
Binary cubic forms and rational cube sum problem

Somnath Jha1, Dipramit Majumdar2*†, B. Sury3†

1Department of of Mathematics & Statistics, Indian Institute of Technology
Kanpur, Kalyanpur, Kanpur, 208016, Uttar Pradesh, India.

2*Department of Mathematics, Indian Institute of Technology Madras, Chennai,
600036, Tamilnadu, India.

3Stat-Math Unit, Indian Statistical Institute, 8th Mile Mysore Road, Bangalore,
560059, Karnataka, India.

*Corresponding author(s). E-mail(s): dipramit@gmail.com;
Contributing authors: jhasom@gmail.com; surybang@gmail.com;

†These authors contributed equally to this work.

Abstract

The classical Diophantine problem of determining which integers can be written as a sum of
two rational cubes has a long history; from the earlier works of Sylvester, Selmer, Satgé, Lieman
etc. and up to the recent work of Alpöge-Bhargava-Shnidman. In this note, we use binary
cubic forms to study the rational cube sum problem. We prove (unconditionally) that for any
positive integer d, infinitely many primes in each of the residue classes 1 (mod 9d) as well
as −1 (mod 9d), are sums of two rational cubes. Among other results, we prove that every
non-zero residue class a (mod q), for any prime q, contains infinitely many primes which are
sums of two rational cubes. Further, for an arbitrary integer N , we show there are infinitely
many primes p in each of the residue classes 8 (mod 9) and 1 (mod 9), such that Np is a
sum of two rational cubes.

Keywords: Binary cubic forms, primes represented by binary cubic forms, rational cube sum
problem, ±1 (mod 9) cases of Sylvester’s conjecture
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1 Introduction

Let us call an integer n a rational cube sum if there exist two rational numbers a and b such that
n = a3 + b3. The study of which integers n are rational cube sums has a rich history and can be
traced back to the classical works of Sylvester [1], Selmer [2], Satgé [3], Lieman [4] and up to a very
recent work of Alpöge-Bhargava-Shnidman [5]. Without any loss of generality, we may assume that
n is cube free and greater than 2. Then the elliptic curve Y 3 +X3 = nZ3, expressed in Weierstrass
form as En : Y 2 = X3 − 432n2, has En(Q)tor = 0 and it is easy to see that n is a rational cube
sum ⇔ rankZ En(Q) > 0. The important work of [5] shows that, when ordered by their absolute
value, a positive proportion of integers are rational cube sums and a positive proportion are not.
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In a special case of prime numbers, there is a conjecture, typically attributed to Sylvester (see
[6]), on the expressibility of primes as rational cube sums. This predicts that primes p ≡ 2, 5
(mod 9) are not rational cube sums, whereas primes p ≡ 4, 7, 8 (mod 9) are rational cube sums. In
contrast, primes p ≡ 1 (mod 9) may or may not be rational cube sums. The proof of the fact that
primes p ≡ 2, 5 (mod 9) are not cube sums goes back to the works of Pépin, Lucas and Sylvester
[1]. Dasgupta-Voight [6], showed that for primes p ≡ 4, 7 (mod 9), both p and p2 are rational cube
sums provided 3 is not a cube modulo p.

The questions on the expressibility of primes p ≡ 8 (mod 9) are reported to be ‘decidedly more
difficult’ (see [6], [7]). It seems the only general known result so far is due to [7], which shows
for a prime p ≡ 8 (mod 9), if x9 − 24x6 + 3x3 + 1 − 9( 3

√
3 − 1)x2(x3 + 1)2 = 0 has no solutions

in Fp, then at least one of p and p2 is a rational cube sum. The works of [6] and [7], although
different, use the theory of (mock) Heegner points. To determine which primes p ≡ 1 (mod 9) are
rational cube sums seems to be a rather subtle question and was investigated in [8]. The Birch and
Swinnerton-Dyer conjecture predicts that the special value of the complex L-function of Ep at 1
i.e. L(Ep/Q, 1) = ∗Cp, where ∗ 6= 0 and Cp = 0 if and only if p is a rational cube sum. In [8], three
efficient methods are given to numerically test whether Cp = 0 for a prime p ≡ 1 (mod 9).

In fact, cube sum problem in congruence classes (modulo a prime) has also been studied using
analytic methods. In an interesting work, Lieman using the analytic properties of L-function of
CM elliptic curves together with Coates-Wiles theorem, showed the following:
Theorem 1.1. [4, Theorem 0.1] Fix a prime q > 3, and a congruence class a (mod q). There
exist infinitely many cube-free n congruent to a (mod q) such that n can not be expressed as a sum
of two rational cubes.

On a different note, a celebrated work of Heath-Brown [9], using Sieve theoretic methods,
showed that the integer values of the binary cubic form X3+2Y 3 represents infinitely many primes.
This was generalised by Heath-Brown and Moroz, to a general irreducible integral binary cubic
form in [10], and then in [11], in a way which is more amenable to control congruence classes
represented by the primes.

In this note, we use some special integral binary cubic forms (like (X + Y )3− 9XY 2, XY (X −
Y ), N(X3+NY 3)) whose integer values are rational cube sums. Then we exploit various polynomial
identities satisfied by these special polynomials and use infinitude of primes represented by suitable
binary cubic forms in congruence classes [11] to obtain various infinite families of rational cube
sum integers. Evidently, this approach is different from the recent works based on Selmer groups
of elliptic curves and Heegner points.

In fact, in a previous article [12] by two of us, using the explicit parametrization of integral
points on the curve X2 + 27Y 2 = 4Z3 together with the result in [10], it was shown that there are
infinitely many primes p, congruent to either 1 (mod 9) or 8 (mod 9), such that p is a sum of two
rational cubes. Subsequently, Prof. Moroz and also Prof. Heath-Brown wrote to us pointing out
that using [11], we can significantly improve our previous result. We prove:
Theorem A (Theorem 2.4 & Corollary 2.11). For any positive integer d and any integer a ≡ ±1
(mod 9) satisfying (a, d) = 1, there are infinitely many primes p ≡ a (mod 9d) which are rational
cube sums.

In particular, infinitely many primes in each of the residue classes 1 (mod 9) and 8 (mod 9)
are rational cube sums. Each of these primes is a value of the cubic form (X + Y )3 − 9XY 2 at
certain integer point, which depends on the congruence class.
Remark 1.2. According to [6],[7], [8] and others, the cube sum problem for primes congruent to 8
(mod 9) and 1 (mod 9), is considered to be a difficult and subtle problem. Theorem 2.4 is the first
unconditional result showing existence of infinitely many primes in each of these classes which are
rational cube sums.
Remark 1.3. In [8], the authors gave a list of 22 primes p ≡ 1 (mod 9), up to 2000, for which
Cp = 0 i.e. (assuming BSD) p is a cube sum. Our computation yields this interesting observation
that each of these primes is expressible as f(x, y) for some (x, y) ∈ Q2. For example, 883 =
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f( 14
17 ,

195
17 ). Similarly, we have verified that all primes p ≡ 8 (mod 9), up to 500, can be expressed

as f(x, y) for some (x, y) ∈ Q2.
In Remark 2.5, we discuss density of the primes appearing in Theorem 2.4.
A variant of Corollary 2.11 is Corollary 2.10, where for any d ∈ N and for any integer a coprime

to d, we show that there are infinitely many primes p ≡ a3 (mod d) such that each p is a rational
cube sum. For example, Corollary 2.10 applies to 27 (mod d) whenever 3 - d but it is not covered
by Corollary 2.11.

