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1. Show that there are infinitely many positive integers A such that 24 is a square, 3A is a cube
and 5A is a fifth power.

Solution: First we observe that 2,3,5 divide A. So we may take A = 223#57. Considering
2A,3A and 5A, we observe that a+ 1, 3, ~y are divisible by 2; «, 8+ 1, are divisible by 3; and
a, B, + 1 are divisible by 5. We can choose a = 15 + 30n; 8 = 20 + 30n; v = 24 4+ 30n. As
n varies over the set of natural numbers, we get an infinite set of numbers of required type.
We may also take A = 21932052430 to get a different such infinite set.

2. Find all real numbers p, g such that the two roots of the equation z2 — pz — 1 = 0 and the
two roots of the equation 22 — gz — 1 = 0 form, in some order, the four terms of an arithmetic
progression.

Solution: First observe that one of the roots of each equation is negative and the other should
be positive. Let a and b be the roots of 22 — pz — 1 = 0 and ¢ and d be those of the equation
22 —qr —1 = 0. We may assume that a < 0 and b > 0; ¢ < 0 and d > 0. We may
further assume that a < c¢. The possible arithmetic progressions with these constraints are
(Da,c,b,d; (2)a,c,d,b. Let v be the common difference of either of the AP’s. Clearly u # 0.

(1) We have ¢ = a+ u, b = a + 2u, d = a + 3u. Using the relations ab = —1 and cd = —1, we
get u = —2a/3. This gives a(a — 4a/3) = —1 and hence a = —/3. Using a + b = p we get
p = —2/+/3. Similarly we obtain ¢ = 2/+/3.

(2) Using ¢ = a+u,d = a+2u,b = a+ 3u and the relations between the roots and coefficients
of a quadratic equation, we obtain u = 0. Thus this case does not arise.

Hence the real values of p,q for which an AP is possible are p = —2/v/3,¢ = 2/v/3 and
p=2/V3,q=-2/V3.

3. From a rectangular piece of paper a triangular corner is cut off resulting in a pentagon. If
the sides of the pentagon have lengths 10, 17, 18, 24 and 39 in some order find the sides of
the rectangle and the sides of the triangle cut off.

Solution: Let a,b,c,d,e denote the sides of
the pentagon(see the adjoining figure). Then
d?> = (a—c)? + (b—e)?. Since d is one among
{10,17,18,24,39}, and d is a member of a c
Pythagorean triplet corresponding to the hy-
potenuse, we see that d = 10,17 or 39(10% =
82 +62;17% = 152 + 82; 392 = 362 +152). Note d
that d # 10 since 8 is not a difference of two
elements of {17,18,24,39}. Similarly, we can
rule out d = 39 because being the largest, e S

it must be a side of the rectangle. The only possibility is d = 17. In this case we get
a=18,b=39,c = 10,e = 24,7 = 8,s = 15. Thus the rectangle has sides 39,18,39,18 and the
triangle has sides 17,8,15.

4. There are eight points in the plane, no three of them collinear. Find the maximum number
of triangles formed out of these points such that no two triangles have more than one vertex
in common.



Solution: First we observe that each vertex can be present in at most 3 triangles, for, having
chosen a vertex, there remains 7 points from which 3 pairs are possible. If there are 9 or more
triangles, these account for at least 27 vertices, repetitions allowed. In that case, one vertex
has to occur in at least 4 triangles, a contradiction. Thus, there can be at most 8 triangles.
The following example shows that 8 are possible; name the points as 1,2,3,4,5,6,7,8; the
triangles are with vertices 123,145,167,248,368,578,256,347.

. Suppose ABCD is a rectangle and P,Q, R, S are points on the sides AB, BC, CD,DA re-
spectively. Show that
PQ+ QR+ RS+ SP > 2 AC.

Solution:
We have

(PQ+ QR+ RS + SP)?
= PQ?>+QR?>+ RS%>+ SP2+2PQ-QR
+2PQ - RS +2PQ - SP
A S D +2QR- RS +2QR-SP +2RS - SP
> PB?+ BQ?*+ QC?+ CR? + RS?
+DS? + SA? + AP? +2BQ - QC
+2PB-PA+2CR-RD +28D - SA
(since PQ - QR > BQ - QC, etc.)
= (PA+ PB)?+(BQ+QC)?
+(CR+ RD)? + (DS + SA)?
= AB?+ BC?+CD?+ DA?
= AC? + BD? =2AC?.

