ψ : S1 → GL1(C) is the map z 7→ z−1.
Again, applying observation (a’), we have the direct sum

H ⊕H ∼= ε0 ∪ψ⊕ ε∞

where ψ⊕ : S1 → GL2(C) is

z 7→
(
z−1 0
0 z−1

)
.

Applying observation (b’), we have the tensor product

H ⊗H ∼= ε0 ∪ψ⊗ ε∞

where ψ⊗ : S1 → GL1(C) is the map z 7→ z−2. Hence, denoting by ε1, the
trivial line bundle over D0 ∪D∞, we have

(H ⊗H)⊕ ε1 ∼= ε0 ∪ψ⊗,1 ε∞

where the clutching function ψ⊗,1 : S1 → GL2(C is

z 7→
(
z−2 0
0 1

)
.
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2.1 H ⊕H ∼= (H ⊗H)⊕ ε1

We use the fact that GL2(C) is path-connected to deduce the above iso-

morphism. Indeed, consider a path α from the identity matrix to

(
0 1
1 0

)
.

Then, the map
S1 × [0, 1]→ GL2(C);

(z, t) 7→
(
z−1 0
0 1

)
α(t)

(
1 0
0 z−1

)
α(t)

is a homotopy from ψ⊕ to ψ⊗,1. This induces and isomorphism of vector
bundles

H ⊕H ∼= (H ⊗H)⊕ ε1.

• Note that we have used the connectedness of GL2(C). As GL2(R) has two
connected components, the above proof does not carry over to reals.

3 Cone and suspension

For a topological space X, the unreduced cone over X is defined as

CX = (X × [0, 1])/(X × {1}).

One may identify X naturally as he subspace X × {0} of CX.
• CX is contractible.
Indeed, the map CX × [0, 1]→ CX defined as

([(x, s)], t) 7→ [(x, s+ t− st)]

shows that CX deformation retracts to the vertex of the cone.

The suspension of X is the quotient space SX = CX/(X×{0}). One usually
identifies X with the subspace X × {1/2} of SX. The subspaces
C+X = image of X × [1/2, 1] in SX, and
C−X = image of X × [0, 1/2] in SX
are homeomorphic to CX. Their union is SX and the intersection is X.
Note that CSn−1 is homeomorphic to Dn = {x ∈ Rn+1 : ||x|| ≤ 1} via
[x, t] 7→ (1− t)x, and SSn is homeomorphic to Sn+1.
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As C+X,C−X are contractible, vector bundles over SX restrict to trivial
bundles over C+X and C−X. So, we may apply the clutching construction
to SX when X is compact. Firstly, we look at the space [X,GLn(F )] of
homotopy classes of maps from X to GLn(F ). On this space, we consider
the orbits under the action of the group π0GLn(F )× π0GLn(F ). The action
is

([a], [b])(φ) = [aφb−1].

The group π0GLn(F ) × π0GLn(F ) is trivial if F = C and is Z/2 × Z/2 if
F = R. With these notations, we have:

Theorem. Let X be compact and Hausdorff. Then, the clutching construc-
tion provides a bijection

Φ : [X,GLn(F )]/(π0GLn(F )× π0GLn(F ))
∼=→ V ectnF (SX);

[φ] 7→ [εn+ ∪φ εn−].

Here, εn+, ε
n
− are the trivial vector bundles of rank n over C+X and C−X

respectively.
Proof.
Let us construct a map

Ψ : V ectnF (SX)→ [X,GLn(F )]/(π0GLn(F )× π0GLn(F ))

which would be the inverse of Φ. To construct Ψ, start with any [E] ∈
V ectnF (SX). Note that C+ and C− are contractible which gives trivializations

h+ : E|C+

∼=→ εn+;

h− : E|C−
∼=→ εn−.

The composite
h−h

−1
+ : εn+|X → E|X → εn−|X

is of the form
(x, v) 7→ (x, φ(h+, h−)(x)v)

where φ(h+, h−) : X → GLn(F ). Now, we may define

Ψ([E]) = [φ(h+, h−)].
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To show this definition is independent of the trivializations h±, let h′± be
other choices of trivializations. Then, h′± = d± ◦h± for some automorphisms

d± : εn±
∼=→ εn±.

Corresponding to d±, we have maps

δ± : C± → GLn(F ).

Observe that for each x ∈ X, we have

φ(h′+, h
′
−)(x) = δ−(x)φ(h+, h−)δ+(x)−1.

Since C±X are contractible, the maps δ± are homotopic to a constant; sup-
pose they map onto the elements g± ∈ GLn(F ). Hence, φ(h′+, h

′
−) is homo-

topic to the map

X → GLn(F );x 7→ g−φ(h+, h−)g−1
+ .

Hence, we have independence of [φ(h+, h−)] with respect to choices of h±.
Let us now show that if E is replaced by an isomorphic E ′, then this class
above remains the same. Indeed, for an isomorphism

α : E ′ → E

the maps h± ◦ α are trivializations of E ′|C±X such that

φ(h+ ◦ α, h− ◦ α) = φ(h+, h−).

Hence, Ψ is well-defined.
Now, ΨΦ([φ]) = Ψ([εn+ ∪φ εn−]) = [φ] for all φ. Conversely, by construction,
for any E, the class [φ] := Ψ([E]) satisfies

E ∼= εn+ ∪φ εn−.

So, ΦΨ([E]) = Φ([φ]) = [εn+ ∪φ εn−] = [E].

Important variation.
One can define a weaker notion of vector bundles where the fibres may not
have the same dimension. Many properties of vector bundles in the earlier
sense carry over. Henceforth, we will consider the new notion. Note that if X
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is connected, then the new notion reduces to the old notion. Let V ectF (X)
denote the isomorphism classes of vector bundles over a paracompact space
X. Under the direct sum operation, V ectF (X) is a commutative monoid.
For instance, if X is a point, V ectF (X) can be identified via the dimension
function with the monoid Z≥0 under addition. To get a group, one needs
negatives of the positive integers. This process can be imitated for a general
commutaive monoid. We will carry this out for V ectF (X) for a general
paracompact space in the next section.

4 Defining K-group as Grothendieck group

Given a commutative monoid (M,+), define an equivalence relation on M ×
M by:

(x, y) ∼ (x′, y′)⇔ ∃m ∈M such that x+ y′ +m = y + x′ +m.

The equivalence classes (M ×M)/ ∼ form the Grothendieck group Gr(M)
of M ; the group operation

[(x, y)] + [(x′, y′)] = [(x+ x′, y + y′]

is well-defined. One may think of the class of (x, y) as the formal difference
x − y. Further, the map x 7→ ([(x, 0)] gives a (not necessarily 1-1) monoid
homomorphism from M to Gr(M). One writes informally [m] instead of
[(m, 0)].

Lemma. Gr(M) has the universal property with respect to monoid homo-
morphisms from M to abelian groups.

Definition. For a compact Hausdorff space X, one defines KF (X) to be
Gr(V ectF (X)). For a vector bundle E → X, we write [E] for the class of
(E, 0) in KF (X).

Lemma. [(E1, E2)] = [E1]− [E2] in KF (X). In particular, every elsment of
KF (X) can be written as [E]− [εn] for some vector bundle E → X and some
n ≥ 0.
Proof. The first statement clearly implies that every element of KF (X) is
expressible as [E1]− [E2]. Now, since X is compact, every vector bundle has
a complement; that is, there exists a vector bundle E ′2 such that E2⊕E ′2 = εn

for some n. Hence, [E1]− [E2] = [E1 + E ′2]− [εn].
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Definition. Two vector bundles E1, E2 are stably isomorphic if there exists
n ≥ 0 such that E1 ⊕ εn ∼= E2 ⊕ εn. We write E1

∼=s E2

Lemma. E1 ⊕ E ′2 ∼=s E2 ⊕ E ′1 if and only if, [E1] − [E ′1] = [E2] − [E ′2] in
KF (X).
Proof. Now, in KF (X),

[E1]− [E ′1] = [E2]− [E ′2]

⇔ [(E1, E
′
1)] = [(E2, E

′
2)]

⇔ E1 ⊕ E ′2 ⊕ E ∼= E ′1 ⊕ E2 ⊕ E

for some E. This happens if and only if

E1 ⊕ E ′2 ⊕ εn ∼= E ′1 ⊕ E2 ⊕ εn

because E has a complement. That is, it happens if, and only if, E1⊕E ′2 ∼=s

E ′1 ⊕ E2.

Remark. In other words, one may think of KF (X) as classes of vector
bundles over X where two bundles are identified if they are stably isomorphic.

Lemma. For a compact Hausdorff space X, KF (X) becomes a commutative
ring under the multiplication

[(E1, E2)][(E ′1, E
′
2)] := [((E1 ⊗ E ′1)⊕ (E2 ⊗ E ′2), (E1 ⊗ E ′2)⊕ (E ′1 ⊗ E2))].

In particular,
[E1][E ′1] = [E1 ⊗ E ′1].

Definition. For a continuous map f : X → Y of compact, Hausdorff spaces,
we have a ring homomorphism

f ∗ : KF (Y )→ KF (X); [E] 7→ [f ∗E].

This map f ∗ is called the induced map.

Lemma. If f, g : X → Y are homotopic, then f ∗ = g∗ on KF (Y ).
Proof. This is already true at the level of vector bundles.
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Proposition. Let X, Y be compact, Hausdorff spaces and let X t Y denote
their disjoint union. If i, j are the inclusions of X, Y in X t Y respectively,
there is a ring isomorphism

KF (X t Y )
(i∗,j∗)→ KF (X)×KF (Y ).