In Prop. 3.16, we exhibit a certain family of primes p which are congruent to 1 (mod 9), and
are values of f , such that we have rankZ Ep(Q) = 2.

As a by-product of Theorem 2.4, we can show every non-zero equivalence class modulo a
prime q contains infinitely many primes which are rational cube sums. This result establishes the
complimentary case to the result of [4] stated in Theorem 1.1.
Theorem B (Theorem 2.9). Let q be a prime. Each residue class a (mod q), for 0 < a < q,
contains infinitely many primes which are rational cube sums. These primes are obtained as values
of the cubic form (X + Y )3 − 9XY 2 at certain integer points.

Regarding the cube sum problem for a composite integer n, if n has more than one prime
divisor, then results regarding expressibility of n as a rational cube sum are far more scarce. After
the classical work of Sylvester, Satgé [3], [13] and others have typically considered integers of the
form piqj where i, j ≤ 2 and p, q are distinct primes with p ∈ {2, 3, 5} and q ≡ 2, 5 (mod 9). Using
3-descent on the Selmer group, some of these results were extended recently in [14] and [15].

Results regarding integers having 3 or more prime factors seem even scarcer and we are only
aware of results in [16] which showed that for any odd integer k ≥ 1, there exist infinitely many
cube-free odd integers n with exactly k distinct prime factors such that 2n is a cube sum; similarly,
there exist infinitely many cube-free odd integers n with exactly k distinct prime factors such that
2n is not a cube sum.

In this context, we have a very general result for an arbitrary integer N :
Theorem C (Theorem 3.6). For any integer N , there are infinitely many primes p, in each of the
residue classes 8 (mod 9) and 1 (mod 9), so that Np is a rational cube sum. Each such prime p
is a value of the cubic form X3 +NY 3 at a certain integer point.

Further, for N = ` and N = `2 i.e. integers of the form `p and `2p, where `, p are primes, we
strengthen Theorem 3.6 in Corollary 3.7, to include more congruence classes, in addition to ±1
(mod 9). In particular, Corollary 3.7 applies to integers of the form 2p and 3p for a prime p. A
variant of Corollary 3.7 appears in Proposition 3.21 where, using prime values of a different binary
cubic form, we produce other infinite families of rational cube sums of the form `p and `2p for
certain primes ` and p.

A couple of reformulations of the rational cube sum problem, are given in Lemma 3.1 and
Proposition 3.18. Lemma 3.1 is used in Theorem 3.6 and throughout §3.

Indeed, using Lemma 3.1, we generate many infinite families of composite integers that are
rational cube sums, in Corollaries 3.9 -3.12. Moreover, we can show that (Prop. 3.4) given any
integer k, there are infinitely many integers n such that both n and n+ k are rational cube sums.

Given any integer n, a natural question is whether n = x3+y3 is solvable over certain quadratic
fields. In Prop. 4.2, we show that any n ∈ N is a sum of two cubes over the infinite family of
imaginary quadratic fields {Q(

√
−3(4nt3 − 27)) : t ∈ N, t ≥ 3}. Using a result of [17], we discuss a

variant of this result in Prop 4.1. We also apply Proposition 4.2 to generate another infinite family
of integers that are rational cube sums.

The article is structured as follows: In section 2, we discuss the rational cube sum problem for
prime numbers. We write down two simple polynomial identities involving the binary cubic forms
(X + Y )3 − 9XY 2, XY (X − Y ) and use [11] to prove Theorems A and B. In section 3, we deduce
that certain infinite families of composite numbers are rational cube sums. In particular, we prove
Theorem C. The identities in Lemma 3.1 and 3.18 are important in §3.
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In section 4, we discuss expressibility of n ∈ N as a sum of two cubes over imaginary quadratic
fields. We remark that, although the method used in this article are quite simple, the results
obtained here can perhaps be viewed as small steps in some classical problems that were open till
date.

2 Cube sum prime numbers; Proofs of Theorem A and
Theorem B

In this section, we discuss the rational cube sums problem for prime numbers in congruence classes
and use [11, Theorem 1.1] to give the proofs of Theorems A and B. We begin by considering the
following two binary cubics

f(X,Y ) = (X + Y )3 − 9XY 2 and g(X,Y ) = XY (X − Y ), (1)

and the binary quadratic h(X,Y ) := X2 −XY + Y 2. Then, we have the following identity:
Proposition 2.1. With f(X,Y ), g(X,Y ), h(X,Y ) as above, we have:(

f(X,Y )− 3g(X,Y )
)3

+ 27g(X,Y )3 = f(X,Y )h(X,Y )3. (2)

f(X,Y )3 − f(Y,X)3 = 27g(X,Y )h(X,Y )3. (3)

In particular, f(x, y) and g(x, y) are sums of two rational cubes for all (x, y) ∈ Q2.

Proof. The proof follows from straightforward but tedious computation. Alternatively, one can
easily validate these identities using any computer algebra system.

Remark 2.2. Let (m,n) ∈ Q2. Note that m3 + n3 = (m+ n)NQ(ζ3)/Q(m+ nζ3) and hence m+ n
is a rational cube sum if NQ(ζ3)/Q(m + nζ3) ∈ Q3. From this observation, we can alternatively
deduce f(x, y) is a rational cube sum for all (x, y) ∈ Q2. Indeed, put m = x3 + y3 − 3xy2 and
n = 3xy(x− y), then NQ(ζ3)/Q(m+ nζ3) ∈ Q3.

A similar computation will also prove g(x, y) is a cube sum.
Remark 2.3. A century old paper [18] mentions Ryley’s formula which in which any q ∈ Q× can
be written as sum of cubes of three rationals in infinitely many possible ways.

As a simple application of (2), we re-prove this result. Let q ∈ Q×. For any r ∈ Q×, notice

that q =
(
r2q+ 1

3r

)3− 1
r3 f
(
r3q, 13

)
. Now from (2), f

(
r3q, 13

)
is a sum of two rational cubes. Hence

q is a sum of 3 rational cubes for every choice of r ∈ Q×.
Heath-Brown and Moroz in [11] discuss the problem of representation of primes (with congru-

ence condition) via integral binary cubic forms, extending results in [10] and [9]. Let T (X,Y ) ∈
Z[X,Y ] be an irreducible polynomial representing a binary cubic form. Let a, b, d ∈ Z such that
T(X,Y ) := T (a+dX, b+dY ) is a primitive polynomial and assume no prime divides all the values
{T(x, y) | x, y ∈ Z}. Then by [11, Theorem 1], T(x, y) attains infinitely many prime values. Using
this, we prove:
Theorem 2.4. There are infinitely many primes p in each of the residue classes 1 (mod 9) and
8 (mod 9), such that p is a rational cube sum. Each of these primes p of the form 1 (mod 9)
(respectively 8 (mod 9)) is a value of the cubic form f(X,Y ) = (X+Y )3−9XY 2 at (−1+3x,−1+
3y) (respectively (1 + 3x, 1 + 3y)), for some x, y ∈ Z.