Hence PQ + QR+ RS + SP > /2 AC.

. If a,b are natural numbers such that

+1 b+1
a n +

b a
is an integer prove that ged(a,b) < +va +b.

Solution: Let d denote the ged of @ and b. We observe that d? divides ab. Since (a? + b* +
a+b)/ab is an integer, d* divides a® + b%> + a + b. However d? divides both a? and b%. Hence
d? divides a + b. This forces d®> < a + b, i.e., d < +v/a + b.

. For positive real numbers a, b, c,d satisfying a + b+ ¢+ d < 1 prove the following inequality:

g b e, d 1
b a d ¢~ 64abcd’

Solution: The given inequality reduces to
a’cd + b*cd + c2ab + d?ab < 1/64.

We observe that a%cd + b%cd + c?ab + d?ab = (ac + bd)(ad + bc). Hence using the inequality
zy < (z +y)?/4, we get

(ac + bd + ad + bc)?

a’cd + b2ed + 2ab + d?ab < )



But ac+ bd + ad + bc = (a + b)(c + d). One more application of the same inequality gives
ac+bd+ad+bc < (a+ b+ c+d)?/4. Combining both these inequalities and using the data
that a + b+ c+d < 1, we get the required inequality.
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. In triangle ABC, M is the midpoint of BC. A line passing through M divides the perimeter

of triangle ABC' into two equal parts. Show that this line is parallel to the internal bisector
of ZA.

Solution. Extend CA to D such that AB =
AD. Draw AQ bisecting ZBAC and meeting
BC in Q). Since ADB is an isosceles triangle,
we have ZADB = ZABD = A/2 = ZBAQ.
Therefore AQ is parallel to DB. Also by “
data, MC + CP = PA + AB + BM. As

BM = MC, and AB = AD, this becomes

CP =PA+AD = PD. So P is the mid point

of DC. Hence PM is also parallel to DB and

the result follows.

Alternatively, it can be proved that

CM/MQ = (b+c)/(b—c) = CP/PA.

. Find all positive integer solutions z and n of the equation

z> + 615 = 2"
Solution. Note that z2 = 1 (mod 3). Since 3 divides 615 we have 2" = 1 (mod 3). Hence n
is even, say, n = 2k.The given equation can then be rewritten as (2¥ — z)(2*¥ + z) = 615 =
1-615 = 3-205 = 5-123 = 15-41. Hence (2% -z, 2% +1) = (1,615), (3,205), (5,123), (15,41). We
get the possibilities : (2¥,z) = (308, 307), (104, 101), (64, 59), (28,13). Only the pair (64, 59)
gives a solution, namely (k, z) = (6,59), and hence (n,z) = (12,59).

. (a) If p and g are two distinct positive integers, show that at least one of the equations
22 +pr+qg=0 and 22 +qz+p =0 (%)

has real roots.
(b) If p = 4n? + 1 for some positive integer n, then find the number of ¢’s (# p) for which
both the equations in (*) have real roots.

Solution. (a) Without loss of generality assume that p > q.

If g =1, then p > 2; s0 p> —4q =p*> — 4> 0.

If ¢ = 2, then p > 3; so p? —4q = p*> — 8 > 0.

If ¢ = 3, then p > 4; so p?/4p > 4q and p? — 4¢ > 0.

Thus in all cases p? — 4q > 0. Hence the first equation has real roots.

(b) If both equations have real roots, then p? > 4q and ¢* > 4p, i.e., 2,/p < ¢ < p?/4.
If p = 4n? + 1, then we have

2vV4n? +1<¢<

(16n* + 8n% + 1),

B~ =

which is the same as
In+1 §q§4n4+2n2.

The number of such integral ¢ is 4n* + 2n? — 4n If we exclude the case ¢ = p = 4n® 4 1, which
does fall in the above range, we get the desired number as 4n* + 2n% — 4n — 1.



4. Let X be a finite set containing n elements. Find the number of all ordered pairs (4, B) of
subsets of X such that neither A is contained in B nor B is contained in A.