Proof. This is an isomorphism of semirings at the level of vector bundles.

5 Pairs and pointed spaces

Instead of just X, one often considers pairs (X,A), where A is a fixed
subspace of X. For pairs (X,A), (Y,B) one denotes (X,A) × (Y,B) :=
(X × Y,X ×B ∪ A× Y ). Then, one has the following natural notions:
(i) one writes f : (X,A)→ (Y,B), a continuous map of pairs, if f : X → Y
is continuous and f(A) ⊂ B;
(ii) given f, g maps of pairs as above, a homotopy from f to g as maps
of pairs, is a continuous map h : X × [0, 1] → Y such that h(−, 0) = f ,
h(−, 1) = g, h(A× [0, 1]) ⊂ B.
When A,B are points, pairs and maps of pairs etc. are called pointed spaces
and maps of pointed spaces.
In particular, a base-point preserving homotopy from f : (X, x0)→ (Y, y0) to
g : (X, x0)→ (Y, y0) is a usual homotopy h from f to g such that h(x0, t) = y0

for all t ∈ [0, 1].

Definition. If X is a space, then X+ is the pointed space (X t pt, pt); here,
a disjoint base point is added.

Lemma. A map f : (X,A) → (Y,B) induces a map of pointed spaces
(X/A,A/A) to (Y/B,B/B). Here, we allow A or B to be empty also; so,
(X, ∅) is to be interpreted as X+.

6 Reduced and relative K-theories

Definition. Given a (compact, Hausdorff) pointed space (X, x0), the re-
duced K-group is defined as

K̃F (X) := Ker(KF (X)
i∗→ KF ({x0})
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where i : {x0} → X is the inclusion map. Note that KF (pt) ∼= Z. The
reduced K-group is also a ring but has no unity.

Since the constant map r : X → {x0} satisfies i∗r∗ = idKpt , we have:

Splitting lemma. For a pointed space (X, x0), we have an isomorphism

KF (X) ∼= K̃F (X)⊕ Z.

Definition. Let X be compact, Hausdorff and A be a closed subspace.
Then, the relative K-group KF (X,A) is defined to be K̃F (X/A).

Excision theorem. Let (X,A) be a compact pair, and let U ⊂ A be open.
Then, the inclusion (X − U,A− U) ↪→ (X,A) induces an isomorphism

KF (X,A)
∼=→ KF (X − U,A− U).

Proof. This is simply from the homeomorphism from (X − U)/(A− U) to
X/A.

Definition. Two vector bundles E1, E2 over a compact, Hausdorff spaces
are stably equivalent (written E1 ∼s E2) if, there exist m,n ≥ 0 such thar
E1⊕ εm ∼= E2⊕ εn. This is an equivalence relation and the stable equivalence
class of E is written as [E]s.

Proposition. If (X, x0) is a compact, T2 pointed space, then the map

φ : V ectF (X)/ ∼s→ K̃F (X);

[E]s 7→ [E]− [εdim(Ex0 )]

is an isomorphism of abelian groups.
Proof.
φ is surjective by the lemma on the bottom of page 10 and is injective by the
lemma on top of page 11.

7 Some constructions on pointed spaces

Reduced cone.
For a pointed space (X, x0), the (base-pointed) quotient (X × [0, 1])/(X ×
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{1}) ∪ ({xo} × [0, 1]) is called the reduced cone on X at x0, and is denoted
by C(X, x0). As usual, X can be identified with a subspace of the reduced
cone via x 7→ [(x, 0)]. We sometimes use the notation CX for the reduced
cone also.

Lemma. Given (X, x0), the base-point of C(X, x0) (which is the subspace
X × {1} collapsed to a point) is a deformation retract of the reduced cone
C(X, x0).
Proof. The map C(X, x0)× [0, 1]→ C(X, x0) given by

([x, s], t) 7→ [x, (1− t)s+ t]

is such a deformation retraction.

If X is any compact space, the reduced cone made with the pointed space
X+ is homeomorphic to the unreduced cone CX.

Reduced suspension.
For a pointed space (X, x0), the (base-pointed) quotient space C(X, x0)/(X×
{0}) is called the reduced suspension of X at x0 and is denoted by Σ(X, x0).
Equivalently, Σ(X, x0) is the quotient of the unreduced suspension by the
subspace {x0} × [0, 1]. One often thinks of X as the ”equatorial” subspace
X × {1/2} of Σ(X, x0). The reason we use Σ instead of S is we will be
talking about iterated suspensions and do not want that to be confused with
the spheres.

The wedge sum.
For pointed spaces (X, x0), (Y, y0), their wedge sum (X, x0) ∨ (Y, y0) is their
categorical co-product in the category of pointed spaces and pointed maps.
In other words, there are ”inclusion maps” iX , iY of (X, x0) and of (Y, y0) in
the wedge sum so that, for any (Z, z0), and any

f : (X, x0)→ (Z, z0), g : Y, y0)→ (Z, z0)

there is a unique map (f, g) : (X, x0)∨(Y, y0)→ (Z, z0) satisfying (f, g)◦iX =
f, (f, g) ◦ iY = g.
One may construct the wedge sum up to a unique isomorphism as

(X, x0) ∨ (Y, y0) = {(x, y) ∈ X × Y : x = x0 or y = y0}.

Smash product.
For pointed spaces (X, x0), (Y, y0), the smash product is the (base-pointed)
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quotient space (X, x0) ∧ (Y, y0) := (X × Y )/((X, x0) ∨ (Y, y0)). Sometimes,
we simply write X ∨ Y and X ∧ Y without specifically mentioning the base
points.

Examples.

• (i) C(X, x0) = (X, x0) ∧ ([0, 1], 1).
• (ii) (X, x0) ∧ (S0, 1) ∼= (X, x0).
Σ(X, x0) ∼= (X, x0) ∧ (S1, 1).
Indeed, we may view S1 as [0, 1]/δ[0, 1], both sides amount to the quotient
X × [0, 1]/(X × {0, 1}) ∪ ({x0} × [0, 1]).
More generally, Σn(X, x0) ∼= X ∧ Sn for all n.
This is because S(Sn−1) is homeomorphic to Sn and the wedge product is
associative (see the lemma below!).
• X+ ∧ Y+

∼= (X × Y )+.
• A pointed map X ∧ [0, 1]+ → Y is just a pointed homotopy X × [0, 1]→ Y .

Lemma. The wedge operation is associative on compact Hausdorff pointed
spaces.
Proof.
Consider a : (X ∧ Y ) ∧ Z → X ∧ (Y ∧ Z); (x ∧ y) ∧ z 7→ x ∧ (y ∧ z).
We will show this is a homeomorphism. The map fits into the commutative
diagram

X × Y × Z
↙ ↘

(X ∧ Y ) ∧ Z a→ X ∧ (Y ∧ Z)

where the first southwest-going arrow π1 is the composite

X × Y × Z quotient×id→ (X ∧ Y )× Z quotient→ (X ∧ Y ) ∧ Z

and the second southeast-going arrow π2 is the composite

X × Y × Z id×quotient→ X × (Y ∧ Z)
quotient→ X ∧ (Y ∧ Z).

As π1, π2 are continuous, surjections from a compact space to a Hausdorff
space, they are open. The fibres of π1, π2 agree which gives that a is a
homeomorphism.
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Remark. The smash product is associative also when the spaces are locally
compact but may not be so in general. For instance,

(N ∧Q) ∧Q 6∼= N ∧ (Q ∧Q).

8 A short exact sequence

We will show that the reduced K-groups of wedge sums are the direct prod-
ucts of the reduced K-groups of the respective factors. We prove a more
general result which is:

Proposition. Let X be a compact Hausdorff space with a base point, and let
A be a closed subspace containing the base point. Then, the inclusion map
i : A→ X and the quotient map q : X → X/A induce an exact sequence

K̃F (X/A)
q∗→ K̃F (X)

i∗→ K̃F (A).

The proof of this uses the following key fact about vector bundles.

Key lemma. Let X be a compact Hausdorff space and let A be a closed
subspace. Let p : E → X be a vector bundle. Then,
(i) any trivialization

h : E|A
∼=→ A× F n

defines a vector bundle E/h → X/A satisfying the property that E is iso-
morphic to the pull-back q∗(E/h) where q : X → X/A is the quotient map.

(ii) If trivializations h0, h1 : E|A
∼=→ A×F n are homotopic through trivializa-

tions ht of E|A (t ∈ [0, 1]), then E/h0
∼= E/h1.

(iii) For a trivialization h0 : E|A
∼=→ A × F n, and c ∈ GLn(F ), consider the

trivialization h1 := (id× c) ◦ h0. Then, E/h0
∼= E/h1.

The basic idea of proof of (i) is as follows. Consider the quotient space of E
where we identify points v1, v2 in the restriction E|A if, and only if, h(v1) and
h(v2) have the same second co-ordinate. This quotient space can be shown
to be the vector bundle E/h sought.

Proof of proposition.
Since q ◦ i maps to a point and the reduced K-group of a point is 0, we have
that i∗q∗ = 0.
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Let us prove the opposite inclusion ker(i∗) ⊂ Im(q∗). Let x ∈ ker(I∗).
Write x as [E]− [εn] for some n ≥ 0 and some vector bundle E over X. As
E restricts trivially over A, we have [E|A] = [εn] ∈ KF (A). In other words,

E|A⊕ εm ∼= εm+n

for some m ≥ 0. Fix an isomorphism

h : (E ⊕ εm)|A = (E|A)⊕ εm
∼=→ εm+n.

