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Introduction

The definition of the K-groups over rings, led to interpretations of geometric
and arithmetic questions and to their eventual solutions also at times. A
typical example is the famous result that algebraic vector bundles over affine
spaces are trivial. For the rings of integers in algebraic number fields, these
K-groups carry information like the unit group, the class group etc. Quillen
introduced higher K-groups which match Milnor’s K groups (only) for n ≤ 2.
These gave a beautiful bridge between topology and group theory. We shall
not discuss the fascinating subject of Quillen’s K groups in these lectures.

Apart from Hahn-O’Meara’s book, the two other basic references we use are
Bass’s and Milnor’s classic texts on algebraic K-Theory. Without further ado,
we introduce the most relevant object of study.

Definition 0.1 Let eij(λ), where i 6= j, and λ ∈ R, denote the matrix
In + λEij, where Eij is the matrix with 1 in the (i, j)-th position and zeros
elsewhere. The subgroup of GLn(R) generated by eij(λ), λ ∈ R, is denoted by
En(R). It is called the elementary subgroup of GLn(R), and eij’s are called its
elementary generators.

The elementary subgroup En(R) plays a crucial role for the development of
classical algebraic K-theory. It turns out that it is not always equal to the
special linear group SLn(R). But, if R is a field, then the groups coincide.
The matrices eij(λ)’s are linear operators on row and column vectors. Indeed,
observe:
Multiplication of a matrix by eij(λ) on the right, is the elementary column
operation of adding λ times the i’th column to the j’th column.
The multiplication by eij(λ) on the left can be similarly described - it adds
to the i-th row, λ times the j-th row. The set GLn(R)/En(R) measures the
obstruction to reducing an invertible matrix to the identity matrix by applying
these linear operators. Thus, the question of normality of En(R) in SLn(R) or
GLn(R) is of interest. The Russian mathematician Andrei Suslin proved that
for a commutative ring R, En(R) is a normal subgroup of GLn(R) for n ≥ 3.
Interestingly, the result is not true for the case n = 2. We shall discuss some
counter examples. We shall discuss the proof of Suslin’s theorem. For n ≥ 3,
Anthony Bak proved that the group GLn(R)/En(R)(n ≥ 3) is a solvable group
for any commutative ring R.
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1 Transvections and Dilations

In this section, we consider R to be a general possibly noncommutative
ring with identity and, we look at right R-modules. Ring homomorphisms for
us will always mean that the identities are preserved.
For a (right) R-module M , the abelian group

M∗ := Hom(M, R)

of all (right) R-module homomorphisms, is naturally a left R-module. It is
called the dual module to M .
If we look at the right R-module M∗∗, there is a natural right R-module
homomorphism

θ : M → M∗∗ ;

x 7→ (φ : M∗ → R; ρ 7→ ρ(x)).

Let Z(R) denote the center of R and R∗ denote the unit group of R (un-
fortunate, but standard notation!), then one may look at any λ ∈ Z(R)∗ :=
Z(R)∩R∗. One denotes by End(M) is a ring under composition and GL(M)
is the group of R-linear automorphism. Any central unit λ defines an element
of the general linear group GL(M) of all R-linear automorphisms of M by:

x 7→ xλ.

Such λ’s define the “scalar” subgroup of GL(M), an abelian central subgroup
and the quotient group is called the projective linear group PGL(M). If M is
a faithful R-module, then the scalar subgroup is isomorphic to Z(R)∗.

When R is commutative and M is free:
One may then define the notion of a determinant; it is a homomorphism from
GL(M) to R∗ and, the kernel is the special linear group SL(M).
When M is Rn, GL(M) can be identified with invertible n × n matrices and
SL(M) can be identified with those matrices which have determinant 1.

If we consider an arbitrary R module M , then there is a way to define a sub-
group of GL(M) generalizing the elementary subgroup - and coinciding with
En(R) when M is the free module Rn. Here is the definition.

Definition. Let v ∈ M , ρ ∈ M∗. Define

τv,ρ : M → M ; x 7→ x + vρ(x).

Clearly, this is a (right) R-module homomorphism.
If ρ(v) = 0, then τv,ρ ∈ GL(M); its inverse is τv,−ρ.
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Such an element τv,ρ (if nontrivial) is called a transvection.
If ρ(v) 6= 0 and if τv,ρ is invertible, then it is called a dilation.
For instance, let v be a unimodular vector; that is, there is a submodule N of
M for which M = vR⊕N . Then, choosing some s ∈ R∗; s 6= 1 and taking

ρ : M → R ; N → 0 ; v 7→ s− 1

defines a dilation τv,ρ.

