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RATIONAL AND QUASI-PERMUTATION REPRESENTATIONS OF

HOLOMORPHS OF CYCLIC p-GROUPS

SOHAM SWADHIN PRADHAN AND B. SURY∗

Abstract. For a finite group G, three of the positive integers governing its representation theory over

C and over Q are p(G), q(G), c(G). Here, p(G) denotes the minimal degree of a faithful permutation

representation of G. Also, c(G) and q(G) are, respectively, the minimal degrees of a faithful representa-

tion of G by quasi-permutation matrices over the fields C and Q. We have c(G) ≤ q(G) ≤ p(G) and, in

general, either inequality may be strict. In this paper, we study the representation theory of the group

G = Hol(Cpn), which is the holomorph of a cyclic group of order pn, p a prime. This group is metacyclic

when p is odd and metabelian but not metacyclic when p = 2 and n ≥ 3. We explicitly describe the set

of all isomorphism types of irreducible representations of G over the field of complex numbers C as well as

the isomorphism types over the field of rational numbers Q. We compute the Wedderburn decomposition

of the rational group algebra of G. Using the descriptions of the irreducible representations of G over C
and over Q, we show that c(G) = q(G) = p(G) = pn for any prime p. The proofs are often different for

the case of p odd and p = 2.

1. Introduction

Throughout this paper, G always denotes a finite group, F denotes a field of characteristic 0 and p

denotes a prime number.

The holomorph of a group G is the semi-direct product of the group G with its automorphism group,

with respect to the obvious natural action, and is denoted by Hol(G).

Let Cpn denote the cyclic group of order pn, n ≥ 1. Let φ denote the Euler’s phi function. For p odd,

the automorphism group of Cpn , is well known to be cyclic group of order φ(pn). Therefore, for p odd,

Hol(Cpn) is a split metacyclic group. It is well known that the automorphism group of C2n is isomorphic
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to the multiplicative group (Z/2nZ)∗ of units of the ring Z/2nZ. For n = 2, the multiplicative group

(Z/4Z)∗ of units of the ring Z/4Z is a cyclic group of order 2, generated by the class −1. For n ≥ 3, the

multiplicative group (Z/2nZ)∗ of units of the ring Z/2nZ is direct product of Z/2Z, generated by the

class of −1 and a copy of Z/2n−2Z, generated by the class of 5. Note that for n = 2, Hol(C2n) is the

dihedral group of order 8, which is a split metacyclic group. For n ≥ 3, Hol(C2n) is a split metabelian

group but not metacyclic.

Frobenius studied representations of finite groups over the field of complex numbers. Schur extended

that to study representations of finite groups over subfields of complex numbers, especially the field

of rational numbers. He understood that representations of finite groups over the field of rational

numbers, in general subfields of complex numbers, in much deeper and involved arithmetic aspects.

Schur observed that certain irreducible representations over the field of complex numbers could not be

realized over the field of rational numbers, but that a finite multiple of certain irreducible representations

could always be realized. The number associated with this multiplicity is called the Schur index (see

Section 2).

A fundamental result in non-commutative ring theory is the Artin-Wedderburn theorem (see [1], [12]).

The theorem asserts that the semisimple group ring F [G] is abstractly isomorphic to direct sum of

matrix rings over finite dimensional division algebras over F . This is referred to as the Wedderburn

decomposition of F [G]. The Wedderburn theory, which came around 1914, shows that questions on

representations of a group G over F can be thought of as questions on the algebraic structure of the

group algebra F [G].

In this paper, we first determine the set of all isomorphism types of irreducible representations of

Hol(Cpn) over the field of complex numbers. Thereafter, using the classical Schur theory on group

representations (see [9]), we find the set of all isomorphism types of irreducible representations of

Hol(Cpn) over the field of rational numbers. We prove that the Schur index of any irreducible complex

representation of Hol(Cpn) with respect to the field of rationals is equal to 1. In addition, we also

compute the Wedderburn decomposition of rational group algebra of Hol(Cpn). Note that for p =

2, n = 1, Hol(Cpn) is C2, and for p = 2, n = 2, that is D8, the dihedral group of order 8. For these two

groups, all isomorphism types of irreducible representations and Wedderburn decomposition are well

known to us. In this paper, when p = 2, we consider n ≥ 3.

Let Sn denote the permutation group on n letters. Let |G| denote the order of the groupG. The Cayley’s

theorem states that any group G can be embedded in S|G|. It is interesting to find the least positive

integer n such that G is embedded in Sn. The minimal degree of a faithful permutation representation

of G is the least positive integer n such that G is embedded in Sn, and is denoted by p(G).

In 1963, analogous to permutation group, Wong (see [18]) defined a quasi-permutation group as follows:

If G is a finite linear group of degree n, that is, a finite group of automorphisms of an n-dimensional

complex vector space (or, equivalently, a finite group of non-singular matrices of order n with complex

coefficients) such that the trace of every element of G is a non-negative integer, then G is called a

quasi-permutation group. The reason for this terminology is that, if G is a permutation group of degree
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n, its elements, considered as acting on the elements of a basis of an n-dimensional complex vector

space, induce automorphisms of the vector space forming a group isomorphic to G . The trace of the

automorphism corresponding to an element x of G is equal to the number of letters left fixed by x,

and so is a non-negative integer. Therefore a permutation group of degree n has a representation as a

quasi-permutation group of degree n.

A square matrix over C is called quasi-permutation matrix if it has non-negative integral trace. Thus

every permutation matrix over C is a quasi-permutation matrix. For a group G, let q(G) denote the

minimal degree of a faithful representation of G by quasi-permutation matrices over Q, and let c(G) be

the minimal degree of a faithful representation of G by quasi-permutation matrices over C (see [15]).

It is easy to see that for a group G the following inequalities hold:

c(G) ≤ q(G) ≤ p(G).

In [15], the case of equality has been investigated for abelian groups. For an abelian group, the invariants

c(G) and q(G) coincide, as the Schur index of any irreducible complex representation of an abelian group

is equal to 1. In [5], Behravesh and Ghaffarzadeh proved that if G is a finite p-group then q(G) = p(G).

They also proved that for a finite p-group G, p odd prime, q(G) = p(G) = c(G). The above quantities

have been found for several class of finite groups (see [2, 3, 6, 7, 8, 17, 16]).

In this paper, for G = Hol(Cpn), p a prime, we compute c(G), q(G), p(G), and prove that c(G) = q(G) =

p(G) = pn. A point to be noted is that even though the structure of the holomorph is different for

the case p = 2 from the case of odd primes p, the end result is the same. The method of proof is

accomplished by explicitly describing the equivalence classes of irreducible representations over C and

over Q, and by computing the Wedderburn decomposition of the rational group algebra. To compute

c(G) and q(G), we use the basic method described by Behravesh in [2].

The main theorems are Theorems 6.1, 7.2, 8.1, 9.1, 9.4, 9.5, and 10.10.

2. Schur Index in the Theory of Group Representations

Let G be a group, and let F be a field of characteristic 0. Fix an algebraic closure F of F . Consider

an irreducible representation ρ̃ of G over F . If u is the exponent of G, then the character χ̃ of ρ̃ takes

values in the field F (ζu), where ζu is a primitive u-th root of unity. The character field F (χ̃) of ρ̃ over

F is the extension field of F obtained by adjoining all the values χ̃(g)’s as g varies in G. Let Γ be the

Galois group of F (χ̃) over F. It is well known and easy to see that for each σ, an element of Γ, the values

σ(χ̃(g)) are also values of a character of a representation of G over F . In this manner, starting with ρ̃,

we have obtained |Γ| distinct representations of G, over F ; these representations are said to be Galois

conjugate. This gives a class of mutually inequivalent Galois conjugate representations of G which have

different characters, but all of them have the same character field. Schur’s theory implies that there

exists a unique irreducible F -representation ρ of G such that ρ̃ occurs as an irreducible constituent of

ρ ⊗F F , with some multiplicity; this multiplicity is called the Schur index of ρ̃ with respect to F .

http://dx.doi.org/10.22108/IJGT.2021.128359.1686

http://dx.doi.org/10.22108/IJGT.2021.128359.1686


154 Int. J. Group Theory 11 no. 3 (2022) 151-174 S. S. Pradhan and B. Sury

This Schur index is denoted by mF (ρ̃) or mF (χ̃). We summarize the above discussion in the following

theorem.