Solution. For any given subset A of X containing r elements, every subset B of X that has
the property that neither A is contained in B nor B is contained in A can be obtained by
taking the union of a nonempty subset of X \ A and a proper subset of A. The number of
such B is therefore (2" " —1)(2" — 1),1 < r < n — 1. Hence the number of pairs (4, B) is

given by

Xn: (Z) " -DE' -1 = Xn: (:f) 2" —1)(2" - 1)

r=1 r=0
<:> (271, _ 21‘ _ 27),—7‘ + 1)

I
NE

r=0
= 2"1+1)" (142" - 2+D)"+(1+1)"
= 4" 3" 3"+ 2" =4" - 23" + 2",

OR

Let S = {(A,B)|A C B} and T = {(A,B)|B C A}. we have |S| = >, (7)2" " (take an
r-element subset A of X and add a subset (possibly empty) of X \ A to get B).

S| = (1+2)" = 37 Similarly [T| = 3" Also |[SNT| = |{(4,4) : A C X}| = 2". Hence
|ISUT| =I|S|+|T| - |SNT|=3"+3" — 2" = 2.3" — 2". The number of all possible ordered
pairs (4, B) is 2".2" = 4". Hence the required number is 4" — 2.3" + 2", as we want the
cardinality of the complement of (SUT).

5. Two circles whose radii are in the ratio 4 : 1 touch each other externally at M and lie inside a
rectangle ABC D such that the larger circle touches sides AD, BC and C'D, and the smaller
circle touches the sides AB and AD. The common tangent at M to the circles meet sides
AD and AB at P and Q. Find the ratios AP/PD and AQ/QB.

Solution.

Let S and R be the centres of the smaller and
larger circles respectively and K and L be the ° °
points of contact of these circles with AD. Join
SK and RLand draw T'N through S parallel to
AD to meet AB and RL in T and N respectively.
Let the radii of the circles be 4r and r. We have
AB = diameter of the bigger circle = 8r; SR = R Q
SM+ MR =r+4r =5r;LN = SK =TA =
;RN = RL — NL = 4r —r = 3r. So SN =
VSR? — RN? = 4r = KL. But PK = PM = N
PL; so each is equal to 2r. Hence AP = AK + T
KP =r+2r = 3r,and PD = PL+ LD =

2r + 4r = 6r. So AP/PD = 3r/6r = 1/2. D L P K A
From right triangle AQP, in which AQ = AT + QT = r+ QT, PQ = PM + MQ =
2r + MQ = 2r + QT, AP = AK + KP = r 4 2r = 3r, we have PQ? = AP? + AQ?; i.e.,
(2r + QT)? = (3r)2 + (r + QT)?, giving QT = 3r. Therefore AQ = AT +TQ = r + 3r = 4r;
so @B = 4r as well. Hence AQ/QB = 1.

6. (a) Find all positive integers n for which 11 divides n? + 3n + 5.
(b) Show that for no positive integer n, 121 divides n?> + 3n + 5.



Solution. (a) Considering n = 11r + k, for k = 0,1,2,... ,10, we see that only for £ = 4, 11
divides n? + 3n + 5. Hence the set of integers n for which the given condition is satisfied is
{11r +4 : e NU{0}}.

(b) If n = 117 + 4, then n? + 3n + 5 = 12172 + 1217 + 33, which is clearly not divisible by
121. Hence the result.
. Ifa? = Tb+51 and > = 7a + 51 where a and b are real numbers, find the product ab.

Solution. From the given equations by subtraction we have a? — > = 7(b — a). That is,
(@ —b)(a+b+7)=0. So either a =b or a+ b= —7. If a = b, then a? — 7Ta — 51 = 0, which
gives a = (7 £+/253)/2 and hence ab = a? = Ta + 51 = (151 £+ 7/253) /2.

Ifa # b, then b= —7—aqa, and so > = —49 —Ta+51 =2 —Ta; ab=a(-7—a) = —a®? —Ta =
—2+4+T7a —Ta = —2.

OR
If a = b, proceed as before. So assume a # b. We have a? = 7(a + b) — Ta + 51, i.e.,

a? +Ta — [7(a +b) + 51] = 0.

Similarly, b + 7b — [7(a + b) + 51] = 0.
Therefore a and b are the roots of the quadratic equation z? + 7z — [7(a + b) + 51] = 0.
Hence a + b= —7 and so ab = —[7(a + b) + 51] = —[—-49 + 51] = —2.
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. A trapezoid has perpendicular diagonals and altitude 10. Find the area of the trapezoid if
one diagonal has length 13.