Therefore, [(E ⊕ εm)/h] − [εm+n] ∈ K̃F (X/A) is a class whose image under

q∗ to the class [E ⊕ εm]− [εm+n] = [E]− [εn] = x ∈ K̃F (X).

Corollary. Let X, Y be compact Hausdorff base-pointed spaces. Denote
by iX , iY the inclusions of X, Y respectively in X ∨ Y . Then, we have an
isomorphism

K̃F (X ∨ Y )
(i∗X ,i

∗
Y )
→ K̃F (X)× K̃F (Y ).

Proof.
Let qX , qY be the quotient maps from X ∨ Y to X, Y respectively and iX , iY
inclusions of X, Y in X ∨ Y . The above proposition shows that

K̃(Y )
q∗Y→ K̃(X ∨ Y )

i∗X→ K̃(X)

is an exact sequence. The maps i∗X , i
∗
Y give retractions of q∗X , q

∗
Y while the

latter give sections of the former maps. In other words, we have a short exact
sequence

0→ K̃(Y )
q∗Y→ K̃(X ∨ Y )

i∗X→ K̃(X)→ 0

with i∗Y giving a retraction of q∗Y . This gives the direct sum asserted.

The basic idea is now to create a long exact sequence from the short exact
sequence above. Leading up to that, we first prove:

Proposition. Let X be compact, Hausdorff and let A be a closed subspace
which is contractible. Then, the quotient map q : X → X/A induces a bi-
jection q∗ : V ectF (X/A)→ V ectF (X). Therefore, q induces an isomorphism
from KF (X/A) to KF (X). If X has a base point which is contained in A,

then q induces an isomorphism from K̃F (X/A) to K̃F (X).
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Proof.
The first assertion implies the others and we prove the first assertion now.
Let E be a vector bundle over X. As A is contractible, E restricts to a trivial
bundle over it. So, there exists an isomorphism

h : E|A
∼=→ A× F n.

We obtain a vector bundle E/h over X/A. We claim that E/h is (up to iso-
morphism) independent of the choice of h. Suppose h′ is another trivialization

of E|A. Then, the composite h′h−1 : A × F n
∼=→ A × F n is an isomorphism.

In other words, there exists a continuous map g : A → GLn(F ) such that
h′h−1(a, v) = (a, g(a)v). As A is path-connected (being contractible), the
image g(A) is path-connected. By replacing h′ with (idA × γ) ◦ h′ : E|A →
A × F n → A × F n for some γ ∈ GLn(F ) if necessary, we may assume that
g(A) is in the identity component. Then, we may obtain a homotopy from g
to the identity and hence obtain a homotopy from h′ = (h′h−1)h to (id)h = h
through trivializations of E|A. Hence, the above lemma on vector bundles
shows E/h ∼= E/h′. Thus, the map

[E] 7→ [E/h]

is well-defined as a map from V ectF (X) to V ectF (X/A).
This is an inverse map for q∗. Indeed, for any vector bundle E → X, we have
by the above lemma, E ∼= q∗(E/h) and, for any vector bundle E → X/A, we
have (q∗E)/h ∼= E for the obvious trivialization h of q∗E|A.
The proof is complete.

9 A long exact sequence

Let A be a closed subspace of a compact Hausdorff pointed space where A
contains the base point. Write i for the inclusion of A into X. Consider the
following maps:
• the inclusion j(i) : X ↪→ X ∪ CA (note (X ∪ CA)/X ∼= ΣA);
• the map collapsing CA, π(i) : X ∪ CA→ X/A.
• The map q(i) : X → X/A that collapses A is the composite π(i) ◦ j(i).
As CA is contractible, we apply the above proposition to the quotient map
π(i) to obtain

π(i)∗ : K̃F (X/A)
∼=→ K̃F (X ∪ CA).

19



The functor K̃F applied to A
i→ X

j(i)→ X∪CA gives an exact sequence. This
is seen from the above statement and the proposition since π(i) ◦ j(i) = q(i).

Observation. The functor K̃F applied to the sequence

A
i→ X

j(i)→ X ∪ CA q(j(i))→ ΣA
Σi→ ΣX

is exact.
To see why, we consider the diagram

A
i→ X

j(i)→ (X ∪ CA)
j2(i)→ (X ∪ CA) ∪ CX qj2(i)→ ΣX
↘ ↓ ↓

ΣA
Σi→ ΣX

where the south-east pointing arrow is qj(i), the vertical arrow in the middle
is πj(i) and the rightmost vertical arrow is the map r : [x, t] 7→ [x, 1− t].
The triangle commutes. The square also commutes up to pointed homotopy,
if we note that

h : ((X ∪ CA) ∪ CX)× [0, 1]→ ΣX;

([a, s], t) 7→ [i(a), 1− (1− s)t] on CA;

([x, s], t) 7→ [x, (1− s)(1− t)] on CX

is a pointed homotopy from r◦qj2(i) to (Σi)◦πj(i). On applying K̃F , the top
row is exact as we saw earlier. Finally, since πj(i) and r induce isomorphisms
on reduced K-groups, the observation is finally observed!
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We wish to prove:

Theorem. The following sequence is exact:

K̃F (A)
i∗← K̃F (X)

q∗← K̃F (X/A)
δ←

K̃F (ΣA)
(Σi)∗← K̃F (ΣX)

(Σq)∗← K̃F (ΣX/A)
δ←

K̃F (Σ2A)
(Σ2i)∗← K̃F (Σ2X)

(Σ2q)∗← K̃F (Σ2X/A)
δ←

· · · · · · · · ·

Here, the coboundary map δ has the following description as a composition.
The isomorphism K̃F (ΣA)→ K̃F (X∪CA) is (q(j(i)))∗ coming from collaps-
ing X in X ∪CA. The second map is the inverse of the isomorphism (π(i))∗

from K̃F (X/A) to K̃F (X ∪ CA) which comes by collapsing the contractible
space CA in X ∪ CA.
The proof of the theorem is based on the above observations and the following
lemma.

Lemma. Applying the functor K̃F to the sequence

ΣA
Σi→ ΣX

Σj(i)→ Σ(X ∪ CA)
Σq(j(i))→ Σ2A

Σ2i→ Σ2X
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we get an exact sequence.
Proof.
Let us define the map α : ΣX ∪ CΣA→ Σ(X ∪ CA) by:
α = id on ΣX, α([a, t, s]) = [a, s, t] for [a, t, s] ∈ CΣA.
Here, s, t can be thought of as the cone and suspension co-ordinates. The
map α is clearly an isomorphism.
Consider the map β : Σ2A → Σ2A which is the isomorphism [a, t, s] 7→
[a, s, t].
Finally, we have an isomorphism γ : Σ2X → Σ2X given by [x, t, s] 7→ [x, s, t].
These isomorphisms fit into the following commutative diagram:

ΣA
Σi→ ΣX

jΣi→ ΣX ∪ CΣA
qjΣi→ Σ2A

Σ2i→ Σ2X
↘ ↓ ↓ ↓

Σ(X ∪ CA)
Σq(j(i))→ Σ2A

Σ2i→ Σ2X

where the vertical arrows from left to right are α, β, γ and the southeast
pointing arrow is Σj(i). The observation above shows that applying K̃F

to the top row keeps it exact. Hence, applying K̃F to the sequence in the
statement of the lemma also takes it to an exact sequence of reduced K-
groups.

Proof of theorem.
We saw that applying K̃F to the top row of the following commutative dia-
gram gives an exact sequence of reduced K-groups:

A
i→ X

j(i)→ X ∪ CA q(j(i))→ ΣA
Σi→ ΣX

Σj(i)→ Σ(X ∪ CA)
Σqji→ Σ2A · · ·

↘ ↓ ↘ ↓
X/A Σ(X/A)

where the two southeast arrows q and Σq are induced by the quotient map
from X to X/A and the vertical arrows π(i) and Σπ(i) are induced by col-
lapsing A.

Now, we note that for every positive integer n, the map Σnπ(i) fits in the
commutative diagram
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Σn(X ∪ CA)
∼=← ΣnX ∪ CΣnA

↓ ↓
Σn(X/A)

∼=← ΣnX/ΣnA

where the horizontal isomorphisms above and below are respectively α and
β, where
α = id on ΣnX and
α([a, t1, · · · , tn, s]) = [a, s, t1, · · · , tn] on CΣnA and
β([x, t1, · · · , tn]) = [[x], t1, · · · tn]].
The vertical maps are Σnπ(i) and π(Σni) on the left and right respectively.
Since π(Σni) induces an isomorphism on the reduced K-groups, so does
Σnπ(i). Thus, the proof of the theorem is complete.

10 Negative indices

The long exact sequence we obtained prompts us to define K-groups with
negative indices for compact Hausdorff spaces.

For a pointed space X, let us define K̃F

−n
(X) := K̃F (ΣnX).

The reason to define negative indices is the convention that the coboundary
map goes to higher indices.
In case X is not pointed, one defines the LHS by the corresponding LHS for
X+.
If (X,A) is a pair with A closed and containing the base point of X, one

defines K̃F

−n
(X,A) := K̃F

−n
(X/A).

The long exact sequence of the above theorem can be written as

K̃F

0
(A)

i∗← K̃F

0
(X)

q∗← K̃F

0
(X/A)

δ← K̃F

−1
(A)

i∗← K̃F

−1
(X)

q∗← K̃F

−1
(X/A)

δ← · · ·

Instead of the quotient map q : X → X/A, if we look at the map of pairs
j : (X, ∅)→ (X,A), the long exact sequence we get is

K̃F

0
(A)

i∗← K̃F

0
(X)

j∗← K̃F

0
(X,A)

δ← K̃F

−1
(A)

i∗← K̃F

−1
(X)

j∗← K̃F

−1
(X,A)

δ← · · ·

In this manner, we get a Z≤0-graded abelian group K̃F

≤0
(X) = ⊕n≥0K̃F

−n
(X).
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11 External product

We want to view the above graded abelian group as a graded commutative
ring.