Theorem 2.1. [10, Theorem 2] (Schur) Every irreducible F -representation ρ is completely reducible

over F into a certain number inequivalent irreducible F -representations ρ̃ = ρ̃1, ρ̃2, . . . , ρ̃δ with the same

multiplicity m given by

m = mF (χ̃i), (1 ≤ i ≤ δ),

where χ̃i is the character of ρ̃i with χ̃1 = χ̃. The number δ is given by

δ = [F (χ̃i) : F ], (1 ≤ i ≤ δ).

The F -representations ρ̃ = ρ̃1, ρ̃2, . . . , ρ̃δ are Galois conjugates with respect to F . Conversely, each

irreducible F -representation ρ̃ occurs in the decomposition of an unique irreducible F -representation ρ

of G. Moreover, if ψ is the character corresponding to the irreducible F -representation ρ, and Γ is the

Galois group of F (χ̃i) over F , then

ψ = m(
∑
σ∈Γ

χ̃σ),

where χ̃σ(g) = σ(χ̃(g)), for all g ∈ G.

Definition 2.2. Let ρ be an irreducible F -representations of G, and χ be its corresponding character.

The kernel of ρ or χ is defined as {g ∈ G | χ(g) = χ(1)}, and is denoted by ker(ρ) or ker(χ).

Theorem 2.3. G has a faithful irreducible F -representation if and only if G has a faithful irreducible

F -representation.

Proof. Let ρ be a faithful irreducible F -representation of G, and ψ be its corresponding character. By

Theorem 2.1, we have

ψ = m(
∑
σ∈Γ

χ̃σ),

where χ̃ is an irreducible F -character of G and Γ is the Galois group of F (χ̃i) over F . Then it is easy

to see that ker(ψ) = ker(χ̃). This completes the proof. �

3. Algorithms for p(G), c(G) and q(G)

We begin with some basic results on p(G), c(G) and q(G) due to Behravesh [2] for a finite group G.

Recall that p(G) denotes the minimal degree of a faithful permutation representation of G, and that

the minimal degrees of a faithful representation of G by quasi-permutation matrices over the fields C
and Q are denoted by c(G) and q(G) respectively.

Lemma 3.1. [2, Lemma 2.1] Let G be a finite group. Let Hi ≤ G for i = 1, 2, . . . , n, and Ki = ∩x∈GHx
i ,

the core of Hi in G. Suppose that ∩ni=1Ki = {1}. Then p(G) ≤
n∑
i=1

[G : Hi].
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Theorem 3.2. [2, Theorem 2.2] Let G be a finite group. Then

p(G) = min
{ n∑
i=1

[G : Hi]|Hi ≤ G(1 ≤ i ≤ n),∩ni=1coreGHi = 1
}
.

Definition 3.3. Let G be a finite group and χ be a irreducible complex character of G. Let Γ(χ) be the

Galois group of Q(χ) over Q. We define

(1) d(χ) = |Γ(χ)|χ(1).

(2)

m(χ) =


0 if χ = 1G∣∣∣min

{ ∑
σ∈Γ(χ)

χσ(g) : g ∈ G
}∣∣∣ otherwise.

(3) c(χ) =
∑

σ∈Γ(χ)

χσ +m(χ)1G.

Lemma 3.4. Let χ be an irreducible complex character of G. Then mQ(χ)
∑

σ∈Γ(χ) χ
σ, where mQ(χ)

is the Schur index of χ with respect to Q, is an irreducible rational character of G. Moreover,

ker(χ) = ker(mQ(χ)
∑

σ∈Γ(χ) χ
σ), and in particular, χ is faithful if and only if mQ(χ)

∑
σ∈Γ(χ) χ

σ

is also faithful.

The proof follows from Theorem 2.1 and Theorem 2.3.

With notations as in above, let {Ci | 0 ≤ i ≤ r} be the set of Galois conjugacy classes of irreducible

complex characters of G, over Q. For each i ∈ {0, 1, 2, . . . , r}, let ψi be a representative of the Galois

conjugacy class Ci with ψ0 = 1G. Let mi = mQ(ψi) be the Schur index of ψi with respect to Q and

Ki = kerψi be the kernel of ψi. Note that both the Schur index and kernel is independent of the choice

of the representatives. Let Ψi =
∑

χ∈Ci χ. Clearly Ki = kerΨi. For I ⊆ {0, 1, . . . , r}, let KI = ∩i∈IKi.

Theorem 3.5. [2, Theorem 3.6] Let G be a finite group. Then

c(G) = min
{
ξ(1) +m(ξ) : ξ =

∑
i∈I

Ψi,KI = 1, I ⊆ {1, . . . , r},KJ 6= 1 if J ⊂ I
}
,

q(G) = min
{
ξ(1) +m(ξ) : ξ =

∑
i∈I

miΨi,KI = 1, I ⊆ {1, . . . , r},KJ 6= 1 if J ⊂ I
}
.

Corollary 3.6. [2, Theorem 3.7] Let χ ∈ Irr(G), the set of all irreducible complex characters of G.

Then
∑

α∈Γ(χ) χ
α is a rational valued character of G. Moreover c(χ) is a non-negative rational valued

character of G and c(χ)(1) = d(χ) +m(χ).

Lemma 3.7. [2, Corollary 3.11] Let G be a finite group with a unique minimal normal subgroup. Then

(1) c(G) = min
{
c(χ)(1) : χ is a faithful irreducible complex character of G

}
;

(2) q(G) = min
{
mQ(χ)c(χ)(1) : χ is a faithful irreducible complex character of G

}
.

Corollary 3.8. Let G be a finite group with a unique minimal normal subgroup. If the Schur index of

each irreducible complex character with respect to Q is equal to 1, then q(G) = c(G).
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The following result is known, but for the sake of completeness, we include a proof.

Lemma 3.9. Let G = 〈a〉 ∼= Cpn. For m ≥ 1, let Φm(X) denote the m-th cyclotomic polynomial and

ζm a primitive m-th root of unity. Then we have the following description of inequivalent irreducible

Q-representations of G.

(i) Xpn − 1 =
n∏
i=0

Φpi(X) is the decomposition into monic irreducible polynomials over Q.

(ii) The set of isomorphism types of irreducible Q-representations of G is in a bijective correspon-

dence with the set of monic irreducible factors {Φ1(X),Φp(X), . . . ,Φpn(X)} of Xpn − 1 over

Q.

(iii) If ρ0, ρ1, . . . , ρn are n + 1 inequivalent irreducible representations of G over Q, then a matrix

representation of ρi is defined by

ρi(a) = CΦpi (X), i = 0, 1, . . . , n

where CΦpi (X) denotes the companion matrix of Φpi(X).

(iv) G has a unique faithful irreducible representation over Q. If χ is the unique faithful irreducible

character of G over Q then

χ(ai) =


−pn−1 if (i, pn) = pn−1

pn−1(p− 1) if i = 0

0 otherwise.

Proof. The proof of (i) follows from the well known result by Gauss that cyclotomic polynomials are

irreducible over Q.

Now we prove (ii). Consider the map ψ : Q[X]→ Q[G], and is defined by: f(X) 7→ f(a). Since ψ is a

ring epimorphism, Q[G] ∼= Q[X]/〈Ker(ψ)〉. So, we have

Q[G] ∼=
Q[X]

〈Xpn − 1〉
=

Q[X]

〈
n∏
i=0

Φpi(X)〉
.

From the Chinese remainder theorem, we can write

Q[G] ∼=
n⊕
i=0

Q[X]

〈Φpi(X)〉
.

Note that under the above isomorphism, a is mapped to (X+〈Φ1(X)〉, X+〈Φp(X)〉, . . . , X+〈Φpn(X)〉).
As Φpi(X) is an irreducible polynomial over Q, then Q[X]/〈Φpi(X)〉 is a field. Hence Q[G] has n + 1

simple components Q,Q(ζp), . . . ,Q(ζpn), as a consequence of that G has n + 1 irreducible representa-

tions over Q, and also they have a bijective correspondence with the set of monic irreducible factors

{Φ1(X),Φp(X), . . . ,Φpn(X)} of Xpn − 1 over Q. This completes the proof.
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Let ρi be the irreducible representation corresponding to the simple component
Q[X]

〈Φpi(X)〉
. We consider

Q[X]/〈Φpi(X)〉 as the representation space of ρi. Then ρi is defined explicitly as follows.

