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On an Example of Jacobson

B. Sury

In Vol. IIT of Nathan Jacobson’s celebrated book [2], there appears the following
exercise on p. 49:

Let [, be the field with p elements, and P = F,(x, y) where x, y are indeterminates.
Let E be the subfield F,(x? — x, y? — x). Show that [P : E] = p?, that P/E is not
separable, and that P /E contains no purely inseparable element.

Now, it is seen immediately that Jacobson’s example is really a nonexample.
Surprisingly, none of the other standard graduate texts seem to give an example,
although one can be found in [1, Ex. 17, Ch. V]. Here is another:

Example. Let P = F,(x, y) and let E be the subfield F,(x? — x, y?x). Then

@ [P:E]=
(ii) P/E is not separable, and
(iii) P/E contains no purely inseparable element over E except those contained
in E.

Recall that an element x in an algebraic closure K of a field K is separable if
its minimal polynomial f(T) in K[T] has all roots (in K) simple.

It is said to be purely inseparable over K if it is fixed by all K-automorphisms
of K. More generally, an algebraic extension L of K is said to be purely
inseparable if the only elements of L that are separable over K are the elements
of K itself. Any algebraic extension L of K is built in two stages: K c L, C L,
where L, is separable over K, and L is purely inseparable over L,

sep . . o .
One has as a consequence of this definition:

Let x € K, and let f(T) be its minimal polynomial over K. Then, the following
statements are equivalent:

(i) x is not separable over K;
(ii) The derivative f'(T) is the zero polynomial; and
(iii) K is of characteristic p > 0, and f(T) € K[T"].

Under any of these equivalent hypotheses, if n is the smallest integer such that
xP" € K, then the minimal polynomial over K is f(T) = T?" — x?".

We return to our example now.

=F,(x,y) DE = F[(a, b) where a = x? —x, b = y?x. Then, over E, y satisfies
, the polynomlal g(T) = TP +,TPP~D — s where r=b/a and s = b? /a. Also,
P = E(y).
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We note:

(a) x is separable over E and y is inseparable over E.

The separability of x follows from the preceding remarks by looking at the
polynomial 77 — T — (x? — x). This is a polynomial over E satisfied by x. In fact,
the Artin-Schreier Theorem [3, Ch. 8] shows that this polynomial is irreducible and
is the minimal polynomial of x over E. However, we do not need this fact for the
proof.

The inseparability of y is a consequence of the observation that 77 — y” is the
minimal polynomial of y over the field E(x).

(b) y is not purely inseparable over E.
As y? ¢ € E, one has also y?” & € E; otherwise, from g(y) = 0 one concludes
yPP=b e E, which would lead to the erroneous conclusion y” € E.

(c) x is not a p-th power in P.
This is easy to check by a simple comparison of like powers of x in view of the
algebraic independence of x and y over [,.

Suppose t € P\E is purely inseparable over E. Then t? € E (because if
t?" € E for some n > 2, then since the degree of P = E(y) over E is at most p?,
n < 2. But, if n # 1, then P would be purely inseparable, a contradiction).

Look at P D E(¢t) D E. Now, the minimal polynomial of ¢ over E is T? — 7,
and [E(¢): E] = p. Note that «? € E for all a € E(¢t).

Let [P: E(t)] = I, say. If the minimal polynomial of y over E(¢) is f(T) =
Yi_oa,T', then y satisfies the polynomial f(T)? = X!_ja’T?. As this is the
minimal polynomial of y over E, f(T)? divides g(T). If f(T)?Lu,T' = T? +
rTPP=D — s, one gets u; = 0 if i # 0 mod p. Renaming u,,, as v, the equation
Y, aPTPLrloT'? = TP + rTP(P~V — s gives inductively that v, = sb? for some
b; € P. Therefore, comparing the coefficients of 77(P~" on both sides, we see
r =svP for some v € P. This means that x is a p-th power in P, which is a
contradiction.

Therefore, P has no purely inseparable elements outside of E.

Remarks. As a consequence of the proof, it is clear that 77" + rT7?~D — g s the
minimal polynomial of y over E. The extension P of E is built up in two steps
P> E(x) DE with P purely inseparable of degree p over E(x) and E(x)
separable of degree p over E.
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