Solution: Because triangles ABP and CDP are sim-

ilar,
T y
= =. 1
B3—-—z =z (1) D C
Because triangles ABP and BDX are similar,
L _Y
DX 10 P

But DX = 1/69. Therefore

r _Y
765 10° (2)
By (1) z = (13 — z)y/z and by (2) y/z = 10//69. ,-A\ B

Therefore, required area is

1 1 13 (13— z)y\ 13 13y 845
“BD-AC = =1 == B2y 22 Y 8
2 C=313y+2) = (y+ - ) 5 0

. Find the greatest common divisor of all even 6-digit numbers obtained by using each of the
digits 1,2,3,4,5,6 exactly once.

Solution: Let the greatest common divisor of all the numbers under consideration be d.
Since all the numbers are even, 2 divides d. Since the sum of digits of any such number is



1+2+4+3+4+44+54+6 = 21, each such number is divisible by 3 but not by 9. Thus 3 divides
d and 9 does not divide d. Considering the numbers 123546 and 123564 having difference 18,
we conclude that d divides 18. Since 2 and 3 divide d while 9 does not , we conclude that
d = 6.

. If a and b are two positive real numbers such that a + b = 1, prove that

a? b?
+

<
~—a+1 b+1

<

Lol =
N | —

Solution: Since a +b=1,
a® n b? _1—ab
a+1 b+1 2+ab
Because ab > 0, 1 —ab < 1 and 2 + ab > 2. Therefore

Again, because (a + b)/2 > v/ab, 1/4 > ab. Therefore 1 — ab > 3/4 and 2 + ab < 9/4.

Therefore
1—ab

2+ ab

>

Wl

. In a quadrilateral ABC D, two points P and @ are chosen on diagonal BD such that BP =
PQ = @QD. Suppose AP meets BC in F and AQ meets CD in F. If BE = EC and
CF = FD, show that ABCD is a parallelogram.

Solution:

In triangle BCQ, we have BE = EC and BP = 0 3 <
PQ. Hence PFE is parallel to QC. Thus AF and
QC are parallel. Similarly AQ and PC are parallel. E
Therefore APCQ is a parallelogram. Hence AC and

PQ bisect each other. Therefore AC and BD Dbisect A B
each other. Thus ABCD is a parallelogram.

. If a,b,z and y are real numbers such that
2 —ar—b =0, v —by—a =0 and zy = 1,
prove that (a — 1)2 = b%.
Solution: Multiply the first equation by y and use the second equation to get
2199 — g 4 by = 0.

Therefore
$1996+50 — ($y)50 - 1.

This gives z = 1. Substituting this in the first equation, we obtain b = +(1 — a). Squaring
this, we get * = (1 — a)?.



6. How many increasing 3-term geometric progressions can be obtained from the sequence
1,2,22.23 ..., 277

[e.g., {22,25,28} is a 3-term geometric progression for n > 8.]

Solution: Let us start counting 3-term GP’s with common ratios 2,22,23,....

The 3-term G'P’s with common ratio 2 are
1,2,2%2,2%,2% ... ;2" 72 20l om,

They are (n — 1) in number. The 3-term GP’s with common ratio 2? are
1,2%,2%2,23 25;... ;204 o2 on,

They are (n — 3) in number. Similarly we see that The 3-term GP’s with common ratio 23
are (n —5) in number and so on. Thus the number of 3-term GP’s which can be formed from
the sequence 1,2,22,23 ... 2" is equal to

S=n-1)+n—-3)+(n—-5)+---.

Here the last term is 2 or 1 according as n is odd or even. If n is odd, then

-1 2 _
SZ(n—l)+(n—3)+(n—5)-|----+2:2(1+2-|—3+---+n2 ):" . L

If n is even, then
S=n-1)+n-3)+(n-5)++1=—.
Hence the required number is (n? — 1)/4 or n?/4 according as n is odd or even.

7. Suppose z,y,z are three integers which are in arithmetic progression. If z is of the form
8n +4 where n is an integer and each of y, z is expressible as a sum of squares of two integers,
show that ged(z,y, z) cannot be odd.

Solution : Suppose ged(z,y, z) is odd. Then, since z is even, y must be odd and z must be
even. Let z = z% + z% where z; and zy are integers. Then either z; and 2o are both even or
both odd.

Case 1. Let z; and z9 be both even.

Then z must be of the form 4k where k is an integer. Since z also is divisible by 4, y = (z+z)/2
cannot be odd.

Case 2. Let z; and 29 be both odd.