ρi(a) :
Q[X]

〈Φpi(X)〉
→ Q[X]

〈Φpi(X)〉
acts by multiplication of [X] = X + 〈Φpi(X)〉.

Note that the degree of the representation ρi is equal to the degree of Φpi(X), that is, φ(pi). We can

take [1], [X], . . . , [Xφ(pi)−1] to be an ordered basis of Q[X]
〈Φpi (X)〉 , and with respect to that basis the matrix

for ρi(a) is CΦpi (X), where CΦpi (X) denotes the companion matrix of Φpi(X). This completes the proof

of (iii).

It is easy to see that G has φ(pn) many faithful irreducible complex representations, and they are all

Galois conjugates with respect to Q. Their direct sum gives the unique faithful irreducible represen-

tation of G over Q. The values of the character χ corresponding to the unique faithful irreducible

Q-representation can be obtained from (iii), by taking traces of the various powers of the companion

matrix CΦpn (X). This completes the proof of the theorem. �

4. Wigner-Mackey Method of Little Groups

The groups we study are holomorphs that are semi-direct products of a normal abelian subgroup by

a subgroup. To find the set of irreducible complex representations of such a group, we describe the

Wigner-Mackey method of little groups.

Let G be a semidirect product of a normal abelian subgroup N by a subgroup H. Since N is abelian,

the set of all inequivalent irreducible complex representations of N are 1-dimensional. Let N̂ denote

the set of all complex irreducible representations of N .

Now G acts on N by conjugation, and this action induces an action on N̂ as follows:

χ ∈ N̂ , g ∈ G, for all a ∈ N,we have χg(a) = χ(g−1ag).

By the definition of conjugate representations, χg is the same as conjugate representation of χ by g ∈ G.

Let Iχ be the stabiliser subgroup of χ in G. Note that since N is abelian, we have that N ≤ Iχ. Let

Hχ := Iχ ∩ H. Then Iχ is a semidirect product of N by Hχ. It can be shown that any χ ∈ N̂ can

be extended to a homomorphism from Iχ to C∗, in such a way that this extended homomorphism is

the trivial map when restricted to Hχ. So we can regard χ as an element of Îχ, the set of all one

dimensional complex representations of Iχ.

Further if ρ is a complex representation of Hχ and the canonical projection of Iχ on Hχ is composed

with ρ, then we get a representation of Iχ. Thus we can form the tensor product representation χ⊗ ρ
of Iχ and deg(χ⊗ ρ) = deg ρ.

Theorem 4.1. [13, Proposition 2.5] Let G be a finite group which is a semi-direct product of an abelian

group N by a subgroup H. Let O1,O2, . . . ,Ot be the distinct orbits under the action of G on N̂ and

let χj be a representative of the orbit Oj. Let Ij denote the stabiliser of χj and let Hj := Ij ∩H. For
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any irreducible representation of Hj, let θj,ρ denote the representation of G induced from the irreducible

representation χj ⊗ ρ of Ij. Then

(1) θj,ρ is irreducible.

(2) If θj,ρ and θj′ ,ρ′ are isomorphic, then j = j
′

and ρ is isomorphic to ρ
′
.

(3) Every irreducible representation of G is isomorphic to one of the θj,ρ.

5. A Presentation of Hol(Cpn), p a Prime

In this section, we describe presentations of Hol(Cpn) which will be useful to us; we consider the cases

of p odd and p = 2 separately. We first note:

Remark 5.1. (1) For p odd, Hol(Cpn) ∼= Cpn o Cpn−1(p−1) is a split metacyclic group of order

p2n−1(p− 1).

(2) For n ≥ 3, Hol(C2n) ∼= C2n o (C2n−2 ×C2) is a metabelian 2-group (which is not metacyclic) of

order 22n−1.

Let p be an odd prime and Cpn = 〈x〉. Then Aut(Cpn) = 〈fr|fr : x 7→ xr〉, where r is coprime to pn. It

is well known that Aut(Cpn) ∼= (Z/pnZ)∗, the group of units of the ring Z/pnZ and Aut(Cpn) ∼= A×B,

where A = 〈τ : x 7→ xs〉 ∼= Cp−1, s coprime to p− 1 and B = 〈σ : x 7→ x1+p〉 ∼= Cpn−1 .

Then, for odd primes p, Hol(Cpn) has a presentation:

Hol(Cpn) = 〈a, b | apn = bp
n−1(p−1) = 1, b−1ab = ar〉,

where pn−1(p− 1) is the order of r modulo pn.

Let p = 2 and C2n = 〈x〉. Then Aut(C2n) = 〈fr | fr : x 7→ xr〉, where r is coprime to 2n.

For n ≥ 3, Aut(C2n) ∼= (Z/2nZ)∗, the group of units of the ring Z/2nZ and Aut(C2n) ∼= A×B, where

A = 〈σ : x 7→ x5〉 ∼= C2n−2 and B = 〈τ : x 7→ x−1〉 ∼= C2.

Then, for n ≥ 3, Hol(C2n) has a presentation:

Hol(C2n) = 〈a, b, c | a2n = b2
n−2

= c2 = 1, b−1ab = a5, c−1ac = a−1, c−1bc = b〉.

6. Complex Representations of Hol(Cpn), p Odd

In this section, we find the set of all inequivalent irreducible representations of Hol(Cpn), p odd, over

C.

Let G = Hol(Cpn), p odd. As we have seen before G has a presentation:

G = 〈a, b | apn = 1, bp
n−1(p−1) = 1, b−1ab = ar〉,

where r has multiplicative order pn−1(p− 1) modulo pn.

Let N = 〈a〉. Let N̂ denote the set of all irreducible complex representations of N , and which are given

by

χ̃i(a) = ζi, i = 0, 1, 2, . . . , pn − 1
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where ζ is a primitive pn-th root of unity.

Now, G acts on N̂ by conjugation, with the subgroup N acting trivially. So, this induces an action of

G/N on N̂ . There are n+ 1 orbits, say, O0,O1, . . . ,On which are described as follows.

O0 :=the orbit of χ̃0.

For 1 ≤ k ≤ n,Ok :=the orbit of χ̃pn−k .

Explicitly,

O0 ={χ̃0}.

and

Ok ={χ̃pn−k , χ̃r.pn−k , . . . , χ̃rφ(pk)−1.pn−k
}, k = 1, 2, . . . , n.

Further, the stabilizer subgroup of χ̃0 is G itself and the stabilizer subgroup of χ̃pn−k (for 1 ≤ k ≤ n)

is 〈a, bp(n−1)−(n−k)(p−1)〉.
Corresponding to the the orbit O0, the irreducible complex representations of G are given by

ρ̃0,ω(a) = 1, ρ̃0,ω(b) = ω,

where ω is any pn−1(p− 1)-th root of unity. In this manner, we obtain φ(pn) degree 1 representations

of G; these exhaust all the degree 1 complex representations of G.

Further, corresponding to each orbit Ok (for 1 ≤ k ≤ n), there are o(b)/|Ok| irreducible complex

representations of G, and they are of degree φ(pk). These irreducible complex representations are given

explicitly as:

ρ̃k,ω(a) =



ζp
n−k

0 0 · · · 0

0 ζrp
n−k

0 · · · 0

0 0 ζr
2pn−k · · · 0

...
...

...
. . .

0 0 0 · · · ζr
φ(pk)−1pn−k


, ρ̃k,ω(b) =



0 0 0 · · · ω

1 0 0 · · · 0

0 1 0 · · · 0
...

. . .
...

0 0 · · · 1 0


,

where ζ is a primitive pn-th root of unity and ω is any o(b)/|Ok| = pn−k-th root of unity.

Noting that φ(pn).1 +
∑n

k=1 p
n−k|φ(pk)|2 = |G|, it follows that ρ̃k,w’s (for 0 ≤ k ≤ n) exhaust all the

inequivalent irreducible complex representations of G.

We summarise the above discussion in the following theorem.