If R is commutative, M = Rn (considered as column vectors), look at the
following two examples:
(a) v = ei and ρ = te∗j for some t ∈ R and some i 6= j, then with respect to
the canonical ordered basis, the transvection τv,ρ has the matrix representation
In + tEij.
(b) v = ei, ρ′(ei) = t − 1 for some t(6= 1) ∈ R∗ and ρ′(ej) = 0 for all j 6= i,
then the dilation τv,ρ′ has the matrix diag (1, 1, · · · , t, 1, · · · , 1) where t is the
i-th diagonal entry.

Properties of transvections and dilations.

(i) τv,ρ1τv,ρ2 = τv,ρ1+ρ2 if ρ1(v) = 0;
(ii) τv1,ρτv2,ρ = τv1+v2,ρ if ρ(v2) = 0;
(iii) τvr,ρ = τv,rρ;
(iv) gτv,ρg

−1 = τgv,ρg−1∀g ∈ GL(M);
(v) τv1,ρ1 and τv2,ρ2 commute if ρ1(v2) = 0 = ρ2(v1).
Proof. Tutorial sessions!

Note, by (iv), that conjugates of transvections are transvections and conjugates
of dilations are dilations.

1.1 “Watson” Elementary group?

If M is a free R-module with a basis B = {v1, · · · , vn}, and {ρ1, · · · , ρn} is the
dual basis of M∗, then consider the transvections of the form τvir,ρj

(= τvi,rρj
)

where i 6= j and r ∈ R. Such transformations are called elementary transvec-
tions. The subgroup of GL(M) ∼= GLn(R) generated by the elementary
transvections is said to be the elementary subgroup and is denoted by EB(M).
In the matrix avataar, this subgroup coincides En(R), the subgroup of ele-
mentary matrices in GLn(R) as defined above. Namely, it is the subgroup of
GLn(R) generated by eij(r) = In + rEij as r varies over R and i 6= j vary in
{1, 2, · · · , n}. Simply identify τvi,rρj

with eij(r).

4



We will study the elementary subgroup in detail. But, we begin by observing
some “elementary” properties:

eij(r)eij(s) = eij(r + s).

[eij(r), ejk(s)] = eik(rs) if i, j, k distinct.

[eij(r), ekl(s)] = 1 if j 6= k and i 6= l.

diag(t1, · · · , tn)eij(s)diag(t1, · · · , tn)−1 = eij(tist
−1
j ) if ti ∈ R∗.

We also define for each t ∈ R∗, and each i 6= j, the element wij(t) ∈ En(R) as
:

wij(t) = eij(t)eji(−t−1)eij(t).

Observe that if a matrix h is multiplied on the left by wij(1), the i-th and j-th
rows of h get interchanged with the j-th row also changing in sign.
Similarly, right multiplication by wij(1) has an analogous effect on the columns.

2 Properties of En(R) for a Euclidean ring R

In this section, we shall observe that the usual Euclidean algorithm (done
in a noncommutative set-up!) gives the basic properties of the elementary
subgroup.
Firstly, note that a noncommutative ring R is said to be Euclidean, if there
exists a size function δ : R−{0} → Z≥0 such that for each a, b ∈ R with b 6= 0,
there exist q1, r1, q2, r2 ∈ R such that

a = q1b + r1 = bq2 + r2

with ri = 0 or δ(ri) < δ(b) for i = 1, 2.
In particular, δ(b) 6= 0 for each b ∈ R∗.

Before stating the main result, we introduce a natural embedding of GLn(R)
as a subgroup of GLn+1(R); the former group sits as the upper left block of
an (n+1)× (n+1) matrix whose last row and last column are the unit vector
(0, 0, · · · , 0, 1).
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Proposition 1.
If R is a Euclidean ring, then GLn(R) = GL1(R)En(R) for any n ≥ 1. In
particular, En(R) is a normal subgroup. Further, if R is also commutative,
then (SLn(R) makes sense and) En(R) = SLn(R).
Proof.
Notice that GL1(R) ∼= R∗, when thought of as a subgroup of GLn(R), simply
consists of the n×n diagonal matrices with first entry a unit and other entries
equal to 1.
This subgroup GL1(R) conjugates each eij(r) into another elementary matrix
as observed above. For the rest of the proof, we just inductively show that for
any g ∈ GLn(R), there are elements x, y ∈ En(R) so that xgy ∈ GLn−1(R)
(where the latter is regarded as a subgroup of GLn(R) under the upper-left
corner embedding described above.
The proof is merely carrying out the Euclidean algorithm on the left and on
the right. Indeed, corresponding to the given element g, consider the set