Then z must be of the form 8%k + 2 where k is an integer. Since z is of the form 8n + 4, this
forces y to be of the form 4] 4+ 3 where [ is an integer. As every square is of the form 4m or
4m + 1, y cannot be expressed as a sum of two squares.
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1. Let P be an interior point of an equilateral triangle ABC such that AP? = BP? 4+ CP2.
Prove that ZBPC = 150°.

Solution :



Draw CQ such that ZPCQ = 60° and CP = C(Q (as shown in the fig.) Then : APCQ is
equilateral and therefore, PQQ = PC. Also, in triangles APC and BQC; AC = BC; PC = QC
and ZACP = 60° — ZPCB = ZBCQ The triangles are congruent. Therefore, AP = BQ.
Substituting these in AP? = BP? + CP?, we obtain BQ? = BP? + PQ?, which implies
/BPQ = 90°. Therefore we obtain

/BPC = /BPQ+ /QPC = 90° + 60° = 150°.

. Does there exist a positive integer N such that the number formed by the last two digits of
thesum 1+2+4+3...+ N is 98 7

Solution: Suppose such an integer N exists. Then we must have 1+2+43+...+N = 100k+98,
where k is a nonnegative integer. This gives N(N+1) = 200k+196; i.e. (2N+1)2 = 800k+785.
But, in the above equation there is a perfect square in the L.H.S. and a number which can
never be a perfect square in the R.H.S. ; a perfect square ending with 5 can have only 2 in
the 10’s place. The number 800k + 785 ends with 5 and has 8 in the 10’s place.(Alternately,
one can solve the quadratic equation in N and look at the condition for existence of integer
roots.) So there cannot exist a positive integer N such that the sum 1+2+3... + N ends
with 98.

. Find all real numbers a which satisfy the equation.

1 1
\/a———i—\/l——:a
a a

Solution : The given equation can be written in the form

1_

1
@ \/a—é+\/1—%

On rationalising the expression and rearranging, we obtain

. 1 .
Taking = {/a — -, we obtain

-1
a4 +a=2x

and this simplifies to 22 + 1 = 2z. We get = = 1. Solving a — % =1, we obtain

1++5
TR

15
2

Suppose a = . We can write the given equation in the form

-1
a4 =ag-1

a

2

since a satisfies the relation a® —a — 1 = 0. But then lhs is positive and rhs is negative. This

1-v/5
2

incompatibility shows that a =
takes is

is not possible. We conclude that the only value that a

1++5

7




4. Let A denote the set of all numbers between 1 and 700 which are divisible by 3 and let B
denote the set of all numbers between 1 and 300 which are divisible by 7. Find the number
of all ordered pairs (a,b) such that a € A,b € B,a # b and a + b is even.

Solution : First, note that A has 233 elements of which 116 are even and 117 are odd, B
has 42 elements of which 21 are even and 21 are odd and A N B has 14 elements.
Therefore, required number is:

n = #{(a,b) : a€ A,be B,a+b iseven } — #{(a,b) : a€ A,b€ B,a=0b}
= ${(a,b) : a € A,b€ B,ais even, biseven } + #{(a,b) : a € A,b € B,a odd, bodd }
—#{(a,b) : a € A,b€ B,a=b}
= 116 x 21 4+ 117 x 21 — 14 = 4879.

5. Let ABCD be a rectangle, if P and @) are points respectively on AD and DC such that the
areas of the triangles BAP, PD(@Q and QQCB are all equal, find the ratios % and 8_8'

Solution: Let
D1 LQ — |- PA = = .
PA —k,—QC—l, A=2z,QC =y

Using the given data, we obtain :

Sy +9)(e) = 5 (ka)(ty) = Sy(ka + ).

This simplifies to I +1 = kl = k 4+ 1. We obtain I = k and hence [ + 1 = [?. Solving for I, we

get
1++/5

l=k= 5

(The value 1_2\/‘?’, being negative, is rejected.)
6. If z1, x5 ...z, are n distinct positive integers (n > 1), show that there does not exist a positive
integer y satisfying z7* + 232 + ... + 2% = ¥
Solution: Suppose that there exists a positive integer y
such that

x5+ ain =y

Then, z; <y for j =1,2... ,n. Let £ = max{z;,j = 1,2,...n}. Then z < y and using this
bound we obtain, £* < y*. This leads to

x;.cj <y$,j:1,2,... , M.