Theorem 6.1. Let p be an odd prime and consider the group G = Hol(Cpn) for n ≥ 1. Consider the

presentation of G:

G = 〈a, b | apn = 1, bp
n−1(p−1) = 1, b−1ab = ar〉,
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where r has multiplicative order pn−1(p− 1) modulo pn. Then, with notations ρ̃k,ω, and Ok, 0 ≤ k ≤ n
as above, we have the following.

1. G has φ(pn) many degree 1 complex representations, and they are: ρ̃0,ω, where ω varies over

the set of pn−1(p− 1)-th roots of unity.

2. Corresponding to orbit Ok, k = 1, 2, . . . , n, G has pn−k number of irreducible complex repre-

sentations of degree φ(pk) and they are: ρ̃k,ω, where ω varies over the set of pn−k-th roots of

unity.

3. G has (1 + p+ · · ·+ pn)− pn−1 many inequivalent irreducible complex representations.

4. Corresponding to the orbit On, there is only one irreducible complex representation, which is of

degree is φ(pn). In fact, this is the unique faithful irreducible complex representation of G.

We briefly illustrate this theorem through an example.

Example 6.2. Let G = Hol(C9). G has a presentation:

G = 〈x, y | a9 = b6 = 1, b−1ab = a2〉.

The set of all inequivalent irreducible complex representations of N = 〈a〉 are given by

χ̃i(a) = ζi, i = 0, 1, 2, . . . , 8

where ζ is a primitive 32-th root of unity. G is acting on the set of all inequivalent irreducible complex

representations of N by conjugation. There are three orbits under this action, and they are given by

O0 = {χ̃0}; O1 = {χ̃3, χ̃6}; O2 = {χ̃1, χ̃2, χ̃4, χ̃8, χ̃7, χ̃5}.
Note that 2 has order φ(9) modulo 9.

Corresponding to O0, there are six irreducible representations of degree 1, and they are defined by

ρ̃0,ζi6
: a 7→ 1, b 7→ ζi6 (0 ≤ i ≤ 5),

where ζ6 is a primitive 6-th root of unity.

Corresponding to O1, there are three irreducible representations of degree 2, and they are defined by

[ρ̃1,ωi(a)] =

[
ω 0

0 ω2

]
, [ρ̃1,ωi(b)] =

[
0 ωi

1 0

]
(0 ≤ i ≤ 2),

where ω is a primitive cube root of unity.

Corresponding to O2, there is one irreducible representation of degree 6, and which is defined by

[ρ̃2,1(a)] =



ζ 0 0 0 0 0

0 ζ2 0 0 0 0

0 0 ζ4 0 0 0

0 0 0 ζ8 0 0

0 0 0 0 ζ7 0

0 0 0 0 0 ζ5


, [ρ̃2,1(b)] =



0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


,
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where ζ is a primitive 9-th root of unity. Thus G has 1+3+32−3 = 10 inequivalent irreducible complex

representations.

7. Rational Representations of Hol(Cpn), p Odd

In this section, we consider as in the previous section, the groups Hol(Cpn), p odd but now we describe

the set of all inequivalent irreducible representations over Q. We will use information on Schur index.

We use the same notations as in the previous section.

Lemma 7.1. The Schur index of any irreducible complex representation of Hol(Cpn), p odd, with respect

to Q is equal to 1.

Proof. Let G = Hol(Cpn), p odd. It is clear that the Schur index of any degree 1 complex representation

of G with respect to Q is equal to 1. Now we show that the Schur index of any non-linear irreducible

complex character of G with respect to Q is equal to 1.

Let H = 〈a, bp−1〉. Note that H is a normal Hall subgroup of G and G/H ∼= Cp−1. So by Schur-

Zassenhaus theorem (see [14, Schur-Zassenhaus Theorem, Chapter 3]), H has a complement in G.

Let χ be a non-linear irreducible complex character of G. As we have seen before, χ = φG for some

irreducible complex character φ of H. Since φ is an irreducible complex character of the p-group H,

then φ(1) is either 1 or a power of p. Then by [11, Lemma 10.8], the Schur index of χ with respect to

Q divides φ(1). So the Schur index of χ with respect to Q is either 1 or a power of p. Again as χ = φG

and G/H ∼= Cp−1, the Schur index of χ with respect to Q is a divisor of p − 1. As a consequence of

that the Schur index of χ with respect to Q is equal to 1. This completes the proof. �

To find all the inequivalent irreducible rational representations of G, we divide the set ΩG of all in-

equivalent irreducible Q-representations of G into two parts:

(1) The irreducible Q-representations whose kernels contain G
′
.

(2) The irreducible Q-representations whose kernels do not contain G
′
.

The irreducible Q-representations whose kernels contain G
′

can be obtained by the lifts of the irre-

ducible Q-representations of G/G
′
. Moreover, they are in a bijective correspondence with the Galois

conjugacy classes of complex degree 1 representations. The irreducible Q-representations whose kernels

do contain G
′

is in a bijective correspondence with the Galois conjugacy classes of irreducible complex

representations of degrees equal to 1.

Consider the orbit O0. As we have seen in Section 6, the corresponding irreducible complex represen-

tations are ρ̃0,ω, where ω varies over the set of all (pn − pn−1)-th root of unity, and moreover they are

all one dimensional. Two such representations ρ̃0,ω and ρ̃0,ω′ are Galois conjugate over Q if and only if

the complex numbers ω and ω′ are Galois conjugate over Q; that is, their orders are equal. The number

of Q-irreducible representations, which are obtained in this way, is equal to the number of divisors

of φ(pn), where φ is the Euler’s phi function. Moreover they are determined by the factorization of

Xφ(pn) − 1 into irreducible polynomials over Q.
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Consider the orbits Ok, k = 1, 2, . . . , n. For each orbit Ok, and for any two pn−k-th roots of unity ω, ω′,

the irreducible complex representations ρ̃k,ω and ρ̃k,ω′ are Galois conjugate over Q if and only if the

complex numbers ω and ω′ are Galois conjugate over Q. Let ωi be a primitive pi-th root of unity. Then

for k = 1, 2, . . . , n and 0 ≤ i ≤ n− k, let

ρk,i =
⊕
σ

(ρ̃k,ωi)
σ,

where σ runs over the Galois group of Q(ωi) over Q. By Theorem 2.1 and Lemma 7.1, ρk,i is irreducible

over Q.

Thus for each k ∈ {1, 2, . . . , n}, the pn−k irreducible complex representations ρ̃k,ω are partitioned into

(n − k) + 1 Galois conjugacy classes over Q, the (direct) sum of irreducible complex representations

in each Galois conjugacy class gives an irreducible rational representation of G. Thus the number of

rational irreducible representations of G which do not contain G′ in their kernel is

n∑
k=1

(n− k + 1) = n+ (n− 1) + · · ·+ 1 =
n(n+ 1)

2
.

The above discussion can be summarised as the following theorem:

Theorem 7.2. Let p be an odd prime and consider the group G = Hol(Cpn) as before, with the

presentation:

G = 〈a, b | apn = 1, bp
n−1(p−1) = 1, b−1ab = ar〉,

where r has multiplicative order pn−1(p− 1) modulo pn. For m ≥ 1, let Φm(X) denote m-th cyclotomic

polynomial. Then we have the following results on its irreducible representations over Q:

1. The set of all inequivalent irreducible Q-representations of G whose kernels contain G
′

is in a

bijective correspondence with the Galois conjugacy classes of complex degree 1 representations,

and also in a bijective correspondence with monic irreducible polynomials Φd(X), as d varies

over divisors of φ(pn).

2. The set of all inequivalent irreducible Q-representations of G whose kernels do not contain G
′

is

in a bijective correspondence with the set of all monic irreducible polynomials Φ1(X),Φp(X), . . . ,Φpn−k(X),

where k runs over {1, 2, . . . , n}.
3. The number of inequivalent irreducible Q-representations of G is equal to d + n(n+1)

2 , where d

is the number of divisors of φ(pn).

8. Rational Wedderburn decomposition of Hol(Cpn), p odd

As we have information on the Schur indices form the Lemma 7.1, and the description of irreducible

representations over Q from the previous theorem, we may easily find the Wedderburn decomposition

of the group algebra of Hol(Cpn), p odd, over Q. With the same notations as in the previous section,

we prove:
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Theorem 8.1. Let G = Hol(Cpn), p odd. For m ≥ 1, let ζm denote a primitive m-th root of unity.