Proof. Set f(X,Y ) = (X + Y )3 − 9XY 2. Then f(X,Y ) is an irreducible polynomial in Z[X,Y ].
Put F±(X,Y ) := f(∓1 + 3X,∓1 + 3Y ). As F±(0, 0) = ±1, we see that F±(X,Y ) are primi-
tive polynomials in Z[X,Y ] and no prime divides all the values {F+(x, y)|x, y ∈ Z} (respectively
{F−(x, y)|x, y ∈ Z}). Thus by [11, Theorem 1], there are infinitely many primes of the form F+(x, y)
(respectively F−(x, y)) for (x, y) ∈ Z2. Clearly, F±(x, y) ≡ ±1 (mod 9) for all x, y ∈ Z. Now the
statements follow from Proposition 2.1.
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Remark 2.5 (Density of primes). It is evident that the density of primes appearing in each of
the cases ±1 (mod 9) in Theorem 2.4, is the same as the density obtained in [11, Theorem 1]. Let
F ∈ {−F±}. For X � 0, [11] considers a square I(X) = (X,X(1 + η)] × (X,X(1 + η)], where
η = (logX)−c < 1 and π(F,X) counts the number of primes of the form F (a, b) for (a, b) ∈ I(X).

By [11, Theorem 2], π(F,X) = σ1(F ) η2X2

3 logX {1 + O((log logX)
−1
6 )} as X → ∞, where σ1(F ) is a

positive constant, depending on F .
Remark 2.6. Numerical computations carried out by us indicate that number of distinct primes

p, such that f(a, b) = p2 for (a, b) ∈ [−X,X]× [−X,X] is of the order
√
X

logX , and moreover roughly
half of these primes are 1 modulo 9 and the other half of these primes are −1 modulo 9. However,
to prove that a binary cubic form attains infinitely many prime square values, one has to obtain
an analogue of the lower bound for the density obtained in the proof of [11, Theorem 2] using Sieve
theory methods. But, we understand following some correspondences with Prof. Heath-Brown that
proving such a result may be a difficult problem in Sieve theory.

From Theorem 2.4, it follows that for q = 2, 3, the non-zero residue classes modulo q contain
infinitely many primes that are rational cube sums. To establish this result for a general prime q,
we begin with the following observation for f(X,Y ) = (X + Y )3 − 9XY 2:
Lemma 2.7. Let q > 3 be a prime and let 0 < a < q be an integer. Then f(X,Y ) = a is a
non-singular plane curve over Fq.

Proof. The curve is singular over Fq if and only if ∃ (α, β) ∈ F2
q such that f(α, β) = a and the

partial derivatives fX(α, β) = fY (α, β) = 0. First of all, if α ∈ Fq with f(α, 0) = a i.e. α3 = a,
then fX(α, 0) = fY (α, 0) = 3α2 6= 0. Thus, we can assume that β 6= 0. Then

fX(α, β) = 3β2((α/β + 1)2 − 3) and fY (α, β) = 3β2((α/β − 2)2 − 3). (4)

Thus it reduces to assume that 3 = γ2 for some γ ∈ Fq. However, using q > 3 and β 6= 0, we get
from (4) that 4γ2 − 9 = 0, which is a contradiction.

Corollary 2.8. Let q > 3 be a prime and 0 < a < q an integer. There exists (α, β) ∈ F2
q such that

f(α, β) = a.

Proof. By Lemma 2.7, the cubic curve f(X,Y ) = aZ3 is non-singular. If f(X,Y )−aZ3 is reducible,
then there is a linear factor and hence there is a rational point (α, β) ∈ F2

q with f(α, β) = a. On
the other hand, if f(X,Y ) = aZ3 is irreducible, then it is a curve of genus 1, and hence it has
q + 1− t rational points (including the point of infinity), where |t| < 2

√
q < q (since q ≥ 5). Thus,

in either case, ∃ (α, β) ∈ F2
q such that f(α, β) = a.

Now we are ready to prove Theorem B which is complimentary to the result of [4] (Theorem
1.1).
Theorem 2.9. Let q > 3 be a prime and 0 < a < q an integer. Each residue class a (mod q)
contains infinitely many primes which are rational cube sums.

Proof. By Corollary 2.8, there exists (α, β) ∈ F2
q so that f(α, β)=(α+β)3−9αβ2 = a. If (k1, k2) ∈

Z2 are such that k1 ≡ α (mod q) and k2 ≡ β (mod q), then f(k1+qx, k2+qy) ≡ a (mod q) for any
(x, y) ∈ Z2. Recall f(X,Y ) ∈ Z[X,Y ] is irreducible and as (a, q) = 1, F(X,Y ) := f(k1+qX, k2+qY )
is a primitive polynomial. Further q - F(0, 0) and if there is a prime p 6= q dividing all the values
{F(m,n) | m,n ∈ Z}, then we can find c, d ∈ Z satisfying k1 + qc ≡ 1 (mod p) and k2 + qd ≡ 0
(mod p). Then F(c, d) ≡ 1 (mod p), which is a contradiction. Hence we can apply [11, Theorem
1] to deduce that there are infinitely many primes of the form F(x, y) for (x, y) ∈ Z2 and by
construction F(x, y) ≡ a (mod q). Each of these primes are rational cube sums by Proposition
2.1.

Following Theorems 2.4 and 2.9, one may ask the following more general question: Let d be a
positive integer. When does the residue class a (mod d) with (a, d) = 1, contain infinitely many
primes (or contains no primes) which are rational cube sums?
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One can imitate the proof above to show that if there exists (k1, k2) ∈ Z2 such that f(k1, k2) ≡ a
(mod d), then there are infinitely many primes p ≡ a (mod d) which are rational cube sums.
Observe that f(k, k) = −k3 and hence, we deduce:
Corollary 2.10. Let d be a positive integer and (a, d) = 1. If a is a cube modulo d, then the
residue class a (mod d) has infinitely many primes which are rational cube sums.

Now we prove Theorem A which extends Theorem 2.4.
Corollary 2.11. Let d be any positive integer. For any a ∈ Z with (a, d) = 1 and a ≡ ±1 (mod 9),
there are infinitely many primes p ≡ a (mod 9d) which are rational cube sums.

Proof. The proof is immediate from the following Lemma 2.12 and Proposition 2.1.

Lemma 2.12 was communicated to us by Professor Heath-Brown.
Lemma 2.12. Let f(x, y) = (x+y)3−9xy2. Suppose a ≡ ±1 (mod 9). Let d be any positive integer
such that (a, 9d) = 1. Then, there exist integers r, s such that f(r, s) ≡ a (mod 9d). Further, there
are infinitely many primes p satisfying p ≡ a (mod 9d) which are values of f .

Proof. For the first statement, we prove it for prime power moduli and apply the Chinese remainder
theorem. First, if p 6= 3 is a prime dividing d, then f(r, s) ≡ a (mod p) has a solution in integers
r, s by Corollary 2.8.

To obtain integers x, y such that f(x, y) ≡ a (mod pe) for e > 1, we apply Hensel’s lemma.
If f(r, s) ≡ a (mod p), we show that the partial derivatives fx(r, s) and fy(r, s) are not both 0
(mod p). Indeed, fx = 3(x + y)2 − 9y2; fy = 3(x + y)2 − 18xy. If fx(r, s) ≡ fy(r, s) ≡ 0 (mod p)
where f(r, s) ≡ a (mod p), then we have

rfx(r, s) + sfy(r, s) = 3f(r, s) ≡ 0 (mod p)

which is a contradiction. Therefore, Hensel’s lemma applies to give a solution x, y for the congru-
ence f(x, y) ≡ a (mod pe) for any e ≥ 1.
Next, let p = 3; then it is easy to see (by induction) that f(r, 0) = r3 ≡ a (mod 3e) has solutions
in integers r whenever a ≡ ±1 (mod 9). Observe that, writing a = ±1 + 9k, k ∈ Z it follows that
(±1 + 3k)3 ≡ ±1 + 9k ≡ a (mod 33). Now for a general e, assume there exists a solution r ∈ Z
of r3 ≡ a (mod 3e−1). Then using the 3-adic expansion of r, it is easy to get a solution r1 ≡ r
(mod 3e−1) such that r31 ≡ a (mod 3e). Therefore, the first assertion is proved.