Definition. For compact, Hausdorff spaces X, Y , one defines the external
product to be the operation

KF (X)⊗KF (Y )
∗→ KF (X × Y )

where a ∗ b = π∗X(a)π∗Y (b).

External product has the naturality property; that is, if f : X → X ′, g : Y →
Y ′, then f ∗(a) ∗ g∗(b) = (f, g)∗(a, b).

The basic result we wish to prove is that when F = C, the external product
gives an isomorphism

KF (X)⊗KF (S2)→ KF (X × S2).

We need to develop some preliminary tools.

We will define a reduced version of the external product which will go from
product of the reduced K-groups of X and Y to the reduced K-group of their
smash product. Let (X, x0), (Y, y0) be pointed spaces. There is a commuta-
tive diagram:

KF (X)⊗KF (Y )
∗→ KF (X × Y )

↓ ↓
KF (x0)⊗KF (y0)

∗→ KF ((x0, y0))

where the vertical maps are induced by the inclusion maps of the base points.
It follows that if a ∈ ker(i∗x0) = K̃F (X), b ∈ ker(i∗y0) = K̃F (Y ), then by the
naturality of ∗,

a ∗ b ∈ ker(i∗(x0,y0)) = K̃F (X × Y ).

Reduced external product

Consider the map from the wedge sum X ∨ Y ↪→ X × Y and the quotient
map q from X × Y to X ∧ Y . They induce an exact sequence

K̃F (Σ(X×Y ))→ K̃F (Σ(X∨Y ))→ K̃F (X∧Y )
q∗→ K̃F (X×Y )→ K̃F (X∨Y ).
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Further, the second group K̃F (Σ(X ∨ Y )) is isomorphic to

K̃F (ΣX ∨ ΣY ) ∼= K̃F (ΣX)⊕ K̃F (ΣY )

and the last group K̃F (X ∨ Y ) ∼= K̃F (X)⊕ K̃F (Y ).
The first and the last map in the above exact sequence have evident splittings
(ΣπX)∗+(ΣπY )∗ and π∗X+π∗Y respectively. Hence, we have a split short exact
sequence

0→ K̃F (X ∧ Y )
q∗→ K̃F (X × Y )

(i∗X ,i
∗
Y )
→ K̃F (X)⊕ K̃F (Y )→ 0

in which iX , iY are the inclusions x 7→ (x, y0) and y 7→ (x0, y) of X, Y respec-
tively in X × Y .

Note the consequence of the split exact sequence:

K̃F (X × Y )
q∗+π∗X+π∗Y← K̃F (X ∧ Y )⊕ K̃F (X)⊕ K̃F (Y ).

Now, we show that the external product has a reduced form. Indeed, let
(a, b) ∈ K̃F (X)× K̃F (Y ). Then, from the definition

a ∗ b = π∗X(a)π∗Y (b),

we have that i∗Xπ
∗
Y (b) = 0 = i∗Y π

∗
X(a). Therefore,

a ∗ b ∈ ker((i∗X , i∗Y )) = Im(q∗).

As q∗ is 1-1, the pull-back of a ∗ b by q∗ is a unique element of K̃F (X ∧ Y ).

Lemma. A commutative diagram involving the reduced and the unreduced
external products is:

KF (X)⊗KF (Y )
∼=← (K̃F (X)⊗ K̃F (Y ))⊕ K̃F (X)⊕ K̃F (Y )⊕ Z

↓ ↓
KF (X × Y )

∼=← (K̃F (X ∧ Y )⊕ K̃F (X)⊕ K̃F (Y )⊕ Z

In writing the above diagram, we have used the fact that KF (X) ∼= K̃F (X)⊕
Z. Also, the vertical arrows are the external product on the left and the
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reduced external product along with three identity maps, on the right. Finally,
the bottom row isomorphism is due to the split short exact sequence observed
above.

Definition. If X, Y are pointed compact, Hausdorff spaces, then for all
m,n ≥ 0, define the reduced external product on negative K-groups:

K̃F

−n
(X)⊗ K̃F

−m
(Y )

∗→ K̃F

−n−m
(X ∧ Y )

as the composite

K̃F (X ∧ Sn)⊗ K̃F (Y ∧ Sm)→ K̃F (X ∧ Sn ∧ Y ∧ Sm)

(1∧T∧1)∗−→ K̃F (X ∧ Y ∧ Sn ∧ Sm)
∼=→ K̃F (X ∧ Y ∧ Sn+m)

where
T : Y ∧ Sn → Sn ∧ Y ; (y ∧ t) 7→ (t ∧ y),

a homeomorphism.

In case X, Y are not pointed spaces, one considers the pointed spaces X+, Y+

and apply the above construction to obtain the unreduced external product

K−nF (X)⊗K−mF (Y )
∗→ K−n−mF (X × Y ).

12 Bott periodicity - complex case

Throughout this section, we will take F = C. For simplicity of notation, we
will write K(X) etc. instead of KC(X) etc.

Complex Bott periodicity theorem.
Let X be a compact, Hausdorff space. Then, the external product

K(X)⊗K(S2)→ K(X × S2)

is an isomorphism and K(S2) is the free abelian group of rank 2 generated
by the class of the trivial line bundle and the class of the dual [H] of the
canonical bundle.
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This is a periodicity result because it has the (equivalent) version

K−n(X) ∼= K−n−2(X).

The real version is more complicated and has S8 in place of S2.
First, we note equivalent versions of the complex Bott periodicity and prove
one of these versions.

Proposition. The following statements are equivalent (in the statements
BP2 to BP5, X is pointed):

(BP1) K(X)⊗K(S2)→ K(X × S2)

given by the external product is an isomorphism and K(S2) is the free abelian
group generated by 1 and [H].

(BP2) K̃(X)⊗ K̃(S2)→ K̃(X ∧ S2)

given by the reduced external product is an isomorphism and K̃(S2) is the
infinite cyclic group generated by the ”Bott element” b = [H]− 1.

(BP3) K̃(X)
β→ K̃(X ∧ S2)

given by multiplication with the Bott element, is an isomorphism.

(BP4) K̃(X)→ K̃−2(X)

given by multiplication with the Bott element b ∈ K̃(S2) = K̃−2(S0) is an
isomorphism.

(BP5) K̃−n(X)→ K̃−n−2(X)

given by multiplication with the Bott element is an isomorphism, for all
n ≥ 0.
Proof.
The above lemma connecting reduced and unreduced external products shows
that (BP1) and (BP2) are equivalent. Further, (BP2) obviously implies

(BP3). If we take X = S0, then (BP3) implies K̃(S2) is generated by the
Bott element. Also, (BP2) and (BP4) are evidently equivalent. Further,
(BP3) implies (BP5) by the definition of the reduced external product and
(BP4) is a special case of (BP5).
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We will prove the version (BP3) using clutching functions which are Laurent
polynomials. In fact, we will explicitly produce an inverse to the mapping
β in (BP3). The following proposition will be used to induce a map on the
reduced K-groups and provide the sought inverse of β.

Reduction Proposition. There exists a map α : K(X × S2) → K(X)
satisfying:
(i) α is natural in X,
(ii) α is K(X)-linear (that is, a homomorphism of K(X)-modules, where
K(X) acts on K(X × S2) by a.p = π∗X(a)p where πX : X × S2 → X, the
projection, and
(iii) X = pt, the Bott class b := [H]− 1 ∈ K(S2) is in the kernel of α.

13 Towards the proof of periodicity

13.1 Reduced version of α

From the above α, we construct a reduced version of α from K̃(X × S2) to

K̃(X) as follows.
Let i : {x0} ↪→ X and j : {x0} × S2 ↪→ X × S2 be the inclusions defined by
the base point x0. One has the following diagram with exact rows:

K̃(X × S2/{x0} × S2) → K(X × S2)
∗→ K({x0} × S2)

↓ ↓ ↓
0 → K̃(X) → K(X)

j∗→ K(x0) → 0

where the middle and right vertical arrows are α and the left vertical arrow
is defined as a consequence because the right square above commutes by
naturality of α. If we compose the left vertical map with the map K̃(X ∧
S2)→ K̃(X × S2/{x0} × S2) induced by the quotient map, we finally have

α : K̃(X ∧ S2)→ K̃(X).

By construction, α is natural and the diagram

K̃(X ∧ S2)
α→ K̃(X)

↓ ↓
K(X × S2)

α→ K(X)

is commutative. So, we use the same notation α.
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13.2 α ◦ β = id

We are left with showing that α and β are inverse maps of each other. In
this subsection, we will observe α ◦ β = idK(X).

Lemma. α ◦ β = id on K̃(X).
Proof.
We look at the commutative diagram

K̃(X)
β→ K̃(X ∧ S2)

α→ K̃(X)
↓ ↓ ↓

K̃(X)
β→ K̃(X × S2)

α→ K̃(X)

By the definition of β, we have β(1) = π∗S2(b); here, πS2 is the second pro-
jection from X × S2. By naturality and the property that α(b) = 1 when
X = {pt}, we obtain α(π∗S2(b)) = 1. As both α, β in the bottom row are
K(X)-linear, this means α ◦ β = id on bottom row. Therefore, this is true
on the top row as well.

13.3 β ◦ α = id

The reverse equality β ◦ α = id is more complicated to prove. This is done
in two steps as follows.