The Wedderburn decomposition of Q[G] is

Q[G] =
⊕

d|φ(pn)

Q(ζd)
n−k⊕
l=0

(
n⊕
k=1

Mφ(pk)(Q(ζpl))).

Proof. Let ρ : G → GL(V ) be an irreducible Q-representation of G. Let the minimal 2-sided ideal of

Q[G] corresponding to ρ be abstractly isomorphic to Mn(D), for suitable n, and a division ring D. Let

Z be the center of D. By Lemma 7.1, the Schur index of any irreducible complex representation of

G with respect to Q is equal to 1. Therefore the Schur index of D (or Mn(D)) over Q is equal to 1,

and consequently D = Z. By Theorem 2.1, ρ is completely reducible over C into a certain number

inequivalent irreducible C-representations ρ̃ = ρ̃1, ρ̃2, . . . , ρ̃δ with the same multiplicity 1, and they

are Galois conjugates with respect to Q. Let χ̃i is the character of ρ̃i. Then by [10, Theorem 3],

Z ∼= F (χ̃i) and δ = [F (χ̃i), F ]. Again as the Schur index of any irreducible complex representation

of G with respect to Q is equal to 1, then n is equal to the common degree of the representations

ρ̃ = ρ̃1, ρ̃2, . . . , ρ̃δ.

If ρ is the irreducible Q-representation whose kernel contain G
′
, then the minimal 2-sided ideal of Q[G]

corresponding to ρ be abstractly isomorphic to Q(ζd), where d is a divisor of φ(pn).

If ρ is an irreducible Q-representation whose kernel does not contain G
′
, then for some k ∈ {1, 2, . . . , n}

and 0 ≤ l ≤ n− k,

ρ = ρk,l =
⊕
σ

(ρ̃k,ζ
pl

)σ,

where ζpl is a primitive pl-th root of unity and σ runs over the Galois group of Q(ζpl) over Q. Note that

the degree of ρ̃k,ζ
pl

is φ(pk) and the character field of ρ̃k,ζ
pl

over Q is Q(ζpl). Therefore the minimal

2-sided ideal of Q[G] corresponding to ρ is abstractly isomorphic to Mφ(pk)(Q(ζpl)). This completes the

proof. �

Let us illustrate Theorem 7.2 and the previous theorem through an example.

Example 8.2. Let G = Hol(C9). G has a presentation of the form:

G = 〈a, b | a9 = b6 = 1, b−1ab = a2〉.

We have seen in Example 6.2 that corresponding to the orbit O0 = {1}, there are six irreducible

representations of degree 1.

Over Q,

X6 − 1 = φ1(X)φ2(X)φ3(X)φ6(X) = (X − 1)(X + 1)(X2 +X + 1)(X2 −X + 1)

is the factorization into monic irreducible polynomials. Therefore, there are four Q-irreducible repre-

sentations whose kernels contain G
′
, and they can be realized as

ρ0,1(a) 7→ 1, ρ0,1(b) 7→ 1;

ρ0,−1(a) 7→ 1, ρ0,−1(b) 7→ −1;
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[ρ0,ω(a)] =

[
1 0

0 1

]
, [ρ0,ω(b)] =

[
0 −1

1 −1

]
;

[ρ0,ζ6(a)] =

[
1 0

0 1

]
, [ρ0,ζ6(b)] =

[
0 −1

1 1

]
,

where ω is a primitive cube root of unity and ζ6 is a primitive 6-th root of unity.

In general, we get companion matrices of the irreducible polynomial factors.

We have seen in Example 6.2 that corresponding to the orbit O1, there are three irreducible representa-

tions of degree 2.

The representation ρ̃1,1 is realizable over Q, and therefore irreducible.

The representations ρ̃1,ω and ρ̃1,ω2 are Galois conjugate over Q, and hence ρ̃1,ω ⊕ ρ̃1,ω2 irreducible over

Q.

The representation ρ̃2,1 is realizable over Q, and hence irreducible over Q.

The Wedderburn decomposition of Q[G] is:

Q[Hol(C9)] =
⊕
d|6

Q(ζd)
⊕

M2(Q)
⊕

M2(Q(ω))
⊕

M6(Q).

9. Representations of Hol(Cpn), p = 2

In this section, we consider the case p = 2. That is, we find the set of all inequivalent irreducible

representations of Hol(Cpn), p = 2, over C and Q. We will see that the end results are analogous to

the odd case but the intermediary descriptions are different and more complicated as the group is not

metacyclic when n > 2.

9.1. Complex Irreducible Represntations of Hol(Cpn), p = 2. We have seen that for n ≥ 3,

Hol(C2n) has a presentation of the form:

G = Hol(C2n) = 〈a, b, c | a2n = b2
n−2

= c2 = 1, b−1ab = a5, c−1ac = a−1, c−1bc = b〉.

Let N = 〈a〉 ∼= C2n . Let N̂ denote the set of all inequivalent irreducible representations of N over C.

The set of all irreducible representations of N are given by

χ̃i(a) = ζi, i = 0, 1, 2, . . . , 2n − 1

where ζ is a primitive 2n-th root of unity. Now G is acting on N̂ by conjugation, N is acting trivially,

which induces an action of G/N on N̂ . There are n+ 1 distinct orbits. Let O0 denote the orbit of χ̃0.

Let Ok denote the orbit of χ̃2n−k , k = 1, 2, . . . , n. In fact, O0,O1, . . . ,On are all the distinct n+1 orbits.

One can see that orbits O0 and O1 are singleton sets, and so the corresponding stabilizer subgroup in

G is G = 〈a, b, c〉 itself. Let Stab(χ̃2n−k) denote the stabilizer subgroup of χ̃2n−k , k = 2, . . . , n. One can

see that

Stab(χ̃2n−k) = 〈a, b2(n−2)−(n−k)〉, k = 2, . . . , n.
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So for each k = 2, . . . , n, Stab(χ̃2n−k) is of order 22n−k. Corresponding to the orbits O0 and O1,

there are 2n−1 many irreducible complex representations of degree 1. Corresponding to each orbit

Ok, k = 2, . . . , n, there are
Stab(χ̃

2n−k )

|N | = 2n−k many distinct irreducible complex representations of G,

and of degree |Ok| = φ(2k) = 2k−1.

Corresponding to the orbit O0, the irreducible complex representations of G are given by

ρ̃0,ω,1(a) = 1, ρ̃0,ω,1(b) = ω, ρ̃0,ω,1(c) = 1

and

ρ̃0,ω,−1(a) = 1, ρ̃0,ω,−1(b) = ω, ρ̃0,ω,−1(c) = −1,

where ω is any 2n−2-th root of unity. In this way, we obtain 2n−1 distinct irreducible complex repre-

sentations of degree 1.

Corresponding to the orbit O1, the irreducible complex representation of G are given by

ρ̃1,ω,1(a) = −1, ρ̃1,ω,1(b) = ω, ρ̃1,ω,1(c) = 1

and

ρ̃1,ω,−1(a) = −1, ρ̃1,ω,−1(b) = ω, ρ̃1,ω,−1(c) = −1,

where ω is a primitive 2n−2-th root of unity. In this way, we obtain 2n−1 distinct irreducible complex

representations of degree 1.

Thus we have obtained 2n number of degree 1 irreducible complex representations of G; these exhaust

all the degree 1 complex representations of G.

Corresponding to the orbit Ok, k = 2, . . . , n, the irreducible complex representation of G are given

explicitly as:

ρ̃k,ω(a) =



ζ2
n−k

0 · · · 0 0 0 · · · 0

0 ζ5.2
n−k

· · · 0 0 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.
. . .

.

.

.

0 0 · · · ζ5
2(n−2)−(n−k)−1.2n−k

0 0 · · · 0

0 0 · · · 0 ζ−2n−k
0 · · · 0

0 0 · · · 0 0 ζ−5.2n−k
· · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · 0 0 0 · · · ζ−52
(n−2)−(n−k)−1.2n−k


,

ρ̃k,ω(b) =



0 0 · · · ω 0 0 · · · 0

1 0 · · · 0 0 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.
. . .

.

.

.