Now, if f(r, s) ≡ a (mod 9d), then consider F(x, y) := f(r + 9dx, s+ 9dy). As (f(r, s), d) = 1,
F is a primitive polynomial over Z. Also there is no common prime divisor p of all the values of
F. If such a prime exists, then (p, 9d) = 1 because F(0, 0) ≡ a (mod 9d) and (a, 9d) = 1. But, as
before, we can solve for x0, y0 such that r + 9dx0 ≡ 1 (mod p) and s + 9dy0 ≡ 0 (mod p). Then,
F(x0, y0) ≡ f(1, 0) = 1 (mod p).
As F is a primitive polynomial over Z and the values of F has no common prime divisor, [11,
Theorem 1.1] shows that F(x, y) takes infinitely many prime values.

3 Further polynomial identities and cube sum composite
numbers

In this section, we generate several infinite families of composite integers that are rational cube
sums. We repeatedly use the following reformulation of the cube sum problem. Although it seems
to be known to experts, we write it down for the sake of completeness. Note that yet another
reformulation appears in Prop. 3.18.
Lemma 3.1. Any integer n of the form n = xy(x − y) with x, y ∈ Q is a rational cube sum.
Conversely, if a cube free integer n ≥ 2 is a rational cube sum then ∃ x, y ∈ Q such that n =
xy(x− y).

Proof. The first assertion is immediate from the identity (3). The converse can be deduced using
the fact that En is 3-isogenous to the curve Y 2 = X3 + 16n2 over Q.
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Remark 3.2. In fact, as rkZ En(Q(ζ3)) = 2 rkZ En(Q), we can also deduce:
n ∈ Z is a rational cube sum ⇔ ∃ x, y ∈ Q(ζ3) such that n = xy(x− y).
Example 3.3. It is perhaps not obvious to express even a small number like 42 as a rational cube
sum; using our identity (3), we deduce g(−6, 1) = 42 = (449/129)3 + (−71/129)3.

We now discuss an interesting application of Lemma 3.1.
Proposition 3.4. Given any integer k, there exists infinitely many pairs of integers (mi, ni) such
that, for every i, both mi and ni are rational cube sums and mi + ni = k.

In other words, given any integer k, there are infinitely many integers n such that both n and
n+ k are rational cube sums.

Proof. We may assume k 6= 0. For each i ≥ 1, put (xi, yi) :=
(

1
2i +2i2k, 1

2i−2i2k
)
. Then g(xi, yi) =

k − 16i6k3 = k −
(
(2i2k)3 + (2i2k)3

)
is a rational cube sum. The result follows by defining mi =

k − 16i6k3 and ni = 16i6k3.

Remark 3.5. For a fixed integer k ≥ 0, let πk(X) := #{n ∈ Z : |n| ≤ X and both n, n +
k are rational cube sums}. [5, Theorem 1.1] implies that π0(X) = O(X). It will be interesting to
study the asymptotic behaviour of πk(X) for k ≥ 1.

Using Lemma 3.1 and [11, Theorem 1], we are now ready to prove Theorem C.
Theorem 3.6. For any integer N and for any (x, y) ∈ Z2 with xy 6= 0, the integer N(x3 +Ny3)
is a rational cube sum. In particular, for every n ∈ N, there are infinitely many primes p in each
of the residue classes 1 (mod 9) and 8 (mod 9) such that Np is a rational cube sum.

Proof. From the identity N(x3+Ny3) = 1
x3 g(−Ny3, x3), we deduce that N(x3+Ny3) is a rational

cube sum. For the second part, if N is an integer cube then the result is a restatement of Theorem
2.4. On the other hand, if N is not a cube, then TN (X,Y ) = X3 +NY 3 ∈ Z[X,Y ] is an irreducible
polynomial. Set TN (X,Y ) := TN (1 + 3X, 3Y ). As TN (0, 0) = 1, we see that it is a primitive
polynomial in Z[X,Y ] and no prime divide all the values {TN (x, y)|x, y ∈ Z}. Thus by [11, Theorem
1], there are infinitely many primes p of the form p = TN (x, y), where x, y varies in Z. Evidently,
TN (x, y) ≡ 1 (mod 9). The result in the 8 (mod 9) case follows similarly, by considering TN (−1 +
3X, 3Y ).

The cube sum problem for 2p and 3p, for a prime p are also stated as cases of Sylvester’s
Conjecture in the literature. We strengthen Theorem 3.6 for N = 2, 3 and, in fact, more generally
for N = `, `2 for a prime `. The proofs follow a similar line of argument as in Theorem 3.6 using
[11, Theorem 1]. We only give the specific input used in each case.
Corollary 3.7. 1. For each b ∈ {1, 4, 7, 8}, there are infinitely many primes p ≡ b (mod 9) such

that 3p is a rational cube sum.
2. Let a ∈ {1, 2, 7, 8} and ` be a fixed prime so that ` ≡ a mod 9. Then for each b ∈ {1, 2, 7, 8},

there are infinitely many primes p ≡ b (mod 9) such that `p is a rational cube sum. In particular,
for each b ∈ {1, 2, 7, 8}, there are infinitely many primes p ≡ b (mod 9) such that 2p is a rational
cube sum.

3. Let a ∈ {4, 5} and ` be a fixed prime with ` ≡ a mod 9. For each b ∈ {1, 4, 5, 8}, there are
infinitely many primes p ≡ b (mod 9) so that `p is a rational cube sum.

4. Let a ∈ {1, 4, 5, 8}. Let ` be a fixed prime such that ` ≡ a mod 9. For each b ∈ {1, 2, 7, 8}, there
are infinitely many primes p ≡ b (mod 9) such that `2p is a rational cube sum.

5. Let ` ≡ a mod 9 be a fixed prime, where a ∈ {2, 7}. For each b ∈ {1, 4, 5, 8}, there are infinitely
many primes p ≡ b (mod 9) such that `2p is a rational cube sum.

Proof. First of all, for any ` or `2, the cases b ∈ {1, 8} directly follow from Theorem 3.6 and need not
be argued again. We also make a general observation to be used in all the cases. Assume N is not
an integer cube and take a, b,∈ Z. If (a3 +Nb3, 3) = 1, then T(X,Y ) := (a+ 3X)3 +N(b+ 3Y )3 ∈
Z[X,Y ] is a primitive polynomial. Next, if a prime q divides all the integer values of the primitive
polynomial T(X,Y ), then by [11, Lemma 2.4], q can only be 2 or 3. Thus to conclude T(X,Y )
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attains infinitely many prime values, it suffices to check (i) 3 - a3 + Nb3 = T(0, 0) and (ii) find
(c, d) ∈ Z2 such that 2 - T(c, d).

(1): For b ≡ 4 (mod 9), put T3(X,Y ) := T3(1 + 3X, 1 + 3Y ) ≡ 4 (mod 9). Note that
3 - T3(0, 0) = 4 and T3(1, 0) is odd. For b ≡ 7 (mod 9), consider T3(1 + 3X,−1 + 3Y ).

(2) & (3): The proof follows from the three observations below.