Lemma. Consider the transpose map T : S2∧S2 → S2∧S2; (x∧y) 7→ (y∧x).
Then, we have the commutative diagram

K̃(X ∧ S2)
β→ K̃(X ∧ S2 ∧ S2)

(id∧T )∗→ K̃(X ∧ S2 ∧ S2)
↓ ↓

K̃(X)
β→ K̃(X ∧ S2)

Lemma. The map K̃(X ∧ S2 ∧ S2)
(id∧T )∗→ K̃(X ∧ S2 ∧ S2) is the identity

map.
Proof.
We view S2 ∧ S2 which is homeomorphic to S4, as an one-point compactifi-
cation of R4. Then, the transpose map T above is the one induced by the
linear map

R4 → R4; (a, b, c, d) 7→ (c, d, a, b).
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This clearly has determinant 1 which means there is a connected path in
GL4(R) which connects it to the identity map. In other words, one has
homotopy between T and idS2∧S2 and hence a homotopy from idX ∧ T to
idX∧S2∧S2 .

Corollary. β ◦ α = id on K̃(X ∧ S2).
Proof.
β ◦ α = α ◦ (idX ∧ T )∗ ◦ β = α ◦ β = id.

13.4 Constructing α via clutching

Thus, we have proved that BP holds modulo the construction of α. In what
follows, we will construct α using clutching constructions. The idea of con-
structing α as in the reduction proposition is by considering clutching func-
tions in increasing generality.

Recall the notations D0 = {z ∈ S2 : |z| ≤ 1} and D∞ = {z ∈ S2 : |z| ≥ 1}.
Both D0, D∞ are homeomorphic to the closed unit disc which is contractible
and their intersection is the equatorial great circle S1 = {z ∈ S2 : |z| = 1}).
Let X be a pointed space, and π0 : X × D0 → X, π∞ : X × D∞ → X,
π : X × S1 → X be the natural projections. Write s : X → X × S2;
x 7→ (x, 1).

Proposition. Let E → X × S2 be a complex vector bundle, and E = s∗(E).
Then, there is an isomorphism of vector bundles over X × S1:

u : π∗E → π∗E

satisfying:
(i) u|X = id - therefore, we may identify E with the clutching construction
π∗0E ∪u π∗∞E) restricted to X;
(ii) there is an isomorphism of E with π∗0E ∪u π∗∞E) that is identity on X ⊂
X × S2.
Further, the two properties (i),(ii) determine u uniquely up to homotopy
(through vector bundle isomorphisms).
Proof.
Since the composite maps

X ×D0
π0→ X ↪→ X ×D0
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and
X ×D∞

π∞→ X ↪→ X ×D∞
are homotopic to the respective identity maps, we have isomorphisms

h0 : E|X ×D0

∼=→ π∗0(E);

h∞ : E|X ×D∞
∼=→ π∗∞(E).

For a suitable automorphism α ∈ Aut(E), we may compose h0 with α× idD0

to assume h0 is actually the identity on X. Similarly, we may assume h∞ is
also identity on X. With this choice, define

u : π∗0(E)
h−1
0→ E|X × S1 h∞→ π∗∞(E).

Clearly, (i) and (ii) are satisfied. Let us show uniqueness now.
Suppose u′ is another such isomorphism.
The isomorphisms E ∼= π∗0E ∪u π∗∞E) induce isomorphisms

h′0 : E|X ×D0

∼=→ π∗0(E);

h′∞ : E|X ×D∞
∼=→ π∗∞(E)

which restrict to the identity on X and such that u′ agrees with h′∞(h′0)−1

on π∗(E).
Now, the difference h0− h′0 gives an automorphism of π∗0(E) = E ×D0 which
is identity on X. All such automorphisms are of the form

E ×D0 → E ×D0;

(v, z) 7→ (g(v, z), z)

where g(−, z) is a vector bundle automorphism for each z ∈ D0 and g(−, 1) =
id. Using a deformation retraction H from D0 to 1, we obtain a homotopy

E ×D0 × [0, 1]→ E ×D0;

(v, z, t) 7→ (g(v,H(z, t)), z)

from h0 − h′0 to id; hence, we get a homotopy from h0 to h′0 through vector
bundle isomorphisms. In the same manner, we have a homotopy between h∞
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and h′infty through vector bundle automorphisms on π∗∞(E). Therefore, we
end up with a homotopy from u to u′ through vector bundle isomorphisms.

Laurent polynomial clutching functions
Definition. Given a vector bundle p : E → X, an automorphism of π|ast(E)
amounts to a continuous family of automorphisms u(x, z) : Ex → Ex (for
x ∈ X, z ∈ S1). It is called a Laurent polynomial clutching function if we
can write

u(x, z) =
∑
|k|≤n

ak(x)zk

for some endomorphisms ak of E.
Further, it is called a polynomial clutching function of the sums above are
over k ≥ 0; it is said to be linear if the sum is linear in z. In other words,
there are endomorphisms a, b of E such that for each x ∈ X, z ∈ S1, a(x)z+
b(x) is an isomorphism of p−1(x) sending v to za(x)(v) + b(x)(v) (here, z is
multiplication by z ∈ S1 ⊂ C).

Often, we will simply write E instead of s∗(E) when the context is clear
(and X is identified via s with X ×{1} in X ×S2. In particular, for E over
X×S2 with a clutching function u, the map u is written as an automorphism
of π∗(E) where π : X × S1 to X.

Lemma. Every clutching function can be approximated by Laurent poly-
nomial clutching functions. In particular, for any clutching function u :

π∗E
∼=→ π∗E, there is a Laurent polynomial clutching function homotopic to

it. Further, two Laurent polynomial clutching functions which are homo-
topic through clutching functions are homotopic through Laurent polynomial
clutching functions.
Proof.
Given a clutching function u : π∗(E)

∼=→ π∗(E), consider

ak(x) :=
1

2π

∫ 2π

0

u(x, eiθ)e−ikθdθ.

The Cesaro sums

un(x, z) :=
1

n+ 1

∑
0≤k≤n

sk(x, z)
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where
sk(x, z) :=

∑
|j|≤k

aj(x)zj

are clutching functions which converge uniformly in x and z (by Fejer’s the-
orem) to u(x, z). This proves the first assertion.
To show the second one, for a sufficiently close Laurent polynomial clutching
function ` to u, the map

t 7→ tu+ (1− t)`

is a homotopy through clutching functions, from ` to u.
Finally, for the final assertion, observe that a homotopy from `0 to `1 (two
Laurent polynomial clutching functions) through clutching functions, gives
and automorphism of π∗(E)× [0, 1]. We approximate this automorphism by
a Laurent polynomial clutching function and obtain a homotopy `′t through
Laurent polynomial clutching functions. For a sufficiently close approxima-
tion of the automorphism, one can combine the homotopy `′t with a linear
homotopy from `0 to `′0 and a linear homotopy from `′1 to `1 to get a homo-
topy from `0 to `1 which is entirely through Laurent polynomial clutching
functions.

Linear clutching functions case.
Let E → X ×S2 be a vector bundle, and consider the restriction to X ×{1}
which is identified with X. Writing π : X × S1 → X for the projection,

look at a clutching function p : π∗(E)
∼=→ π∗(E) which is linear; that is,

p(x, z) = a(x)z + b(x) say.

Lemma. The operator Qp : E → E defined by

Qp(x) =
1

2πi

∫
|z|=1

(a(x)z + b(x))−1a(x)dz

is a projection operator. In particular, we have a decomposition

E = Im(Qp)⊕Ker(Qp).

Proof.
Note that for z 6= w, one has

(az + b)−1

w − z
+

(aw + b)−1

z − w
= (az + b)−1a(aw + b)−1.
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Since, for all x ∈ X, the operator a(x)z + b(x) is invertible for all z ∈ S1,
there exists ε > 0 such that it remains invertible for all 1 − ε < |z| < 1 + ε.
The Cauchy’s integral theorem implies that the equality

Qp(x) =
1

2πi

∫
|z|=r

(a(x)z + b(x))−1a(x)dz

holds for all r ∈ (1− ε, 1 + ε). Take r, R such that

1− ε < r < R < 1 + ε.

Then,

Q2
p =

1

(2πi)2
(

∫
|z|=R

(az + b)−1adz)(

∫
|w|=r

(aw + b)−1adw)

=
1

(2πi)2

∫
|w|=r

∫
|z|=R

(az + b)−1

w − z
adzdw+

1

(2πi)2

∫
|w|=r

∫
|z|=R

(aw + b)−1

z − w
adzdw

=
1

(2πi)2

∫
|w|=r

∫
|z|=R

(az + b)−1

w − z
adzdw +

1

2πi

∫
|w|=r

(aw + b)−1adw

=
1

2πi

∫
|z|=R

0dz +Qp = Qp

where we have simply used Fubini’s theorem and Cauchy’s integral formula.

Remarks.
We observe that a projection operator on a vector bundle has locally con-
stant rank function. Thus, the image and kernel are vector bundles. One
denotes the two vector bundles Im(Qp) and Ker(Qp) by (E, p)+ and (E, p)−
respectively. We observe:

Proposition.
(i) (E, 1)+ = ε0X and (E, z)+ = E.
(ii) (E, p0)+

∼= (E, p1)+ if p0, p1 are homotopic through linear clutching func-
tions.
(iii) (E1 ⊕ E2, p1 ⊕ p2) ∼= (E1, p1)+ ⊕ (E2, p2)+.
(iv) (E ′ ⊗ E, id⊗ p)+

∼= E ′ ⊗ (E, p)+ for every vector bundle E ′ → X.
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Proof.
(i) follows by Cauchy’s integral formula. Indeed,

Q1 =
1

2πi

∫
|z|=1

IdEdx = 0

and

Qz =
1

2πi

∫
|z|=1

IdE
z
dz = IdE.