0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 0 · · · ω

0 0 · · · 0 1 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · 0 0 0 · · · 0


, ρ̃k,ω(c) =



0 0 · · · 0 1 0 · · · 0

0 0 · · · 0 0 1 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.
. . .

.

.

.

0 0 · · · 0 0 0 · · · 1

1 0 · · · 0 0 0 · · · 0

0 1 · · · 0 0 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · 1 0 0 · · · 0


.

where ζ is a primitive 2n-th root of unity and ω is any 2n−k-th root of unity.
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In the above discussion, we have obtained (2n−1 +2n−1)+
∑n

k=2 2n−k = (1+2+ · · ·+2n)−2n−1 distinct

complex irreducible representations of G. Noting that

2n−1(1) + 2n−1(1) + 2n−2(2)2 + · · ·+ 2(2n−2)2 + (2n−1)2

= 2n + 2n + 2n+1 + · · ·+ 22n−3 + 22n−2

= 2n + 2n(1 + 2 + 22 + · · ·+ 2n−2)

= 2n + 2n(2n−1 − 1) = 22n−1 = |G|.

It follows that these exhaust all the inequivalent irreducible complex representations of G.

Summarising the above discussion, we obtain the following theorem.

Theorem 9.1. Consider the group G = Hol(C2n) which has a presentation:

G = Hol(C2n) = 〈a, b, c | a2n = b2
n−2

= c2 = 1, b−1ab = a5, c−1ac = a−1, c−1bc = b〉

for n ≥ 3. Then, we have the following.

1. G has 2φ(2n)(= 2n) many degree 1 complex representations, and they are: ρ̃0,ω,±1 and ρ̃1,ω,±1,

where ω varies over the set of 2n−2-th roots of unity.

2. Corresponding to orbit Ok, k = 2, . . . , n, G has 2n−k number of irreducible complex representa-

tions of degree φ(2k) and they are: ρ̃k,ω, where ω varies over the set of 2n−k-th roots of unity.

3. G has (1 + 2 + · · ·+ 2n)− 2n−1 many inequivalent irreducible complex representations.

4. Corresponding to the orbit On, there is only one irreducible complex representation, which is of

degree is φ(2n). In fact, this is the unique faithful irreducible complex representation of G.

As mentioned in the beginning of this section, the form of the above theorem is exactly similar to that

of the analogous theorem when p is odd, but the descriptions of the complex irreducible representations

was more involved in the case p = 2.

Here is an example illustrating the Theorem 9.1. We use the notations as in the above.

Example 9.2. Let G = Hol(C25); it has a presentation

〈a, b, c | a25 = b2
3

= c2 = 1, b−1ab = a5, c−1ac = c−1, c−1bc = b〉.

Let N = C25 = 〈a〉. Let N̂ denote the set of all inequivalent irreducible representations of N over the

field of complex numbers. The set of all inequivalent irreducible complex representations of N are given

by

χ̃i(a) = ζ25−i, i = 0, 1, 2, . . . , 25 − 1.

G is acting on N̂ by conjugation, and N is acting trivially. This induces an action of G/N on N̂ .

Let O0 denote the orbit of χ̃0 and Ok denote the orbit of χ̃25−k , k = 1, 2, 3, 4, 5.

Corresponding to the orbit O0, the complex irreducible representations of G are given by

ρ̃0,ω,1(a) = 1, ρ̃0,ω,1(b) = ω, ρ̃0,ω,1(c) = 1
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and

ρ̃0,ω,−1(a) = 1, ρ̃0,ω,−1(b) = ω, ρ̃0,ω,−1(c) = 1,

where ω is any 23-th root of unity. In this way, we obtain 24 distinct irreducible complex representations

of degree 1.

Corresponding to the orbit O1, the complex irreducible representation of G are given by

ρ̃1,ω,1(a) = 1, ρ̃1,ω,1(b) = ω, ρ̃1,ω,1(c) = 1

and

ρ̃1,ω,−1(a) = 1, ρ̃1,ω,−1(b) = ω, ρ̃1,ω,−1(c) = −1,

where ω is a primitive 23-th root of unity. In this way, we obtain 24 distinct irreducible complex

representations of degree 1.

Corresponding to the orbit Ok, k = 2, 3, 4, 5, the complex irreducible representation of G are given by

ρ̃k,ω(a) =



ζ2
5−k

0 · · · 0 0 0 · · · 0

0 ζ5.2
5−k

· · · 0 0 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · ζ5
2(5−2)−(5−k)−1.25−k

0 0 · · · 0

0 0 · · · 0 ζ−25−k
0 · · · 0

0 0 · · · 0 0 ζ−5.25−k
· · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · 0 0 0 · · · ζ−52
(5−2)−(5−k)−1.25−k


,

ρ̃k,ω(b) =



0 0 · · · ω 0 0 · · · 0

1 0 · · · 0 0 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 0 · · · ω

0 0 · · · 0 1 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · 0 0 0 · · · 0


, ρ̃k,ω(c) =



0 0 · · · 0 1 0 · · · 0

0 0 · · · 0 0 1 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.
. . .

.

.

.

0 0 · · · 0 0 0 · · · 1

1 0 · · · 0 0 0 · · · 0

0 1 · · · 0 0 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · 1 0 0 · · · 0


.

where ζ is a primitive 25-th root of unity and ω is any 25−k-th root of unity.

Thus G has (1 + 2 + · · ·+ 25)− 24 distinct irreducible complex representations.

9.2. Rational Representations of Hol(Cpn), p = 2. Now, we turn to a description of the set of

inequivalent irreducible Q-representations of Hol(C2n). This is again more complicated than the odd p

case but the form of the end result is the same. We use the same notations as in the previous section.

Lemma 9.3. The Schur index of any irreducible complex representation of Hol(C2n) with respect to Q
is equal to 1.

Proof. Let G = Hol(C2n). We have seen that for n ≥ 3, Hol(C2n) has a presentation of the form:

G = Hol(C2n) = 〈a, b, c | a2n = b2
n−2

= c2 = 1, b−1ab = a5, c−1ac = a−1, c−1bc = b〉.
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Each irreducible complex representation in the orbit O0 and O1 extends φ(2n) distinct ways to G, and

they are of degree 1. So the Schur index of each such irreducible complex representation with respect

to Q is equal to 1.

As we have seen in the previous section that for each k, (2 ≤ k ≤ n), there are 2n−k many irreducible

complex representations of G, and they are of degree φ(2k) = 2k−1. Each of them is induced from an

one dimensional representation of the subgroup 〈a, b2(n−2)−(n−k)〉, which can be obtained by extension

of the irreducible representation χ̃2n−k of the subgroup 〈a〉 to 〈a, b2(n−2)−(n−k)〉. We have seen that

χ̃2n−k extends 2n−k many distinct ways to 〈a, b2(n−2)−(n−k)〉. We denote all the 2n−k extensions of

χ̃2n−k by χ̃2n−k,ω, where ω runs over the set of all the 2n−k-th roots of unity. They are defined by

χ̃2n−k,ω(a) = ζ2n−k , where ζ is a primitive 2n-th root of unity, and χ̃2n−k,ω(b2
(n−2)−(n−k)

) = ω, where

ω runs over the set of all the 2n−k-th roots of unity. By Clifford’s theorem (see [11, Theorem 6.2]),

ρ̃k,ω = χ̃G
2n−k,ω

is irreducible. It is easy to see that the character field of each χ̃2n−k,ω over Q is

Q(ζ2n−k , ω) and the character field of ρ̃k,ω is equal to Q(ω). If the character field of ρ̃k,ω contains
√
−1

then by Roquette’s theorem (see [11, Theorem 10.14]), the Schur index of ρ̃k,ω with respect to Q is

equal to 1. For each k, (2 ≤ k ≤ n− 1), there are two irreducible complex representations of G, namely

ρ̃k,1 and ρ̃k,−1, with character field Q. It can be easily shown that the Schur index of ρ̃k,1, ρ̃k,−1 with

respect to Q is equal to 1.

For k = n, there is only one irreducible complex representation of G of degree φ(2n) = 2n−1, which is

induced representation of χ̃1 to G. Since N = 〈a〉 has a complement in G, by Lemma 10.8 in [11], the

Schur index of χ̃G1 with respect to Q is equal to 1. This completes the proof. �

Now, thanks to this Lemma, we may find all the inequivalent irreducible rational representations of G

as we did in the odd p case.