(a) For any prime ` in case (2) or (3), set T±` (X,Y ) := T`(3X,±1 + 3Y ) ≡ ±` (mod 9). Note that
T±` (0, 0) = ±`, is coprime to 3 and T±` (1, 1) is odd.

(b) For ` ≡ 1 (mod 3), consider T ±` (X,Y ) := T`(±1+3X,±1+3Y ) ≡ ±(1+ `) (mod 9) and notice
that 3 - T ±` (0, 0) = ±(1 + `) and T ±` (0, 1) is odd.

(c) Finally, for ` ≡ 2 (mod 3), set T̃ ±` (X,Y ) := T`(∓1 + 3X,±1 + 3Y ) ≡ ±(−1 + `) (mod 9) and

observe that 3 - T̃ ±` (0, 0) = ±(−1 + `) and 2 - T̃ ±` (0, 1).

(4) & (5): The proof follows from similar observations as in the case (a) and (b) above. For
any ` appearing in case (4) or (5), put T±`2(X,Y ) := T`2(3X,±1 + 3Y ) ≡ ±`2 (mod 9). Then
3 - T±` (0, 0) = ±`2 and T±` (1, 0) is odd. Next, set T ±`2 (X,Y ) := T`2(±1 + 3X,±1 + 3Y ) ≡ ±(1 + `2)
(mod 9) and notice that 3 - T ±` (0, 0) = ±(`2 + 1) and 2 - T ±` (0, 1).

Remark 3.8 (Related works). Note that in Theorem 3.6 and Corollary 3.7, we had p = a3 +Nb3,
for some a, b ∈ Z i.e. N is a cube in Fp. On the other hand, for any prime p ≡ 1, 7 (mod 9) so
that 2 is not a cube in Fp, it is shown in [14, Corollary 5.9] that 2p is not a rational cube sum. For
any prime p ≡ 2 (mod 9), it was shown in [3] that 2p is a cube sum. However, if p ≡ 5 (mod 9),
then 2p is a not cube sum [1]. Recently, it was shown in [13] that for any prime p ≡ 2, 5 (mod 9),
3p and also 3p2 are cube sums.

Next, we draw several other corollaries of the Lemma 3.1. We state them separately simply
because each has a different flavour.
Corollary 3.9. Let a, b ∈ Z. Notice that g(a, b) = 2(a− b)a2 b, i.e. g(a, b) is twice the product of 3
rational numbers in arithmetic progression (AP). Conversely, given 3 rationals a, a+ d and a+ 2d
in AP, we get 2a(a+ d)(a+ 2d) = g(2a+ 2d, a+ 2d). Thus a cube-free integer n > 1 is a rational
cube sum⇔ n is twice the product of three rational numbers in AP. In particular, 2n(n+k)(n+2k)
is a rational cube sum for arbitrary n, k ∈ Z.
Corollary 3.10. For any pair of integers r, s, the numbers g(r, s) = rs(r − s) and g(−r, s) =
rs(r + s) are rational cube sums. In particular,

1. The product of any two consecutive integers is a rational cube sum. Equivalently, for any matrix

M =

[
a b
c d

]
∈ SL2(Z), abcd is a rational cube sum.

2. For x, y ∈ Z, xy(x3k+1 ± y3k+1) = g(∓x3k+1, y3k+1) are rational cube sums. In particular, for
any (n, k) ∈ N2, n3k+2 ± n are rational cube sums.

3. Given any three integers a, b, c, the integer (a − b)(b − c)(c − a) = g(b − a, b − c) is a rational
cube sum.

4. For any n, k ∈ Z, n(n+k)(2n+k) = g(−n, n+k) is a rational cube sum. In particular, for any
n ∈ Z, 2n(n+ 2) is a rational cube sum.

5. For any d, k ∈ Z, 2d(d2 − k2) = g(−d− k, d− k) is a rational cube sum.
6. If (x, y) ∈ Z2 satisfies the Pell’s equation X2 −NY 2 = 1, then Nx2y2 = g(x2, 1) is a rational

cube sum.
7. If ABC is a rational right angle triangle whose sides have lengths a, b, c ∈ Q respectively, then

(abc)2 is a rational cube sum.
8. As a special case of Corollary 3.9, 2n(n+ 1)(n+ 2) = g(2n+ 2, n+ 2) is a rational cube sum.

It is the area of an isosceles Heron triangle whose sides have lengths n2 + 2n + 2, n2 + 2n + 2
and 2(n2 + 2n).
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9. Integers of the form n = d(8d+ 1), d ∈ Z are rational cube sums. In particular, for any integer
k, 1

2k(k + 1)(2k + 1)2 is a rational cube sum.
10. For any integer n, n2 − 16, 3n2 + 16 and n2 + 432 are rational cube sums. More generally,

integers of the form (4T 3)2 + 3V 2 and 1
4 (L2 + 27(M3)2) are rational cube sums.

11. If the polynomial T (X) = aX2− bX + c ∈ Z[X] has a root in Q(ζ3), then abc is a rational cube
sum.

Proof. We give a brief justification of (9), (10) and (11).

(9) We have g(a3+b3d, a3) = (ab)3(a3d+b3d2) and hence integers of the form a3d+b3d2 are rational
cube sums. In particular, g(1 + 8d, 1) = 23d(8d+ 1).

(10) Observe that g(n+4, n−4) = 8(n2−16) and hence n2−16 is a rational cube sum. On the other
hand, g(V

√
−3+4T 3, V

√
−3−4T 3) = −8T 3(3V 2 +16T 6), and hence (4T 3)2 +3V 2 is a rational

cube sum by Remark 3.2. Similarly, (M
√
−3)3
4 (L2 + 27(M3)2) = g(L−3

√
−3M3

2 , L+3
√
−3M3

2 ).
(11) Let α, β ∈ Q(ζ3) be the roots of T (X), then abc = a3g(−α, β). The result then follows from

Remark 3.2.

Let Fn (resp. Ln) denote the nth term of the Fibonacci Sequence (resp. Lucas number); the
convention here is F0 = 0, F1 = 1, L0 = 2, L1 = 1.
Corollary 3.11. A product of the three consecutive terms in the Fibonacci sequence (respectively,
three consecutive Lucas numbers) is a rational cube sum.

Proof. We have FnFn+1Fn+2 = g(Fn+2, Fn+1) and LnLn+1Ln+2 = g(Ln+2, Ln+1).

Using identities for Fibonacci and Lucas sequences, one can write down many such formulae.
For example, each of the following products are rational cube sums by Lemma 3.1: Fn−1LnFn+1 =
g(Ln, Fn+1), F 2

n−1F
2
n+1F2n = g(F 2

n+1, F
2
n−1),

Fn−1F
2
nFn+1 = (−1)n−1g(F 2

n , Fn−1Fn+1), 5Ln−1L
2
nLn+1 = (−1)ng(L2

n, Ln−1Ln+1).
Corollary 3.12. One can take an elliptic curve E with infinitely many rational points P =
(x(P ), y(P )). Then applying suitable polynomials like f(X,Y ), g(X,Y ) (1) on P will give rise to
families of integers (after clearing denominators) which are rational cube sums. We illustrate this
with a couple of examples:
(I) Consider the elliptic curve E : y2 = x3 + 9. Note that (3, 6) ∈ E(Q) is a non-torsion point.
Now take P = (x(P ), y(P )) ∈ E(Q) to be any point of infinite order and write y(P ) = a/b with
(a, b) = 1. Then 2a is a rational cube sum.