For (ii), note that a homotopy between p0, p1 through linear clutching func-
tions is a function q : E × [0, 1] → X × [0, 1] such that the ends (at t = 0
and t = 1) of the vector bundle (E× [0, 1], q)+ → X × [0, 1] are (E, p0)+ and
(E, p1)+. Parts (iii), (iv) are clear from the construction.

Remarks.
We remark that we need a homotopy through linear clutching functions so
that the the image and kernel of the operator Qp0 are carried to the corre-
sponding spaces for the operator Qp1 .

From linear to polynomial clutching functions.
Given a polynomial clutching function of degree n, we will associate a linear
clutching function on the (n+ 1)-fold direct sum of E as follows.

Let p(x, z) =
∑n

k−0 ak(x)zk : π∗(E)
∼=→ π∗(E). Consider the vector bundle

Ln(E) := ⊕n+1E → X and the linear clutching function

Ln(p) : π∗(Ln(E))
∼=→ π∗(Ln(E))

defined by

Ln(p) =



a0 a1 a2 · · · an−1 an
−z 1 0 · · · 0 0
0 −z 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · −z 1



35



Note that

Ln(p) =


1 g1 g2 · · · gn

1
. . .

. . .

1



p

1
. . .

1




1
−z 1

−z 1
. . . . . .

−z 1


where the polynomials gi(z)’s are defined by g1(z) = p(x,z)−a0

z
, gr+1(z) =

gr(z)−gr(0)
z

= p−a0−a1z−···−arzr
zr+1 . Therefore, Ln(p) is actually an automorphism.

We denote the vector bundles (Ln(E), Ln(p))+ and (Ln(E), Ln(p))− over X
by Ln(E, p)+ and Ln(E, p)− respectively. We have:

Proposition.
(i) If p is a polynomial clutching function of degree n, then Ln+1(E, p)+

∼=
Ln(E, p)+, and Ln+1(E, zp)+

∼= Ln(E, p)+ ⊕ E.
(ii) Ln(E, p0)+

∼= Ln(E, p1)+ if p0, p1 are polynomial clutching functions ho-
motopic through polynomial clutching functions of degree ≤ n.
(iii) Ln(E1⊕E2, p1⊕ p2)+

∼= Ln(E1, p1)+⊕Ln(E2, p2)+ where p1, p2 are poly-
nomial clutching functions of degree at most n.
(iv) Ln(E ′ ⊗ E, id⊗ p)+

∼= E ′ ⊗ Ln(E, p)+.
Proof.

(i) As t varies in [0, 1], consider

(
Ln(p) 0

0 · · · −tz 1

)
gives a homotopy

from Ln(p) ⊕ 1 to Ln+1(p) through linear clutching functions. Now, if g :

[0, 1] → GL2(C) connects the identity matrix to

(
0 −1
1 0

)
, a homotopy

from Ln+1(zp) to z ⊕ Ln(p) is given by the product

(
g(t) 0

0 In

)
0 a0 a1 · · · an
−z 1− t

−z 1
. . .

−z 1

 .

All the assertions now follow from the results proved for linear clutching
functions above. Indeed, a homotopy from p0 to p1 via polynomial clutching
functions pt of degree ≤ n induces a linear homotopy Ln(pt) from Ln(p0) to
Ln(p1).
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From polynomial to Laurent polynomial clutching functions
If ` is a Laurent polynomial clutching function, then for large enough n, zn`
is a polynomial clutching function of degree ≤ 2n. One defines

α(E, `) := nE − L2n(E, zn`)+ ∈ K(X).

By the proposition (i) above, the above definition is independent of n large
enough. Further α(E, `0) ∼= α(E, `1) if `0, `1 are Laurent polynomial clutch-
ing functions which are homotopic through Laurent polynomial clutching
functions. By the approximation theorem on clutching functions proved ear-
lier, for an arbitrary clutching function u, one defines α(E, u) := α(E, `) ∈
K(X) for a Laurent polynomial clutching function ` homotopic to u through
clutching functions. We have the properties:

Proposition.
(i) α(E, u0) = α(E, u1) for clutching functions u0, u1 which are homotopic
through clutching functions.
(ii) α(E1 ⊕ E2, u1 ⊕ u2) = α(E1, u1) + α(E2, u2) ∈ K(X).
(iii) α(E ′ ⊗ E, id⊗ u) = E ′α(E, u) ∈ K(X).
Proof.
(i) is evident from the very definition. The other parts follow from the
previous proposition immediately.

Proving α satisfies the reduction proposition

Recall that any vector bundle over X × S2 arises by a clutching function u;

that is, u : π∗(E)
∼=→ π∗(E). One defined α(E) := α(E, u) . This has the

properties:

Lemma.
(i) α(H) = 1 ∈ K(pt).
(ii) α(ε1S2) = 0 ∈ K(pt).
Proof.
For (i), recall from the example of S2 discussed earlier, that for X = pt, one
may take the clutching function u = z−1. Then,

α(H) = α(H1, z
−1) = H1 − L2(H1, 1)+ = 1− (L2(H1), L2(1))+ ∈ K(pt).

Here L2(1) =

 1 0 0
−z 1 0
0 −z 1

 ∼= I3 where the isomorphism is through linear
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clutching functions. But, we saw during the discussion on linear clutching
functions that

(L2(H1), L2(1))+ = 0 ∈ K(pt).

This proves (i).
For (ii), observe that we may choose the identity as the clutching function
on π∗(ε1pt). Thus,

α(ε1S2) = α(ε1pt, 1) = −L0(ε1pt, 1)+ = −(ε1pt, 1)+ = ε0pt = 0 ∈ Kpt.

Hence (ii) follows.

The proof of BP is complete.

14 Applications of Bott periodicity

14.1 Positive K-groups

For a pointed compact Hausdorff space X, we have the reduced K-groups
K̃−n(X) for n ≥ 0. As Bott periodicity produces isomorphisms of the above

with K̃−n−2(X), we may define, for n > 0,

K̃2n−1(X) = K̃−1(X);

K̃2n(X) = K̃0(X).

With these notations, we have K̃n(X) = K̃n−2(X) for all integers n.

For non-pointed spaces X, one may look at X+ and define Kn(X) = K̃n(X+).

Similarly, for a compact pair (X,A), define Kn(X,A) = K̃n(X/A).

Thus, the Z-graded group K̃∗(X) := ⊕n∈ZK̃n(X) can be viewed, in view of
Bott periodicity, as the Z/2-graded group

K̃∗(X) = K̃0(X)⊕ K̃1(X).

Similarly, the unreduced K∗(X) and K∗(X,A) are Z/2-graded.

Proposition. The positive K-groups satisfy the following properties similar
to reduced cohomology groups. Thus, topological K-theory of compact spaces
gives an extraordinary cohomology theory (all axioms other than the dimen-
sion axiom).
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• Homotopy invariance:
For a pointed map f : X → Y , the induced map K̃n(Y ) → K̃n(X) depends
only on the pointed homotopy class of f .

• Suspension:
For all n, there is a natural isomorphism K̃n(X) ∼= K̃n+1(ΣX).

• Exactness:
For a closed subspace A containing the base point of X, the sequence K̃n(X/A)→
K̃n(X)→ K̃(A) is exact.

• Additivity:

The inclusions iX : X ↪→ X ∨ Y, iY : Y ↪→ X ∨ Y induce K̃n(X ∨ Y )
∼=→

K̃n(X)× K̃n(Y ).
Proof.
Homotopy invariance of induced maps on K0 (and, hence on K̃0) and the
observation that when f, g are homotopic, then so are Σf,Σg imply the as-
sertion of homotopy invariance on K̃n.
The assertion on suspension is obvious from the definition and Bott period-
icity.
The claim of exactness follows from the corresponding statement for nonpos-
itive K-groups proved earlier.
Finally, the additivity claim follows from the corresponding statement for
n = 0 and the homeomorphism between Σ(X ∨ Y ) and ΣX ∨ ΣY .

14.2 Spheres

Proposition.
(i) For n > 0, K̃(S2n) is infinite cyclic with a generator ([H] − 1)∗n. The
product in this ring is trivial.
(ii) For any pointed X, the reduced external product K̃(X) ⊗ K̃(S2n) →
K̃(X ∧ S2n) is an isomorphism.
(iii) For a non-pointed space X, the external product

K(X)⊗K(S2n)→ K(X × S2n)

gives an isomorphism.
(iv) K(S2n) ∼= Z[T ]/(T 2) as rings.
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(v) For all n > 0, K(S2n−1) ∼= Z, K̃(S2n−1) = 0.

(vi) K̃1(S2n) = 0, K̃1(S2n−1) ∼= Z for n > 0.
Proof.
Repeatedly applying BP, the iterated external product map

K̃(S2)⊗ · · · ⊗ K̃(S2)
∗→ K̃(S2n)

is an isomorphism. This is actually an isomorphism of rings because the
reduced external product also preserves product (being the restriction of ex-
ternal product which does by definition; that is, (a∗ b)(a′ ∗ b′) = (aa′)∗ (bb′)).

As K̃(S2) is generated by [H]− 1 with the relation ([H]− 1)2 = 0 ∈ K̃(S2),
we have (i).
This also implies (iv) immediately.
For odd dimensional spheres, first look at S1. Now, rank n vector bundles on
S1 are in bijection with homotopy classes of maps from S0 to GLn(C); the
latter is a single point as GLn(C) is path-connected. Hence, all vector bun-
dles over S1 are trivial. Thus, V ectC(S1) can be identified with the monoid

of natural numbers and so, K(S1) ∼= Z. Hence, K̃(S1) = (0) and using BP,

we get K̃(S2n+1) = (0) for all n. Thus, K(S2n−1) ∼= Z for all n ≥ 1 which
proves (v).