Once again, the set ΩG of all inequivalent irreducible Q-representations of G is comprised of two parts:

(1) The irreducible Q-representations whose kernels contain G
′
.

(2) The irreducible Q-representations whose kernels do not contain G
′
.

The irreducible Q-representations whose kernels contain G
′

can be obtained by the lifts of the irre-

ducible Q-representations of G/G
′
. Moreover, they are in a bijective correspondence with the Galois

conjugacy classes of complex degree 1 representations. The irreducible Q-representations whose kernels

do contain G
′

is in a bijective correspondence with the Galois conjugacy classes of irreducible complex

representations of degrees equal to 1.

Consider the orbit O0. The corresponding irreducible complex representations are ρ̃0,ω,±1, where ω is a

2n−2-th root of unity, are all of degree 1. For any two 2n−2-th roots of unity ω, ω′, two representations

ρ̃0,ω,1 and ρ̃0,ω′,1 are Galois conjugate over Q if and only if the complex numbers ω and ω′ are Galois

conjugate over Q. Similarly, two representations ρ̃0,ω,−1 and ρ̃0,ω′,−1 are Galois conjugate over Q if and

only if the complex numbers ω and ω′ are Galois conjugate over Q. So the total number of irreducible

Q-representations, which are obtained in this way, is equal to 2(n− 1).
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Consider the orbit O1. The corresponding complex irreducible representations are ρ̃1,ω,±1, where ω is

a 2n−2-th root of unity. For any two 2n−2-th roots of unity ω, ω′, two representations ρ̃1,ω,1 and ρ̃1,ω′,1

are Galois conjugate over Q if and only if the complex numbers ω and ω′ are Galois conjugate over Q.

Similarly, two representations ρ̃1,ω,−1 and ρ̃1,ω′,−1 are Galois conjugate over Q if and only if the complex

numbers ω and ω′ are Galois conjugate over Q. So the total number of irreducible Q-representations,

which are obtained in this way, is equal to 2(n− 1).

Thus in this way, we obtain 4(n− 1) many irreducible Q-representations of G.

Consider the orbits Ok, 2 ≤ k ≤ n. For each orbit Ok (of size φ(2k)), and for any two 2n−k-th roots of

unity ω, ω′, the irreducible complex representations ρ̃k,ω and ρ̃k,ω′ are Galois conjugates over Q if and

only if the complex numbers ω and ω′ are Galois conjugates over Q. Let ωj denote a primitive 2j-th

root of unity.

Then for 2 ≤ k ≤ n and 0 ≤ i ≤ n− k, let

ρk,i =
⊕
σ

(ρ̃k,ωi)
σ,

where σ runs over the Galois group of Q(ωi) over Q.

Clearly the character corresponding to ρk,i is rational valued. By Lemma 9.3, as the Schur index of

ρ̃k,ωi with respect to Q is equal to 1, then ρk,i is an irreducible representation of G over Q. Thus for

each k (2 ≤ k ≤ n), 2n−k many irreducible complex representations ρ̃k,ω are partitioned into (n−k)+1

Galois conjugacy classes over Q, the (direct) sum of irreducible complex representations in each Galois

conjugacy class gives an irreducible rational representation of G.

Hence, the number of irreducible Q-representations of G which do not contain G′ in their kernel equals

n∑
i=2

(n− k + 1) = (n− 1) + (n− 2) + · · ·+ 1 =
n(n− 1)

2
.

So, the total number of inequivalent irreducible Q-representations of G equals 4(n− 1) + n(n− 1)/2.

We may summarise the above discussion in the following theorem:

Theorem 9.4. Consider the holomorph G = Hol(C2n) for n ≥ 3. For m ≥ 1, let Φm(X) denote

m-th cyclotomic polynomial. Then, we have the following description of its inequivalent, irreducible

representations over Q:

1. The set of all inequivalent irreducible Q-representations of G whose kernels contain G
′

is in a

bijective correspondence with the Galois conjugacy classes of complex degree 1 representations.

The number of such irreducible Q-representations is equal to 4(n− 1).

2. The set of all inequivalent irreducible Q-representations of G whose kernels do not contain G
′

is in a bijective correspondence with the set of all monic irreducible

polynomials Φ1(X),Φ2(X), . . . ,Φ2n−k(X), where k runs over {2, . . . , n}.
3. The total number of inequivalent irreducible Q-representations of G equals 4(n− 1) + n(n+1)

2 .
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9.3. Rational Wedderburn decomposition of Hol(C2n). We may use the previous results and the

information on Schur indices to find the Wedderburn decomposition of Hol(C2n) over Q. The result

asserts:

Theorem 9.5. Let G = Hol(C2n). For m ≥ 1, let ζm denote a primitive m-th root of unity. The

Wedderburn decomposition of Q[G] is

Q[G] =
⊕
d|2n−2

(Q(ζd))
(2)

⊕
d|2n−2

(Q(ζd))
(2)

n−k⊕
l=0

(
n⊕
k=2

M2k−1(Q(ζ2l))).

The proof is exactly the same as for the odd case Theorem 8.1 on using the counterparts for p = 2

proved above.

We illustrate the descriptions of irreducible rational representations and the Wedderburn decomposition

through the following example when p = 2.

Example 9.6. Let G = Hol(C25). G has a presentation of the form:

〈a, b, c | a25 = b2
3

= c2 = 1, b−1ab = a5, c−1ac = c−1, c−1bc = b〉.

We have seen in Example 9.2 that corresponding to the orbit O0, there are sixteen irreducible represen-

tations of degree 1.

Over Q, X23 − 1 = φ1(X)φ2(X)φ22(X)φ23(X) = (X − 1)(X + 1)(X2 + 1)(X4 + 1) is the factorization

into monic irreducible polynomials. As a consequence, there are 8 irreducible Q-representations whose

kernels contain G
′
.

We have also seen in Example 9.2 that corresponding to the orbit O1, there are sixteen irreducible

representations of degree 1.

Over Q, X23 − 1 = φ1(X)φ2(X)φ22(X)φ23(X) = (X − 1)(X + 1)(X2 + 1)(X4 + 1) is the factorization

into monic irreducible polynomials. As a consequence of that there are 8 irreducible Q-representations

whose kernels contain G
′
.

So the total number of irreducible Q-representations whose kernels contain G
′

is equal to 16.

From Example 9.2, corresponding to the orbit O2, there are eight irreducible complex representations of

degree 2. From those irreducible complex representations we obtain 4 irreducible representations over

Q, and their degrees are 2, 2, 4 and 8 respectively. They are in a bijective correspondence with the set

of all monic irreducible factors of X23 − 1, over Q.

From the same Example 9.2, corresponding to the orbit O3, there are four irreducible complex repre-

sentations of degree 4. From those representations we obtain 3 irreducible representations over Q, and

their degrees are 4, 4 and 8 respectively. They are in a bijective correspondence with the set of all monic

irreducible factors of X22 − 1, over Q.

From Example 9.2, corresponding to the orbit O4, there are two irreducible complex representations of

degree 8. From those representations we obtain 2 irreducible representations over Q, and their degrees

are 8 and 8 respectively. They are in a bijective correspondence with the set of all monic irreducible

factors of X2 − 1, over Q.
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By Example 9.2, corresponding to the orbit O5, there is only one irreducible complex representation of

degree 16, and is realizable over Q.

Finally, the Wedderburn decomposition of the group algebra Q[Hol(C25)] is

Q[G] ∼=⊕d|23 (Q(ζd))
(2) ⊕d|23 (Q(ζd))

(2) ⊕M2(Q)⊕M2(Q)⊕M2(Q(i))⊕M2(Q(ζ8))

⊕M22(Q)⊕M22(Q)⊕M22(Q(i))⊕M23(Q)⊕M23(Q)⊕M24(Q).

10. For Hol(Cpn), p a Prime, c(G), q(G) and p(G)

In this final section, we compute c(G), q(G) and p(G) for G = Hol(Cpn), p any prime. We shall use the

earlier notations. The first useful observation below is valid for all primes but the proofs are different

for the odd and even cases. In some of the results below, we allow the cases Hol(C2) and Hol(C4) as

well.