Indeed, for any prime p, vp(y(P )) < 0 implies vp(y(P )) ≡ 0 (mod 3). Now by Corollary 3.10(5),
we get 2y(P )x(P )3 = 2y(P )(y(P )2 − 9) is a rational cube sum.

(II) Consider the curve E : y2 = x3 − 9x + 9 with an infinite order point (1, 1) ∈ E(Q). Let
P = (x(P ), y(P )) ∈ E(Q) be any non-torsion point. Then writing y(P ) = a/b with (a, b) = 1, we
obtain a2 is a cube sum using the identity f(x(P )− 1, 1) = y(P )2.

To generate more integers which are rational cube sums, we shall generalize the identities (2)
and (3) to the identity (6) in Prop. (3.13). To do this, inspired by ideas from [12], we define a pair
of binary cubics as follows:

f(X,Y ) = (X + Y )3 − 9XY 2 and f1(X,Y ) = f(X,Y )− 6g(X,Y ) = X3 + Y 3 − 3X2Y. (5)

The pair satisfies the following identity:
Lemma 3.13. Let (f(X,Y ), f1(X,Y )) be the binary cubics as defined in (5) and recall h(X,Y ) =
X2 −XY + Y 2. We have the following identity in Z[X,Y, Z,W ]:[(

(Zf(X,Y ) + 3Wf1(X,Y )
)

+
(
(Zf1(X,Y )−Wf(X,Y )

)]3
+[(

(Zf(X,Y ) + 3Wf1(X,Y )
)
−
(
(Zf1(X,Y )−Wf(X,Y )

)]3
= (Z2 + 3W 2)

(
(Zf(X,Y ) + 3Wf1(X,Y )

)
(2h(X,Y ))3.

(6)
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Proof. We have the following identity.

f(X,Y )2 + 3f1(X,Y )2 = 4h(X,Y )3, (7)

which can be verified via straightforward, but tedious, computation. Using (7) and the identities
(a2 + 3b2)(c2 + 3d2) = (ac+ 3bd)2 + 3(ad− bc)2 and (a+ b)3 + (a− b)3 = 2a(a2 + 3b2), the identity
in (6) can be deduced. Alternatively, (6) can be validated using any computer algebra system.

Note that the result in Proposition (2.1) can be recovered from the identity (6). Indeed, by
putting Z = 1,W = 0 (respectively Z = 3,W = −1) in the identity (6), we deduce f(x, y)
(respectively g(x, y)) are rational cube sums ∀ x, y ∈ Q.

As an immediate consequence of equation (6), we obtain:
Corollary 3.14. Let n be an integer expressible as n = u2 + 3v2 for some (u, v) ∈ Z2. If there
exist (z, w) ∈ Q2 such that uf(z, w) + 3vf1(z, w) = 1, then n is a cube sum.
Remark 3.15. Recall that a prime p ≡ 1 (mod 3) can be written as p = u2 + 3v2 for some
(u, v) ∈ Z2. For all primes p < 500, such that p ≡ 4, 7 (mod 9) and 2 is not a cube modulo
p, we have verified that there exist (u, v) ∈ Z2 and (z, w) ∈ Q2 such that u2 + 3v2 = p and
uf(z, w) + 3vf1(z, w) = 1. Thus all of these primes are cube sums by Lemma 3.14. Note that, for
some of these primes (for example 31), 3 is a cube mod p.

Recall, for a prime p ≡ 1 (mod 9), the root number of Ep : y2 = X3 − 432p2 is 1 and by a 3-
descent argument, one can check rankZ Ep(Q) ≤ 2. Thus assuming the parity conjecture, the rank
of Ep(Q) is 0 or 2. We now show (without any assumption on the BSD conjecture or the parity
conjecture) that for a certain family of primes p ≡ 1 (mod 9), the Mordell-Weil ranks of Ep(Q)
and Ep2(Q) equals 2.
Proposition 3.16. Let p ≡ 1 (mod 9) be a prime and put p′ ∈ {p, p2}. Let (u, v) ∈ Z2 such that
p′ = u2 + 3v2. Assume both the following conditions hold:

1. There exists rational numbers (x, y) ∈ Q2 such that f(x, y) = p′.
2. There exists rational numbers (z, w) ∈ Q2 such that uf(z, w) + 3vf1(z, w) = 1.

Then rkZ Ep′(Q) = 2 and the 3-part of the Tate-Shafarevich group X(Ep′/Q)[3] vanishes.

Proof. We prove the result for p and the proof for p2 is similar. We know that Ep(Q)tor = 0 and
using a 3-descent argument (for example [14, §5]), one can show for the 3-Selmer group of Ep over
Q, dimF3

S3(Ep/Q) ≤ 2. We will show that dimF3
Ep(Q)/3Ep(Q) ≥ 2. Hence rkZ Ep(Q) = 2

and X(Ep/Q)[3] = 0 follows from the descent exact sequence 0→ Ep(Q)/3Ep(Q)→ S3(Ep/Q)→
X(Ep/Q)[3]→ 0.

Recall that if X3 + Y 3 = p, then
(

12p
X+Y , 36pX−YX+Y

)
∈ Ep(Q). By condition (1), it follows from

(2) that P :=
(
12h(x, y), 36f1(x, y)

)
∈ Ep(Q). Further using hypothesis (2), from the identity (6),

it follows that Q :=
(
12ph(z, w), 36p[uf1(z, w) − vf(z, w)]

)
∈ Ep(Q). Also recall that for a non-

trivial rational point (x, y) ∈ Ep(Q), the Kummer map δ : Ep(Q) → Q(ζ3)∗/Q(ζ3)
∗3

is given by
δ
(
(x, y)

)
= y − 12p

√
−3 (for example, see [14, §3]). It follows that δ(P ) = ζ23 and δ(Q) = ζ23π

2
pπp,

where ζ = −1+
√
−3

2 and πp = u +
√
−3v. As a consequence, it follows that δ(P ), δ(Q), δ(P + Q)

and δ(P −Q) are all non-trivial elements in Q(ζ3)∗/Q(ζ3)
∗3

. Hence [P ], [Q], [P + Q] and [P −Q]
are non-trivial in Ep(Q)/3Ep(Q), which in turn implies that dimF3 Ep(Q)/3Ep(Q) = 2.

Remark 3.17. One may wonder how often both the conditions in Prop. 3.16 hold. In [8], assuming
BSD, it is shown that there are 22 primes p ≡ 1 (mod 9), p < 2000 for which rkZ Ep(Q) = 2. We
have verified via SAGE that both the conditions are satisfied by all those 22 primes.

Next, we consider the following homogeneous reducible polynomial in 4 variables.

pf (X,Y, Z,W ) = (Z2 + 3W 2)
[
Zf(X,Y ) + 3Wf1(X,Y )

]
, (8)
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Proposition 3.18. For (a, b, u, v) ∈ Q4, the rational number pf (a, b, u, v) is a rational cube sum.
Conversely, if n ∈ Z is a rational cube sum, then for any (a, b) ∈ Z2 \ {(0, 0)}, there exists
(u, v) ∈ Q2 such that n = pf (a, b, u, v).

Proof. Observe that pf (0, 0, u, v) = 0 for any (u, v) ∈ Q2 and thus, we may assume (a, b) 6= (0, 0).