By the suspension isomorphism, K̃n(X) ∼= K̃n+1(ΣX). Therefore, we imme-
diately obtain (vi).
Further, (i) and BP implies (ii).
Using the commutative diagram involving the reduced and unreduced prod-
ucts (a previous lemma), (iii) also follows.

The proposition implies that K̃(Sn) is isomorphic to Z for all n ≥ 0 where
the copy of Z occurs in degree 0 when n is even and in degree 1 when n is
odd. From this, one may deduce:

Brouwer fixed point theorem.
A continuous map f : Dn → Dn has a fixed point.

Indeed, if f did not have a fixed point, we would have a retraction of Dn to
Sn−1 but the corresponding reduced k-groups are 0 and non-zero. This is a
contradiction.

We state another following result which can be proved using Bott periodicity.

Let X be a finite cell complex with n cells. Then, K∗(X) is an n-generated
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abelian group. If all the cells have even dimensions, then K1(X) = 0 and
K0(X) is free abelian of rank equal to n.
In particular, K1(CP n) = 0 and K0(CP n) ∼= Zn+1 as abelian groups.

14.3 Adams operation and division algebras

As an application of BP, we prove that the only values of n for which Rn has a
bilinear multiplication for which it forms a division algebra, are n = 1, 2, 4, 8.
This purely algebraic theorem has a beautiful proof due to Adams. The
algebraic result goes hand in hand with a topological result which we state
now.

Parallelizability/division algebras theorem.
(i) If Rn admits the structure of a division algebra, then n = 1, 2, 4 or 8.
(ii) If the sphere Sn−1 is parallelizable (that is, its tangent bundle is trivial),
then n = 1, 2, 4 or 8.

Definition. An H-space X is a space with a special element eand a (”multi-
plication”) map m : X ×X → X which is continuous and has the properties
that the maps x 7→ m(e, x) and x 7→ m(x, e) are homotopic to the identity
map.
It can be shown that in this case, one can produce a map homotopic to m
which satisfies the stricter properties m(e, x) = m(x, e) = x for all x. The
main observation is:

Proposition. If Rn is a division algebra, or if Sn−1 is parallelizable, then
Sn−1 is an H-space.
Proof. Suppose Rn is a division algebra (we may assume it has a unity).
Now, with the above multiplication, we have an H-space structure on Sn−1:

Sn−1 × Sn−1 → Sn−1;

(x, y) 7→ xy

||xy||
.

Now, assume Sn−1 is parallelizable. Choose linearly independent sections
s1, · · · , sn−1 of the tangent bundle of Sn−1. The vectors

s1(e1), s2(e1), · · · , sn−1(e1)
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give a basis of Te1S
n−1 =

〈
{e2, · · · , en}

〉
⊂ Rn. By replacing the si’s by

linear combinations, we may assume

s1(e1) = e2, s2(e1) = e3, · · · , sn−1(e1) = en.

Notice that e1 along with the above n−1 vectors forms an orthonormal basis
of Rn. Therefore, by the Gram-Schmidt process (which does not affect the
above basis as it is already orthonormal), we may also assume that for all
x ∈ Sn−1, the vectors x, s1(x), s2(x), · · · , sn−1(x) form an orthonormal basis
for Rn. For each x ∈ Sn−1, the matrix gx whose last column is the above
vector, belongs to SO(n) and provides an H-space structure on Sn−1 by

(x, y) 7→ gx(y).

Lemma. S2n is never an H-space.
Proof.
Suppose µ : S2n × S2n → S2n is a multiplication making S2n is an H-space
with identity element e ∈ S2n. Let i1, i2 be the inclusions x 7→ (x, e) and
x 7→ (e, x) respectively of S2n in the product. Write i : pt→ S2n; pt 7→ e.
Consider the commutative diagram

K(S2n)
∗← K(S2n ⊗K(pt)

↗ ↑ ↑
K(S2n)

µ∗→ K(S2n × S2n)
∗← K(S2n)⊗K(S2n)

↘ ↓ ↓
K(S2n)

∗← K(pt)⊗K(S2n)

The horizontal maps are isomorphisms. The vertical maps on the left are i∗1
on top and i∗2 at the bottom. Now, K(S2n) ∼= Z[x]/(x2) and i∗(x) = 0 since

x ∈ K̃(S2n). So, the left side of the above diagram consisting of the two
triangles can be written as

Z[α]/(α2)
↗ ↑

Z[γ]/(γ2)
µ∗→ Z[α, β]/(α2, β2)
↘ ↓

Z[β]/(β2)
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where the top vertical arrow sends β to 0 and the bottom one takes α to 0.
Therefore, the horizontal arrow µ∗ is given by

µ∗(γ) = α + β +mαβ

for some integer m. Hence

0 = µ∗(γ2) = µ∗(γ)2 = (α + β +mαβ)2 = 2αβ 6= 0

which is a contradiction.

Lemma. If S2n−1 is an H-space, then there exists a map f : S4n−1 → S2n

which has Hopf invariant ±1.
Here, the Hopf invariant of a map f : S4n−1 → S2n is defined as follows.

Consider the space Cf = S2n ∪f D4n (mapping cone) obtained by means
of the attaching function f . In other words, Cf is obtained by attaching a

4n-cell to the 2n-sphere. As the even spheres S2n and S4n have trivial K̃1,
the maps

S2n i
↪→ Cf

q→ S4n

give rise to the long exact sequence (which is actually short):

0→ K̃(S4n)
q∗→ K̃(Cf )

i∗→ K̃(S2n)→ 0.

As the groups on the left and right extremes are infinite cyclic, generated
respectively by (([H]− 1)∗)2n and by (([H]− 1)∗)n, the element α ∈ K̃(Cf )
which is the image of the generator (([H] − 1)∗)2n and ANY element β ∈
K̃(Cf ) mapping to the generator (([H]− 1)∗)n are related by

β2 = hα

for some integer h. The integer h is independent of the choice of β and is
called the Hopf invariant of f .

We reiterate the last statement:
The integer h is independent of the choice of β.
Any other lift is of the form β +mα. Now,

i∗(αβ) = i∗(α)i∗(β) = 0.
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This means αβ ∈ ker(i∗) = Im(q∗) so that αβ = dα for some integer d.
Then,

d2α = dαβ = αβ2 = hα2 = 0

which gives d2 = 0 as α is a generator of an infinite cyclic group. Thus, we
have d = 0 and so αβ = 0. So,

(β +mα)2 = β2 + 2mαβ +m2α2 = β2.

Proposition. If S2n−1 is an H-space, then there exists a map f with Hopf
invariant ±1 from S4n−1 to S2n.
Proof.
Let µ : S2n−1 × S2n−1 → S2n−1 be a multiplication map with an identity
element e. We consider the 2n-dimensional sphere S2n as a union of two
discs S2n = D2n

+ ∪ D2n
− and the (4n − 1)-dimensional sphere S4n−1 as the

boundary of the product of two discs D2n:

S4n−1 = δ(D2n ×D2n) = δD2n ×D2n ∪D2n × δD2n.

We obtain a map
f : S4n−1 → S2n

by fitting together the two continuous maps

δD2n ×D2n → D2n
+ ;

(x, y) 7→ |y|µ(x, y/|y|)

and
D2n × δD2n → D2n

− ;

(x, y) 7→ |x|µ(x/|x|, y).

Note that the above maps are meaningful (and continuous) at x = 0 and
y = 0 and agree with µ on S2n−1 × S2n−1.
Recall the mapping cone Cf = S2n ∪f D4n. Then, we have a map

Φ : (D4n, S4n−1) = (D2n ×D2n, δ(D2n ×D2n))→ (Cf , S
2n)

where the map from D4n to Cf = S2n ∪f D4n is the obvious map. Therefore,
we have a commutative diagram
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K̃(Cf ) → K̃(S2n)
↑ ↑

K(Cf , D
2n
+ ) → K(S2n, D2n

+ )
↓ |

K((D2n, δD2n)×D2n) |
↓ ↓

K((D2n, δD2n)× {e}) f |∗← K(D2n
− , δD

2n)
↑

K̃(S2n)

In this diagram, the top two vertical arrows are isomorphisms since the re-
duced K-group of D2n

+ is trivial. The top horizontal arrow induced by the
inclusion of S2n in Cf takes β to a generator. The long vertical arrow on
the right is an isomorphism by excision. The second from top vertical arrow
on the left is Φ∗ and the vertical arrows below it are isomorphisms induced
by inclusion of {e} and the quotient map from (D2n, δD2n) × {e} onto S2n.
Finally, the horizontal arrow f |∗ is an isomorphism since the restricted func-
tion f | gives a homeomorphism from D2n × {e} to D2n

− . A similar diagram
holds with + replaced by −.