Summing over j, we get,
ity otz < ny”

But, because each x; > 1 and z; are distinct, z > n and hence y > n. Thus we have
o+ 2 42t <y oyt =yt <Y,
a contradiction. This proves that there does not exist a positive integer y such that

it xe + o apr =y

. At each of the eight corners of a cube write +1 or -1 arbitrarily. Then, on each of the six
faces of the cube write the product of the numbers written at the four corners of that face.
Add all the fourteen numbers so written down. Is it possible to arrange the numbers +1 and
-1 at the corners initially so that this final sum is zero 7

Solution :

Let z1, z9, 3, 24, T5, T, T7 and zg be the numbers written at the corners. Then, the final sum
is given by

I + Z9 + I3 + T4 + I + Ig + i + g + L1TXL3T4 + I5TeL7Ig + T1T4AT5TY
+T9T3TeT7 + T1T2T5T¢ + TIT4TTTS . . . (%)

Because there are fourteen terms in the above sum and each of the terms is +1 or -1, the sum
will be zero only if some seven terms are +1 each and the remaining seven terms are -1 each.

But, the product of the fourteen terms is

(.7,‘1562.'1,'3374.775.’1?6337.’1)8)(5(71.’122373.’134)(.’135.’1,‘6.’137.'1,'3)(.’121.774.’135338)(.’132.'1,'3.’126377)(.’131332.’1)5566)(.’L‘3$4.’IZ7.’I¢8)
= (z179737475267728) " = (£1)* = +1.

Therefore, it is impossible to have an odd number of -1 s in the sum (x).

We conclude that the desired arrangement is not possible.

KRMO-1999

. Let AB be a chord of a circle and C'D be the diameter of the circle perpendicular to AB. Let
M be any point on the line passing through C and D, distinct from ¢ and D. Let AM meet
the circle again at K. If KD meets BC at N, prove that ZNMC = 90°.

Solution: Suppose M is on the minor arc side of AB. (see Fig.1) Since arc AD = arc BD,
we see that ZAKD = /BCD. (K,C lie on the minor arc). This shows that M, N, K, C are
con-cyclic. Hence ZCKD + ZCMN = 180°. Since CD is a diameter, ZCKD = 90°. This
givesZCM N = 90°.

10



Suppose M is on the major arc side of AB. Then K lies on the major arc AB. Again we get
LAKD = /BCD. But LZAKD + ZAKN = 180°. This gives ZNCM + ZM KN = 180°. We
conclude that M, K, N,C are con-cyclic. Since ZCKD = 90°, we also have ZCKN = 90°.
Hence ZCMN = ZCKN = 90°.

. Find all prime numbers p such that there are integers z,y satisfying

p+1=2z? and p? +1 = 22

Solution: We may assume that both z,y to be positive. We observe that p is odd. Taking
the difference, we get
P’ —p=2(y" - z°).

Write this in the form p(p — 1) = 2(y — z)(y + z). Since p is odd p cannot divide 2. If p
divides y — z, then p < y —z. But then p —1 > 2y + 2z is not possible. Hence p should divide
y+ z. This gives p < y+x and p— 1 > 2(y — ). Eliminating y, we obtain p + 1 < 4. Since
p+ 1 =222 we get 222 < 4 and hence z < 2. Taking z = 1, we get p = 1, which is not a
prime. If z = 2, we get p = 7. Thus p = 7 is the only prime satisfying the given condition.

. Find all cubic polynomials p(z) such that (z — 1)? is a factor of p(z) + 2 and (z + 1)? is a
factor of p(z) — 2.

Solution: If (z — a) divides a polynomial g(x) then g(a) = 0. Let p(z) = az®+ bz? + cz + d.
Since (z — 1) divides p(z) + 2, we get

a+b+c+d+2=0.
Henced=—-a—b—c—2and

px)+2 = a@ -1 +b@?-1)+cz-1)
= (z—D{a(z®+z+1)+bz+1)+c}

Since (z — 1)? divides p(z) + 2, we conclude that (z — 1) divides a(z? +z + 1)+ b(z + 1) +c.
This implies that 3a + 2b + ¢ = 0. Similarly, using the information that (z + 1) divides
p(z) — 2, we get two more relations: —a+b—c+d—2=0; 3a — 2b+ ¢ = 0. Solving these
for a,b,c,d, we obtain b = d = 0, and a = 1,¢ = —3. Thus there is only one polynomial
satisfying the given condition: p(z) = z3 — 3.