Consider the rational numbers αf = αf (a, b) = f(a,b)+f1(a,b)
2h(a,b) , βf = βf (a, b) = 3f1(a,b)−f(a,b)

2h(a,b) ,

γf = γf (a, b) = f(a,b)−f1(a,b)
2h(a,b) and δf = δf (a, b) = 3f1(a,b)+f(a,b)

2h(a,b) . Then it is immediate from (6) that

pf (a, b, u, v) = (uαf + vβf )3 + (uγf + vδf )3,

is a rational cube sum. It follows that for any fixed (a, b) ∈ Z2 \ {(0, 0)}, pf (a, b, Z,W ) =
(
αfZ +

βfW
)3

+
(
γfZ + δfW

)3
, with αfδf − βfγf = 2h(a, b) 6= 0. Now given an integer n = c3 + d3 with

c, d ∈ Q, observe that pf
(
a, b,

δf c−βfd
αf δf−βfγf

,
−γf c+αfd
αf δf−βfγf

)
= c3 + d3.

We illustrate Proposition 3.18 via an example; one can construct many other examples for
various choices of (a, b).
Corollary 3.19. Taking (a, b) = (1, 0), we obtain an integer n is a rational cube sum ⇔ n =
(z2 + 3w2)(z + 3w) for some (z, w) ∈ Q2.

Now we consider a special case of Theorem 3.6 for N = 9 and produce a different family of
infinitely many primes, in each of the classes ±1 (mod 9) such that 9p is a cube sum.
Corollary 3.20. There are infinitely many primes p (of the form p = c3+d3−3c2d with c, d ∈ Z),
in each of the residue classes 1 (mod 9) and 8 (mod 9) such that 9p is a rational cube sum.

Proof. For a, b ∈ Z, 9(a3 + b3 − 3a2b) = pf (a, b, 0, 1) is a rational cube sum (Prop. 3.18). Now
X3 + Y 3 − 3X2Y ∈ Z[X,Y ] is irreducible, and applying [11, Theorem 1] and following the proof
of Theorem 3.6, we deduce the result.

Now we produce infinite families of integers with exactly two distinct prime factors that are
rational cube sums. These results are variants of Theorem 3.6; however the infinite family of primes
that appear in Prop. 3.21 are values of different binary cubic forms.
Proposition 3.21. Let p ≡ 1 (mod 3) be any prime. Let us choose u, v ∈ Z such that u ≡ 1
(mod 3) and u2 + 3v2 = p.

1. There are infinitely many primes q in each of the residue classes (u + 3v) (mod 9) as well as
−(u+ 3v) (mod 9), such that the integers pq are rational cube sums.

2. There are infinitely many primes q in each of the residue classes u2 + 3v(2u − v) (mod 9) as
well as −u2 − 3v(2u− v) (mod 9) such that p2q are rational cube sums.

Proof. (1) Set q(X,Y ) := (u + 3v)[X3 + Y 3] + 3(u − 3v)X2Y − 6uXY 2. As p is odd, u ± 3v are
odd and by an elementary argument, we can deduce that q(X,Y ) ∈ Z[X,Y ] is irreducible. Set
Q(X,Y ) := q(−u+ 3X,−u+ 3Y ). Then

Q(X,Y ) = 27(u+ 3v)[X3 + Y 3] + 81(u− 3v)X2Y + · · ·+ u3(u+ 3v).

As (u, 3v) = 1, it is immediate that Q(X,Y ) is a primitive polynomial in Z[X,Y ]. By [11, Lemma
2.4], only possibility for a prime ` that divides all the values {Q(a, b) | a, b ∈ Z} is ` = 2 or
` = 3. Now 3 - Q(0, 0) = u3(u + 3v) and we can write Q(0, 1) = 81v + uT (u, v), for some
T (X,Y ) ∈ Z[X,Y ]. Further, both Q(0, 0) and Q(0, 1) can not be even. Hence the conditions of [11,
Theorem 1] are met and hence there are infinitely many primes q of the form q = Q(a, b) with a, b
varying in Z. It is clear that Q(a, b) ≡ u+3v (mod 9) for any a, b ∈ Z. Now, it is plain from (8) that
pf (x, y, u, v) = pq(x, y) and thus by Prop. 3.18, pq(x, y) is a rational cube sum for any x, y ∈ Z.
For the −(u+ 3v) (mod 9) case, consider the polynomial q(u+ 3X,u+ 3Y ).
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(2) Set `(X,Y ) := (u2 + 6uv − 3v2)[X3 + Y 3] + 3(u2 − 6uv − 3v2)X2Y − 6(u2 − 3v2)XY 2. As p is
odd, (u2 − 3v2) + 2uv is odd and again by an elementary argument, we can see `(X,Y ) ∈ Z[X,Y ]
is irreducible. Set L(X,Y ) := `(−1+3X,−1+3Y ) = 27(u2 +6uv−3v2)(X3 +Y 3)+81(u2−6uv−
3v2)X2Y + · · ·+ 27(u2 + 6uv − 3v2). As (u, v) = 1, we deduce that L(X,Y ) is primitive and also
easy to see that 2, 3 - L(0, 0). Then by [11, Theorem 1], there are infinitely many primes q which
are integer values of L. Further L(a, b) ≡ u2 ± 3v(2u − v) (mod 9), for any a, b ∈ Z. Again from
(8), we obtain pf (x, y, u2 − 3v2, 2uv) = p2`(x, y) and via Prop. 3.18, p2`(x, y) is a rational cube
sum for any x, y ∈ Z.
The other case follows by studying the polynomial `(1 + 3X, 1 + 3Y ).

Example 3.22. From the proof of Proposition 3.21 it follows that for (u, v) ∈ Z2, if there exists
(x0, y0) ∈ Q2 such that uf(x0, y0) + 3vf1(x0, y0) = 1, then u2 + 3v2 is a rational cube sum. For
example, taking u = 7, v = −2, we note that 7f(1, 0) − 6f1(1, 0) = 1 and hence 61 is a rational
cube sum. Note that 61 ≡ 7 (mod 9) and 3 is cube modulo 61, thus the fact that 61 is a rational
cube sum does not follow from the results of [6].

We now give an application of Proposition 3.21 to cubic reciprocity. Recall for a prime p ≡ 1
(mod 3), 2 is a cube in Fp ⇔ p = u2 + 27v2 for some u, v ∈ Z.
Corollary 3.23. Let p ≡ 1 (mod 3) be any prime so that 2 is not a cube in Fp. Choose u, v ∈ Z
such that p = u2 + 3v2, u ≡ 1 (mod 3) and v ≡ 2 (mod 3).

1. Any prime q ≡ 6−u (mod 9) ≡ 2 (mod 3) of the form q = (u−3v)x3 +3(u+3v)x2y−6uxy2 +
(u− 3v)y3, x, y ∈ Z, is a cube in Fp. There are infinitely many such primes.

2. Any prime q ≡ −u2 (mod 9) ≡ 2 (mod 3) of the form (u2 + 6uv − 3v2)x3 + 3(u2 − 6uv −
3v2)x2y − 6(u2 − 3v2)xy2 + (u2 + 6uv − 3v2)y3, x, y ∈ Z, is a cube in Fp. There are infinitely
many such primes.

Proof. (1) Applying Proposition 3.21(1) for the pair (u,−v), there are infinitely many primes q
of the above mentioned form with q ≡ −(u + 3(−v)) ≡ 6 − u (mod 9) such that the integers pq
are rational cube sum. Observe that, in this setting, pq ≡ 2 (mod 9). If q is not a cube in Fp,
then by a 3-descent argument [15, Theorem 3.1(3)], pq can not be a rational cube sum, which is a
contradiction. Thus, q must be a cube in Fp.