Ω := {xgy : x, y ∈ En(R)}
Choose an element of Ω for which a non-zero entry b has the smallest size
under δ among all non-zero entries of all elements of Ω. Suppose xgy has b at
the (i, j)-th place. From this element xgy of Ω, we will get an element of Ω
for which this entry s is at the (n, n)-th place, in the following manner.
Recall the matrices wij(1) in En(R) which were defined above; we write wij

instead of wij(1).
Multiplying xgy on the left by win (if i 6= n) and by wjn on the right (if j 6= n)
gives a matrix h ∈ Ω such that hnn = b.
We claim that h can further be changed to an element of Ω which has no non-
zero entries in the last row and the last column excepting the (n, n)-th entry.
Now, if 0 6= a ∈ R and hin = a, then write

a = qb + r

with r = 0 or δ(r) < δ(b).
Therefore, ein(−q)h has i-th row equal to Ri− qRn where Ri is the i-th row of
h. Hence (i, n)-th entry of ein(−q)h is a− qb = r. This means by the choice of
b that r = 0. In this manner, the last column can be reduced to 0 excepting
the (n, n)-th entry. Note that this new matrix z continues to have the (n, n)-th
entry equal to b.
Similarly, if 0 6= c ∈ R is so that c = znj, then writing

c = bq2 + r2

with r2 = 0 or δ(r2) < δ(b), and noting that the matrix zenj(−q2) ∈ Ω has
(n, j)-th entry r2, it follows that r2 = 0. In this manner, we arrive at an ele-
ment w ∈ Ω such that wkn = wnl = 0 for all k, l < n and wnn = b. Since w is
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invertible, b ∈ R∗.
Finally, h1n(b)w is in GLn−1(R).
This completes the proof of the first two assertions.
To deduce the last assertion, note that evidently En(R) ≤ SLn(R) for any com-
mutative ring R. In case of such a ring being Euclidean also, we have SLn(R) ≤
GL1(R)En(R) which gives on comparing determinants that SLn(R) ≤ En(R).
The proof is complete.

3 Properties of En(R) and En(R, I)

When R is an arbitrary ring with unity, we discuss some useful properties of
the elementary subgroup, and use these to prove the normality of En(R) in
GLn(R) for n ≥ 3 when R is commutative. We start with some examples of
elements of the elementary subgroup. Before that, we define a certain type of
normal subgroup En(R, I) of En(R) which will be studied alongside En(R).

Definition. For a two-sided ideal I of R, the group En(R, I) is defined to be
the normal subgroup of En(R) generated by all eij(t) as t varies in I and i 6= j.

Note that En(R, I) ≤ GLn(R, I) := Ker(GLn(R) → GLn(R/I). The latter
kernel is known as a principal congruence subgroup and will be studied in a
later section.

Example 3.1

(i) The matrix

(
0 −1
1 0

)
=

(
1 −1
0 1

)(
1 0
1 1

)(
1 −1
0 1

)
∈ E2(R)

Note that it has finite order.

(ii) For each a ∈ R, the matrix

E(a) =

(
a 1
−1 0

)
= e12(1− a)e21(−1)e12(1) ∈ E2(R).

(iii) Upper and lower triangular n× n matrices with 1’s on the diagonal, are
in En(R).

(iv) For g ∈ Mn(R), the matrices

(
In g
0 In

)
and

(
In 0
g In

)
are in E2n(R).
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(iv) For any unit u ∈ R∗ and any i 6= j, the matrix wij(u) which has u in the
(i, j)-th place, u−1 in the (j, i)-th place, 1 in the diagonal places (k, k)
for k 6= i, j and 0’s at all other places, is in En(R). Indeed

wij(u) = eij(u)eji(−u−1)eij(u).

For any unit u and any i 6= j, the diagonal matrix hij(u) which has u and
u−1 as the i-th and the j-th diagonal entries and 1’s as other diagonal
entries, is in En(R). Indeed

hij(u) = wij(u)wij(−1).

Now, we list a few properties of En(R) and En(R, I) for a two-sided ideal I.