. Let M be a product of five distinct prime numbers. Find the number of pairs (m,n) of
positive integers, such that m divides n and n divides M.

Solution: Let M = p1popspsps be the given number. Let us consider p;. In how many ways
can p; be a factor (or non-factor) of m?

. Consider the two squares lying inside a triangle ABC with ZA = 90° with their vertices on
the sides of ABC': one square having its sides parallel to AB and AC, the other, having two
sides parallel to the hypotenuse. Determine which of these two squares has greater area.

Solution: Let the side of the square with sides parallel to AB be z and the side of the other
square be y. Let AK LM be the square in the first case and PQRS be the square in the other
case (K,L,M on AB,BC,CA; p,qon BC, Ron CA and S on AB).
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Using the similarity of CM L and CAB we get

SHRS
SH

|

8

and hence z = be/(b + ¢). Similarly using the similarity of ARS and ACB, we get

TAB T ¢
But BPS is similar to BAC and hence BS/a = y/b giving BS = ay/b. This shows that
y = abc/(a® + bc). Let us now compute x — y:

y AS c— BS
a

be  abc _ be(a—b)(a—c)
b+c a2+bc (b+c)(a?+bec)

T—y=

Since a > b and a > ¢, we conclude that £ > y. Thus the square with sides parallel to AB is
larger than the other square.

. Given three positive real numbers a, b, ¢ with abc = 1 such that
1 1 1
—+-+-<a+b+tc

a b ¢

show that exactly one of the three numbers is greater than 1.

Solution: We write the given inequality, using abc = 1, in the form
bc+ca+ab<a+b+ec.

This is equivalent to
(1-a)(1-0b)(1—-¢)<O.

There are two possibilities: two of 1 — a,1 — b,1 — ¢ are positive and the remaining one is
negative, or all the three are negative. The second case can be ruled out, for, in that case
we see that a < 1,b < 1,¢ < 1 forcing abc < 1. Hence the first case prevails and we conclude
that exactly one of the a, b, ¢ is greater than 1.

. Find all positive integers a, b satisfying

10a? — 106% = 99 — 21ab.

Solution: We can write the given equation in the form
(2a + 5b)(5a — 2b) = 99.

But 99 = 1-99 = 3-33 = 9-11. Thus there are 6 cases to be considered:(2a+5b) = 1, (5a—2b) =
99; (2a +5b) = 3, (5a — 2b) = 33; (2a +5b) = 9, (5a — 2b) = 11; (2a + 5b) = 99, (5a — 2b) = 1;
(2a + 5b) = 33, (ba — 2b) = 3; (2a + 5b) = 11, (5a — 2b) = 9. Solving these we get integer
solution only for (2a + 5b) = 99, (5a — 2b) = 1, giving a = 7,b = 17.
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KRMO-2000

1. Let ABC be a non-isosceles triangle in which the altitude AD through A falls inside the
triangle. Let M be the mid-point of BC. If /ZBAD = ZCAM, prove that ZA = 90°.

Solution 1: Let AD extended meet the circumcircle I' in K and AM extended meet it in L.
(See Fig.)

Since ZBAK = ZCAL, we obtain ZCBL = LCAL = /BAK = /ZBLK. It follows that
BC is parallel to KL. But AD is perpendicular to BC. We thus conclude that AK is
perpendicular to K L. This implies that AL is a diameter of I'. Hence the circumcentre O of
I" lies on AL. On the other hand O must also lie on the perpendicular bisector of BC, i.e.,
on the perpendicular through M. This forces that M = O. Thus BC is a diameter of I' and
/ZBAC =90°.

Solution 2: We observe that ZABC = /AKC, /CKL = /CAL = /BAK. Since /BAK +
ZABC = 90°, it follows that ZAKL = ZAKC+ ZCKL = 90°. Hence AL is a diameter. We
proceed as in solution 1.

Solution 3: Draw a line through B perpendicular to AB to meet AM produced in P. Then
we get /MBP = 90° — /ZABM = /BAD = /MAC. We conclude that P,B,A,C are
concyclic. Since ZABP = 90°, AP is a diameter. Thus M lies on a diameter. Rest as in
solution 1.