To deduce that β2 = ±α, we just need to look at the following commutative
diagram and follow where elements are carried to:

K̃(Cf )⊗ K̃(Cf )
prod→ K̃(Cf )

↑ ↑
K(Cf , D

2n
+ )⊗K(Cf , D

2n
− )

prod→ K(Cf , S
2n)

↓ ↑
K((D2n, δD2n)×D2n)⊗K(D2n × (D2n, δD2n))

prod→ K(D2n ×D2n, δ(D2n ×D2n))
↓ ↗ ↑

K((D2n, δD2n)× {e})⊗K({e} × (D2n, δD2n)) K̃(S2n)
↑ ↗

K̃(S2n ⊗ K̃(S2n)

The top horizontal arrow takes β ⊗ β obviously to β2. The top right ver-
tical arrow carries a generator to α ∈ K̃(Cf ). The second-from-top ver-
tical arrows are Φ∗ ⊗ Φ∗ and Φ∗. The north-east bound arrows are iso-
morphisms induced by the star maps. Other unspecified maps are clearly
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induced by inclusions or quotient maps. Since the previous diagram showed
that β ∈ K̃(Cf ) corresponded to a generator g of K̃(S2n), following what

happens to g ⊗ g ∈ K̃(S2n) ⊗ K̃(S2n) on the bottom left, we find that
β2 = ±α.

14.4 Proof of Adams’s theorem.

On combining the above observations, the parallelizability/division alge-
bras theorem is a consequence of the following beautiful theorem due to
J.F.Adams. His second proof of the theorem in 1966 uses his construction
of the so-called Adams operations - his first proof in 1960 used secondary
cohomology operations.

Adams’s theorem. There is a map f of Hopf invariant 1 or −1 from S4n−1

to S2n if, and only if, n = 1, 2, 4.

Definition. If X is a compact, Hausdorff space, then a sequence ψn(n ≥ 1)
of ring homomorphisms from K(X) to itself satisfying the following proper-
ties, are called Adams operations:
(i) ψm ◦ ψn = ψmn;
(ii) ψnf ∗ = f ∗ψn ∀ f : X → Y ;
(iii) ψn(L) = Ln for any line bundle L;
(iv) for each prime p, ψp(x) ≡ xp mod p for x ∈ K(X).

Theorem. Adams operations exist.

The proof will depend on a splitting principle and the following observations.
If E = ⊕ri=1Li is a sum of line bundles Li’s, then the property ψn(E) =∑r

i=1 L
n
i is required above and we could define ψn in this manner. The idea

of defining ψn(E) for general E comes from this itself because the sum on
the RHS is expressible as a polynomial in the exterior powers of E and this
makes sense for general E (even if E is not a sum of line bundles) and we
could define ψn for general E also. We will make it precise presently. First,
we state the splitting principle.

Splitting principle. For a compact, Hausdorff space X and a complex
vector bundle p : E → X, there is a compact, Hausdorff space Y and a map
f : Y → X such that f ∗ : K(X)→ K(Y ) is injective, and the vector bundle
f ∗(E)→ Y is a direct sum of line bundles.
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Proof of existence of Adams operations.

Clearly, the identity

Λk(V ⊕ V ′) =
k∑
d=0

Λd(V )⊗ Λk−d(V ′)

shows that if E = ⊕ri=1Li, then

λk(E) = σk(L1, · · · , Lr),

the k-th elementary symmetric polynomial in the Li’s. Indeed, we see this
as follows. Consider a vector bundle E and the corresponding generating
function of the exterior power bundles; viz.,

λT (E) :=
∑
d≥0

λd(E)T d ∈ K(X)[T ].

Therefore, we obtain for any vector bundles E,E ′, the relation

λT (E ⊕ E ′) = λT (E)λT (E ′).

Noting that
λT (L) = 1 + LT

for any line bundle L, we obtain

λT (⊕ri=1Li) =
r∏
i=1

(1 + LiT ).

Hence, we deduce that

σn(L1, · · · , Lr) = λn(⊕ri=1Li).

From the theory of elementary symmetric functions, for variables x1, · · · , xr,
each xn1 + · · · + xnr is a polynomial (these are the Newton polynomials) in
the elementary symmetric polynomials σ1 :=

∑r
i=1 xi, σ2 :=

∑
i<j xixj, etc.

Denoting this polynomial to be sn(x1, · · · , xr), let us define for each E ∈
V ectC(X),

ψn(E) := sn(λ1(E), · · · , λn(E))
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where λr(E) is the r-th exterior power.
If f : X → Y , then since f ∗(λn(E)) = λn(f ∗(E)), we have

f ∗ψn(E) = ψn(f ∗(E)).

Using (ii) and the splitting principle repeatedly, it follows that

ψn(E ⊕ E ′) = ψn(E) + ψn(E ′)

assuming this is true for E,E ′ which are direct sums of line bundles. So, we
assume E = ⊕ri=1Li, E

′ = ⊕sj=1L
′
j. But, in this case it is verified by the very

definition. Hence, ψn extends to a homomorphism of abelian groups from
K(X) to itself. Thus, we have (ii),(iii). It is also useful sometimes to write
the relation between the generating functions (which are power series over
K(X) in general). Indeed, since we have the power series identity

d

dT
log(1− Tx) =

−x
1− Tx

= −x− Tx2 − T 2x3 − · · ·

implies that one may define

ψT (E) :=
∑
i≥0

ψi(E)T i := ψ0(E)− T d

dT
log λ−T (E).

To see that ψn is a ring homomorphism, it suffices to verify at the level of
vector bundles that

ψn(E × E ′) = ψn(E)ψn(E ′).

Once again, by the splitting principle, it suffices to prove this when E,E ′ are
direct sums of line bundles. But then

ψn(E ⊗ E ′) = ψn(⊕ri=1 ⊕sj=1 (Li ⊗ L′j)) =
∑
i,j

(Li ⊗ L′j)n

=
∑
i,j

Lni (L′j)
n = (

∑
i

Lni )(
∑
j

(L′j)
n) = ψn(E)ψ(E ′).

Now,
ψmψn(L) = ψm(Ln) = (Ln)m = Lmn = ψnψm(L)
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for each line bundle. Using additivity proved above and rhe splitting princi-
ple, (i) follows. Finally, for a prime p, once again using splitting principle, it
suffices to verify

ψp(⊕ri=1Li) ≡ (L1 + · · ·+ Lr)
p mod p.

However, the LHS is simple Lp1 + · · · + Lpr which equals the above RHS in
K(X). The proof is complete.

Now, we proceed to prove Adams’s theorem after making one observation on
the effect of Adams operations on the reduced K-groups.

Lemma. The Adams operations also give operations on K̃(X) which satisfy:
(i) ψn(x ∗ y) = ψn(x) ∗ ψn(y);

(ii) if X = S2n, then ψm acts on K̃(S2n) as multiplication by mn.
Proof.
By naturality, we clearly get Adams operations on reduced K-theory as:

0 → K̃(X) → K(X) → K(pt) → 0
↓ ↓ ↓

0 → K̃(X) → K(X) → K(pt) → 0

where the middle and right vertical arrows are ψn and the left vertical arrow
is as a consequence. This proves (i).
For (ii), as usual H denotes the dual of the canonical line bundle on S2 and
consider ψm([H]− 1). We have

ψm([H]− 1) = [H]m − 1 = (1 + ([H]− 1))m − 1 = m([H]− 1)

since [H]− 1)2 = 0. Therefore,

ψm((([H]−1)∗)n) = ((ψm([H]−1))∗)n = ((m([H]−1))∗)n = mn(([H]−1))∗)n.

Proof of Adams’s theorem.
We will leave the part that n = 1, 2 or 4 give Hopf invariant ±1 for the
exercise session and prove the nontrivial part.
Let f : S4n−1 → S2n have Hopf invariant ±1.
Recall the mapping cone Cf = S2n ∪f D4n obtained (by means of f) by

attaching an n-cell to S2n. As before, let α, β ∈ K̃(Cf ) be, respectively, the
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image under q∗ of (([H]− 1))∗)2n and a preimage of (([H]− 1))∗)n under the
map i∗ in the short exact sequence

0→ K̃(S4n)
q∗→ K̃(Cf )

i∗→ K̃(S2n)→ 0.

Now ψm(α) = m2nα and ψm(β) = mnβ + amα for some integer am. Apply
this for m = 2. As we have the properties

ψ2(β) = 2nβ + a2α

and
ψ2(β) ∼= β2 mod 2,

we get that a2 is odd because β2 = ±α by the assumption that Hopf invariant
is ±1. Now,

ψ6(β) = ψ3(ψ2(β)) = ψ3(2nβ + a2α)

= 2n(3nβ + a3α) + a2(32nα) = 6nβ + (2na3 + 32na2)α.

Also,
ψ6(β) = ψ2(ψ3(β)) = ψ2(3nβ + a3α)

= 3n(2nβ + a2α) + a3(22nα) = 6nβ + (3na2 + 22n)α.

Therefore, we have
(32n − 3n)a2 = (22n − 2n)a3.

As a2 is odd, it follows that 2n|(3n− 1). An elementary exercise tells us that
n = 1, 2 or 4.
This finishes the proof of Adams’s theorem and along with that the proof of
the parallelizability/division algebras theorem modulo the splitting principle.

The splitting principle itself follows from the computation of K(CP n) along
with the following theorem on cell complexes.

Leray-Hirsch theorem. Let p : E → X be a complex vector bundle with
E,X compact, Hausdorff and fibre F a finite cell complex with only even-
dimensional cells. Suppose there exist c1, · · · , cr ∈ K(E) that restrict to a
basis for K(p−1(x)) for each fibre p−1(x). Then, K∗(E) is a free K∗(X)-
module with {c1, · · · , cr} a basis.

Example of CP n.
K(CP n) ∼= Z[T ]/(T − 1)n+1 by means of the map T 7→ L from the RHS
where L is the dual of the canonical line bundle on CP n.
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The resolution of the monstrous moonshine conjecture by Borcherds (for
which he won the Fields medal) uses Adam operations in a nontrivial way.

The basic reference is Atiyah’s lecture notes on K-theory and some online
notes by A.Hatcher.
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