(i) {In} < En(R) ≤ GLn(R) for n ≥ 2.
If R is commutative, we also have En(R) ≤ SLn(R).
For m ≥ 1, n > 1, the embedding GLn(R) → GLn+m(R), given by

α 7→
(

α 0
0 Im

)
, induces embeddings En(R) → En+m(R) and, if R is

commutative, SLn(R) → SLn+m(R).
This allows us to define the groups

GL(R) =
∞∪

n=1
GLn(R), SL(R) =

∞∪
n=1

SLn(R), E(R) =
∞∪

n=1
En(R)

where we talk of SL in the case when R is commutative.

(iii) eij(x + y) = eij(x)eij(y) ∀ x, y∈R when i 6= j.

(iv) ∀ x, y∈R,
(a) [eij(x), ekl(y)] = 1 if j 6= k, i 6= l.
(b) [eij(x), ejk(y)] = eik(xy) if i 6= j, j 6= k, i 6= k.
For n ≥ 3, by using commutator formula one can deduce that En(R) is
generated by the set {e1j(λ), ei1(µ) | 1 ≤ i.j ≤ n, λ, µ ∈ R}.
Note also the identities involving the elements wij(u), hij(u) in En(R)
where u is a unit:

wij(u)eji(t)wij(u)−1 = eij(−utu);

hij(u)eij(t)hij(u)−1 = eij(utu).

(v) The subgroup E2(R) is generated by the set {E(a) | a ∈ R}, where

E(a) =

(
a 1
−1 0

)
.

Indeed, as mentioned above, one can check that E(a) = e12(1−a)e21(−1)e12(1).
Moreover, e12(a) = E(−a)E(0)−1 and e21(a) = E(0)−1E(a).
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(vi) (Perfectness): En(R) is a perfect group if n > 2.
In particular, [GL(R), GL(R)] = E(R).
On the other hand, E2(F2) and E2(F3) are not perfect.
Note that if R has a maximal ideal m such that R/m ∼= F2 or F3, then
E2(R) is not perfect for the above reason.
It is easy to deduce the perfectness of En(R) for n ≥ 3 using the
commutator formulas above. It follows then that E(R) is perfect, i.e.,
[E(R), E(R)] = E(R). The last assertion is now a consequence of (vi).

(viii) Let I be a two-sided ideal in the ring R. Then, the homomorphism

En(R) → En(R/I)

is surjective, for all n ≥ 2.
Indeed, the generators eij(λ) of En(R/I) can be lifted to the generators
eij(λ) of En(R).

The next property is a beautiful one which proves that the product op-
eration in GL coincides with that in the direct sum; it is also the key to
defining K1. The original Whitehead’s Lemma is a topological assertion;
the matrix version below is due to A. Suslin.

Whitehead’s lemma.
Let I be a two-sided ideal. For g ∈ GLn(R) and h ∈ GLn(R, I), we have
the congruences (both as right cosets and as left cosets):

(
g 0
0 h

)
≡

(
gh 0
0 In

)
≡

(
hg 0
0 In

)
≡ (mod E2n(R, I).

Further, we have the congruence

(
g 0
0 h

)
≡

(
0 g
−h 0

)
(mod E2n(R).

Proof.
We prove it for left cosets; the proof for right cosets is similar.
The last congruence is easy to see because

(
0 g
−h 0

)
=

(
g 0
0 h

)(
0 In

−In 0

)

and the last matrix is in E2n(R).
Let us prove the first congruences now.
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We have
(

h 0
0 h−1

)
=

(
In h− In

0 In

)(
In 0
In In

)(
In h−1 − In

0 In

)(
In 0
−h In

)

=

(
In h− In

0 In

)( (
In 0
In In

)(
In h−1 − In

0 In

)(
In 0
In In

)−1 )(
In 0

In − h In

)
.

This is in E2n(R, I) as the entries of In − h and of h−1 − In are in I.
Therefore,

(
gh 0
0 In

)
=

(
g 0
0 h

) (
h 0
0 h−1

)
≡

(
g 0
0 h

)
(mod E2n(R, I)).

We are left with showing that

(
hg 0
0 In

)
≡

(
g 0
0 h

)
(mod E2n(R, I)).

We observe that (
g−1h−1 0

0 In

)(
g 0
0 h

)

=

(
In g−1(In − h−1)
0 In

)( (
In 0
−g In

)(
In −g−1(h− In)
0 In

)(
In 0
−g In

)−1 )

(
In 0

(h−1 − In)g In

)

∈ E2n(R, I).