(2) Applying Proposition 3.21(2), there are infinitely many primes q of the above mentioned
form with q ≡ −u2 − 3v(2u − v) ≡ −u2 (mod 9), such that each of p2q is a rational cube sum.
Under this setting, p2q ≡ 2 (mod 9). Again, if q is not a cube (mod p), then by [15, Theorem
3.1(3)], p2q is not a rational cube sum, a contradiction. Thus, q must be a cube modulo p.

4 Cube sums over imaginary quadratic fields

We say n ∈ N is a cube sum over a number field F if n = x3 + y3 with x, y ∈ F . We discuss
expressibility of an integer as a cube sum over imaginary quadratic fields.

Recall, En denotes the elliptic curve y2 = x3 − 432n2. For any prime p, let X(En/Q)[p∞]
denote the p-primary torsion part of the Tate-Shafarevich group of En/Q and let Sp∞(En/Q) be
the p∞-Selmer group of En/Q. Firstly, we show, under an assumption on X(En/Q)[p∞], that
n ∈ N is a cube sum over infinitely many imaginary quadratic fields.
Proposition 4.1. Let n be any positive integer. Assume that X(En/Q)[p∞] is finite for some
prime p ≥ 5, where En : y2 = x3 − 432n2. Then there are infinitely many imaginary quadratic
fields Q(

√
−Dn) such that n is a cube sum over Q(

√
−Dn), for each Dn.

Proof. We may assume that n is not a cube sum over Q. (In particular, n > 2.) Then En(Q) is
finite. (By assumption,) choose a prime p > 3 such that X(En/Q)[p∞] is finite. Then the p∞-
Selmer group Sp∞(En/Q) is finite. Now En has CM by Q(ζ3) and p - #O×Q(ζ3)

, it follows from

Rubin’s work [19] on the Iwasawa main conjecture for imaginary quadratic fields that the complex
L-value L(En/Q, 1) 6= 0. Further, by results of Bump-Friedberg-Hoffstein, or Murty-Murty [17,

12



Corollary to Theorem 2], there are infinitely many imaginary quadratic fields Q(
√
−Dn) such that

for the quadratic twists EDn
n of En, the L-functions L(EDn

n /Q, s) have a simple zero at s = 1. Then
it is known, by the Gross-Zagier theorem together with Kolyvagin’s or Rubin’s result that for any
such Dn, the Mordell-Weil rank of EDn

n (Q) is 1. Thus we get that rankZ En(Q(
√
−Dn)) = 1 as

well and consequently n is a cube sum over Q(
√
−Dn) for each of those Dn’s.

Now, using certain binary cubic forms, we give an explicit and unconditional construction of
infinitely many imaginary quadratic fields over which n can be expressed as a cube sum.
Proposition 4.2. Let n be any positive integer. For every integer t≥ 3, n is a cube sum over the
imaginary quadratic field Kn,t = Q

(√
−3(4nt3 − 27)

)
.

Proof. We construct an explicit binary cubic form and then make use of the strategy outlined
by Mordell, Evertse (cf. [20, §3]). For any binary cubic form F (X,Y ), recall that the ‘quadratic

covariant’ H(x, y) := − 1
4

(
∂2F
∂X2

∂2F
∂X2 − ( ∂2F

∂X∂Y )2
)

has the discriminant = −3D, where D is the

discriminant of F . Further, if we set the ‘cubic covariant’ G(x, y) := ∂F
∂X

∂H
∂Y −

∂F
∂Y

∂H
∂X , then one has

4H(X,Y )3 = G(X,Y )2 + 27DF (X,Y )2.
For any positive integer t, consider the binary cubic form fn,t(X,Y ) = (X + Y )3 − nt3XY 2. It

is easy to see that fn,t(X,Y ) ∈ Z[X,Y ] is an irreducible polynomial for t > 2.
We compute in this case D = D(fn,t) = (nt3)2(4k3n − 27) and thus for any given n and

for every choice of t > 2, the discriminant D(fn,t) is positive. Setting Kn,t := Q(
√
−3D) =

Q(
√
−3(4nt3 − 27)), it follows that fn,t(X,Y ) is an irreducible polynomial in Kn,t[X,Y ] as

well [20, Page 122]. Further, put U±n,t(X,Y ) = 1
2 (Gn,t(x, y) ± 3

√
−3DFn,t(X,Y )). Then we get

U+
n,t(X,Y )U−n,t(X,Y ) = Hn,t(X,Y )3 [20, Eq. 10]. As U+

n,t(X,Y ) and U−n,t(X,Y ) have no common

factors, it follows that each of them is a cube of some homogeneous linear forms ξ±n,t(X,Y ) ∈
Kn,t[X,Y ], respectively. One obtains that Gn,t(X,Y ) = ξ+n,t(X,Y )3 + ξ−n,t(X,Y )3 [20, Eq. 11].

Observe that Gn,t(1, 0) = −27nk3. Thus any given n ∈ N is a cube sum over the imaginary

quadratic field Q(
√
−3(4nt3 − 27)) for every choice of t ≥ 3.

Remark 4.3. Note that, for any positive integer n, Kn,t = Q
(√
−3(4nt3 − 27)

)
, as we vary t

in N≥3 := {n ∈ N | n ≥ 3}, represents infinitely many imaginary quadratic fields. First, observe
there are infinitely many prime divisors of the values of D(t) := 4nt3 − 27 as t varies in N≥3 (If
p1 = 3, p2, . . . , pr are the only prime divisors, then we arrive at a contradiction by considering
D(3p1 · · · pr).) Now, for any prime p ≥ 5, if p | D(t) for some t ∈ N≥3, then D(t + p) ≡ D(t) +
12nt2p (mod p2); thus although p divides both D(t) and D(t + p), p2 can not divide both D(t)
and D(t + p), which in-turn implies that infinitely many primes occur in the factorisation of the
square-free part of D(t) as t varies in N≥3.
Corollary 4.4. Let T (X,Y ) ∈ Z[X,Y ] be an irreducible binary cubic such that the discriminant
D of T (X,Y ) satisfied D = n2 for some n ∈ N. Then nT (x, y) is a rational cube sum for every
x, y ∈ Q. In particular, every m ∈ {k2 + k + 7 | k ∈ Z} is a rational cube sum.

Proof. Following the proof of Prop. 4.2, in this setting, we can express 3
√
−3DT (X,Y ) =

ξ+(X,Y )3 + ξ−(X,Y )3, for some ξ±n,t(X,Y ) ∈ Q(
√
−3D)[X,Y ]. Now putting D = n2, it is easy to

see that for every x, y ∈ Q, nf(x, y) is a cube sum in Q(ζ3) and hence over Q.
For the second part, for any k ∈ Z, consider the irreducible cubic polynomial Tk(X,Y ) =

X3− (k− 1)X2Y − (k+ 2)XY 2−Y 3. Then the discriminant D(Tk) equals (k2 +k+ 7)2. Hence for
every x, y ∈ Q, (k2 + k + 7)Fk(x, y) is a rational cube sum. In particular, taking x = 1 and y = 0,
we obtain that integers of the form k2 + k + 7 are rational cube sums.

Remark 4.5. Let T (X) ∈ Z[X] be a monic irreducible cubic polynomial such that Gal(T ) ∼= Z/3Z.
Then from Corollary 4.4, it follows that

√
Disc(T ) is rational cube sum. An explicit parametrization

of all monic irreducible trinomials T (X) = X3 − aX + b with Gal(T ) ∼= Z/3Z can be found in [12,
Theorem 4.6].
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