2. Given that a,b,c,d are natural numbers such that a® = b*,¢3 = d% and @ — ¢ = 17, find
a,b,cd.

Solution: Since a® = b*, we have a = z* and b = z° for some integer z. [For if p* is the
largest power of a prime p which divides m = a® = b*, then k|5 and k|4. This implies that
k|20 and hence k = 20n for some n. This in turn shows that p*” is the largest power of p
which divides a and p°" is the largest power of p which divides b.] Similarly ¢® = d? gives
¢ = y? and d = y3 for some integer y. Using a — ¢ = 17, we obtain z* — y? = 17 which
shows that 22 +y = 17 and z? — y = 1. From these we get 222 = 18 or z = 3. (We can
rule out z = —3.) Tt follows that y = 8. Thus a = 3* = 81, b = 3° = 243, ¢ = 82 = 64 and
d=8%=512.

3. Let a, b, c be positive real numbers such that a + b + ¢ = 1. Prove that

a® . b3 n I S 1
a4+ b2+ 2+a2 T2
Solution: We observe that
a4+ b a? 462~ 2ab 2’
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since a? + b% > 2ab. Thus we obtain

AR AP PR P
a2+b2 b4+ Z+4a?2 T 2 2 2
_a+tbtc 1
- 2 2

. In a 4 x 4 array of 16 numbers, the sum of the numbers in each row, each column and each
of the diagonals is 1. Find the sum of the numbers in the 4 corners of the array.

Solution: Let us denote by = the sum of four numbers in the corners of the array; y the sum
of 4 numbers in the centre of the array; and z the sum of remaining 8 numbers. By adding the
first row, the last row, the first column and the last column we obtain 2z 4+ z = 4. Similarly,
adding second row, third row, second column and third column we obtain 2y + z = 4. Finally
adding two diagonals, we get z + y = 2. Solving these we see that z =1, y = 1 and z = 2.
Thus the sum of the numbers in the 4 corners of the array is 1.

. In triangle ABC, lines KL and M N are drawn parallel to BC meeting AB in K, M and AC
in L, N. Suppose the altitude through A in triangle ABC meets KL, MN, BC in P,Q,R
respectively. If

[AKL] = [MBCN] = %[ABC],
find the ratio AP/QR. (Here [X] denotes the area of the figure X.)

Solution: We have using similarity(see Fig.),

AP AK KL AK
AR AB’ BC AB’

These give
[AKL] AP-KL [AK\’
[ABC]  AR-BC \ AB
AK\? 1 AK 1 AK 1
We obtain (E) =3 giving (E) = % similarly we obtain (m) = E Thus we
get

AP 1 AP 1 AP 1
AK "3 AQ VA QR ™~ V-2

. Find all natural numbers n with the property that if n = (ajas---ag)1p is the decimal
representation of n then there are digits a, b, ¢ such that

=V3+V2.

and

n
(alag---akabc)lo—i-a:1+2+---+n.
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Solution: Let us write (abc)1p = x. The given relation reads as

1
1000n+x+g:1+2+---+n:@.

This reduces to
2000n + 2z = n?.
It follows that n divides 2z. If 2z # 0, then n < 2z. Dividing by n, we get

2
n = 2000 + =<
n

If 22 > 0, then we see that n > 2000. But we know that z < 1000. Thus if 2z # 0 then we
get n < 2z < 2000. Combining these we conclude that 2z = 0. It follows that n? = 2000n or
n = 2000. It is easy to verify that n = 2000 indeed is a solution to the problem.

. Solve the system for real numbers z, y, z:

22+ 2z = 13,
2+ 222 = 10,
22420y = 13.

Solution: Adding these 3 relations we obtain
(z+y+2)* = 36,
giving r +y+ 2z =6 or x +y + z = —6. Subtracting the third relation from the first, we get
(z—2)(x+2z—2y) =0.

Thus there are two possibilities: £ = z and z 4+ z — 2y = 0. Suppose £ = z. Then there are
only two equations:
z? + 2xy = 13, y2 + 222 = 10.

These two imply that (z —y)? = —3, which is impossible for real x,y. Thus we are forced to

the relation z + z — 2y = 0.

Ifx+y+2z=06, then we get 2y = x4+ 2z = 6 — y and hence y = 2. Using the second equation
we get 22z = 10 —y? = 6 and = + 2z = 2y = 4. Solving, we obtain z =3, z = lor z = 1,
z=3. Similarly z +y+ 2= -6 givesy=—-2; 2 =—-3,2=—1or z = —1, 2 = —3. Thus we
obtain four solutions

(z,y,2) = (3,2,1),(1,2,3),(-3,-2,-1),(—-1,-2,-3).
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