Lemma 10.1. G has a unique minimal normal subgroup and is of order p.

Proof. We consider the two cases p odd and p = 2 separately.

Case p odd.

ClearlyG has a unique Sylow-p subgroup, and we denote it by P . Note that P = 〈a, bp−1〉 ∼= CpnoCpn−1 .

Let N = 〈a〉 ∼= Cpn and H be a minimal normal subgroup of G. If H contains an element z of order

coprime to p then z−1az = ai where i 6≡ 1 mod p (since the automorphisms of N ∼= Cpn of the form

a 7→ a1+kp are of order some power of p, and so z can not act by such an automorphism). Therefore

a−1z−1az = ai−1 where i − 1 6≡ 0 (mod p). As H is normal, then a−1z−1az ∈ H. It follows that

ai−1 ∈ H where (i−1, p) = 1. It follows that 〈ai−1〉 = 〈a〉 ⊆ H. Also this containment is proper since H

contains the element z of order coprime to p, whereas |〈a〉| = pn. But every subgroup of N = 〈a〉 = Cpn

is normal in G. This contradicts to H being a minimal normal subgroup of G. Therefore H contains

elements of order some power of p. This follows that any minimal normal subgroup of G is contained

in the unique Sylow-p subgroup P of G. It can be seen easily that the center of P has order p. As P

is a p-group, then the center of P is the only minimal normal subgroup of P . Hence the center of P is

the unique minimal normal subgroup of G

Case p = 2.

We have seen that Aut(C2n) is an abelian 2-group of order 2n−1 (of course for n = 1, Aut(C2n) is trivial).

Now we assume that n > 1. Then there are exactly two fixed points of Aut(C2n) in N = 〈a〉 ∼= C2n ,

and they are the identity element and the unique element a2n−1
of order 2. So the center of G is

〈a2n−1〉 ∼= C2. As G is a 2-group and the center of G is of order 2, it follows that the center of G is the

unique minimal normal subgroup of G. This completes the proof. �

Lemma 10.2. G has a unique faithful irreducible representation over C and is of degree φ(pn).

Proof. As the center of G is cyclic, it is well known that G has a faithful irreducible representation over

C. Let ρ be a faithful irreducible representation of G over C. Let N be the cyclic normal subgroup

〈a〉 ∼= Cpn .
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In the case, p = 2 and n = 1, |G| = 2 and the assertion is true.

Now we assume that p is a prime and n > 1. As the restriction of ρ to N is faithful, then it decomposes

into faithful irreducible representations. By Clifford’s theorem (see [11, Theorem 6.2]), ρ ↓N∼= l(ρ1⊕ρ2⊕
· · · ⊕ ρk), where ρ1, ρ2, . . . , ρk are G-conjugates and l is a positive integer. Since the faithful irreducible

representations of N over C correspond to the generators of N , and for any two generators, there is an

automorphism of N taking one generator to the other. So all the faithful irreducible representations of

N over C are G-conjugates. Thus ρ ↓N∼= l(ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρk), where ρ1, ρ2, . . . , ρk are all the faithful

irreducible representations of N over C. By Frobenius-reciprocity (see [11, Lemma 5.2]), ρ occurs as

an irreducible component of ρi ↑G, for all i. As the action of Aut(Cpn) on Cpn is faithful, then the

centralizer ofN inG isN itself. Consequently, the inertia subgroup of ρi isN , and therefore by Clifford’s

theorem (see [11, Theorem 6.2]), ρi ↑G is an irreducible representation. So ρ ∼= ρ1 ↑G∼= · · · ∼= ρk ↑G and

ρ ↓N∼= (ρ1⊕ ρ2⊕ · · ·⊕ ρk), where ρ1, ρ2, . . . , ρk are all the faithful irreducible representations of N over

C. Hence ρ is the unique faithful irreducible representation of G over C. This compeltes the proof. �

Lemma 10.3. The unique faithful irreducible representation of G over C is realizable over Q.

Proof. Let ρ be the unique faithful irreducible representation of G over C with the character χ. As ρ

is the unique faithful irreducible representation, then χ is a rational valued character. Consequently,

the Galois conjugacy class of χ is χ itself. By Lemma 7.1 and Lemma 9.3, the Schur index of ρ with

respect to Q is equal to 1. So ρ is realizable over Q. This completes the proof. �

We note the immediate corollary which is striking.

Corollary 10.4. G has a unique faithful irreducible representation over Q.

10.1. Computing c(G) and q(G).

Lemma 10.5. Let η be a faithful quasi-permutation representation of G over C. Then η contains the

unique faithful irreducible representation of G over C as an irreducible constituent.

Proof. Let η ∼= η1⊕ η2⊕ · · · ⊕ ηr be the direct sum decomposition into irreducible C-representations of

G. If no ηi is faithful, then its kernel will contain the unique minimal normal subgroup of G. It follows

that the unique minimal normal subgroup of G is contained in the kernel of η, and so η is not faithful,

a contradiction. Thus some ηi is faithful, and by Lemma 10.2, ηi is equivalent to the unique faithful

irreducible representation of G over C. This completes the proof. �

Corollary 10.6. Let η be a faithful quasi-permutation representation of G over Q. Then η contains

the unique faithful irreducible representation of G over Q as an irreducible constituent.

Lemma 10.7. The character of the unique faithful irreducible representation of G over C takes values

φ(pn), −pn−1 and 0, where φ is the Euler’s phi function.

Proof. Let ρ be the faithful irreducible representation of G over C, and χ be its corresponding character.

As we have seen in the proof of Lemma 10.2, ρ is induced by a faithful irreducible C-representation of
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the normal subgroup N = 〈a〉 ∼= Cpn . So χ takes the value 0 outside H. The restriction of ρ to N is

direct sum of all the faithful irreducible C-representations of N . So χ(as) is the sum of s-th powers of

primitive pn-th roots of unity. If (s, p) = 1 then it is clear that χ(a) = χ(as). So the values of χ on

N = 〈a〉 are χ(1), χ(a), χ(ap), . . . , χ(ap
n−1

).

If n = 1, then χ(1) = φ(p) = p − 1, χ(a) = the sum of primitive p-th roots of unity = −1. Note that

whenever (s, p) = 1, χ(as) = −1.

Now we assume that n > 1. It is easy to see that for i > 2, the sum of primitive pi-th roots of unity

is equal to 0. Notice that χ(ap
n−i

) is the sum of primitive pi-th roots of unity (with multiplicity pn−i).

So for i ≥ 2, χ(ap
n−i

) = 0. Consider the case i = 0 and i = 1. If i = 0, then χ(ap
n
) = χ(1) = φ(pn),

where φ is the Euler’s φ function. If n = 1, then χ(ap
n−1

) is the sum of primitive p-th roots of unity

with multiplicity pn−1, and χ(ap
n−1

) = −pn−1. This completes the proof. �

Lemma 10.8. c(G) = q(G) = pn.

Proof. By Lemma 10.2, Lemma 7.1 and Lemma 9.3, G has a unique faithful irreducible representa-

tion over C, and is of Schur index 1 over Q. By Lemma 10.7, the minimum character value of that

representation is −pn−1. By Lemma 3.7, we get c(G) = q(G) = pn. �

10.2. Computing p(G).

Lemma 10.9. p(G) ≤ pn.

Proof. We show that the subgroup Aut(Cpn) is core-free in G, i.e., it does not contain any non-trivial

normal subgroup of G. Suppose that K ≤ Aut(Cpn) is a non-trivial normal subgroup of G. Then K is

normalized by N = 〈a〉 ∼= Cpn . As N is normalized by K and K ∩ N = 1, then K centralizes N . So

every automorphism in K fixes every element of 〈x〉; it follows that K = 1. Consider the permutation

representation of G on the cosets of Aut(Cpn); there are pn such cosets. Notice that the kernel of this

permutation representation is the core of Aut(Cpn), and which is 1. So this representation is faithful.

Hence the minimum degree of a faithful permutation representation of G is not more than pn. This

completes the proof. �

Finally, we have the following Theorem.

Theorem 10.10. c(G) = q(G) = p(G) = pn.

Proof. As c(G) ≤ q(G) ≤ p(G), then by Lemma 3.4 and Lemma 3.7, we get c(G) = q(G) = p(G) =

pn. �
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