Corollary. For any two-sided ideal I, we have

[GLn(R), GLn(R, I)] ≤ E2n(R, I).

In particular, [G(R), G(R, I)] ≤ E(R, I). Hence E(R, I) is normal in
G(R).
Proof.
Let g ∈ GLn(R) and h ∈ GLn(R, I). From the Whitehead lemma, we

have the equivalence of

(
gh 0
0 In

)
and

(
hg 0
0 In

)
modulo E2n(R, I). It

follows that (
gh(hg)−1 0

0 In

)
∈ E2n(R, I).
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Remarks.

The finite analogue that En(R, I) is normal in GLn(R) will be proved later for
commutative R when n ≥ 3.

The analogue of the surjectivity in (viii) above is not true for SLn(R) in general.
Here is an example.
Let

〈
XY − ZT − 1

〉
denote the ideal generated by the element XY − ZT − 1

in the ring R[X,Y, Z, T ]. Then the homomorphism

SL2(R[X,Y, Z, T ]) → SL2

(
R[X, Y, Z, T ]〈
XY − ZT − 1

〉
)

is not surjective. In fact, if bar denotes the reduction modulo the above ideal,
then there is no lift of the matrix

(
X Z
T Y

)
∈ SL2

(
R[X, Y, Z, T ]〈
XY − ZT − 1

〉
)

to a matrix in SL2(R[X, Y, Z, T ]).

3.1 When n = 2

In this section, we describe examples of P.M.Cohn which show:
(i) E2(R) may not be a normal subgroup of SL2(R);
(ii) E2(Z[Y ]) 6= SL2(Z[Y ]).
In fact, let us look at R = k[X,Y ] where k is afield. If we consider the matrix

α =

(
1 + XY X2

−Y 2 1−XY

)

then, it was shown by P.M.Cohn that α ∈ SL2(R) but not in E2(R).
This will be discussed in the tutorials sessions.
P.M. Cohn has also proved that E2(Z[Y ]) 6= SL2(Z[Y ]) by proving the matrix(

1 + 2Y 4
−Y 2 1− 2Y

)
/∈ E2(Z[Y ]).

Consider the matrix β =

(
0 1
−1 0

)
. In the tutorials, we will deduce that

αβα−1 /∈ E2(R).

Remark.
For the ring of integers Od of an imaginary quadratic field Q(

√−d), P.M.Cohn
also proved that E2(Od) 6= SL2(Od) unless Od is a Euclidean domain (only if
d = 1, 2, 3, 7 or 11).
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4 Normality of En(R) for n > 2 when R is com-

mutative

In this section, we describe the proof of Suslin’s theorem, using a variant of
Whitehead’s Lemma due to L.N. Vaserstein. The theorem of Suslin alluded to
above is:

Theorem 4.1 (A. Suslin) Let R be a commutative ring with identity. The
elementary subgroup En(R) is normal in GLn(R), for n ≥ 3.

Lemma 4.2 (L.N. Vaserstein) Let Mr,s(R) denote the set of r× s matrices
over R. Let α ∈ Mr,s(R) and β ∈ Ms,r(R). If Ir + αβ ∈ GLr(R), then
Is + βα ∈ GLs(R) and

(
Ir + αβ 0

0 (Is + βα)−1

)
∈ Er+s(R).

Proof Note that
Is − β(Ir + αβ)−1α

is easily verified to be the inverse of (Is + βα); a nice way to arrive at this
expression is to view the sought-for inverse in analogy with a geometric series.
Hence, the invertibility of Ir + αβ implies that of Is + βα and vice versa.
Moreover,(

Ir + αβ 0
0 (Is + βα)−1

)

=

(
Ir 0

(Is + βα)−1β Is

)(
Ir −α
0 Is

)(
Ir 0
−β Is

)(
Ir (Ir + αβ)−1α
0 Is

)
.

The lemma follows now from the fact (which we already noted and used) that
a triangular matrix with 1 in the diagonal is a product of elementary matrices.

Observation.
As a consequence of the above lemma, if v = (v1, . . . , vn)t and w = (w1, . . . , wn)t

are two column vectors with the property that the dot product wtv = 0, then
the matrix In + vwt is invertible, and 1-stably elementary, i.e.,

(
In + vwt 0

0 1

)
∈ En+1(R).

As a matter of fact, the above observation holds in a stronger form under a
certain condition as follows:
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Lemma 4.3 Suppose v = (v1, . . . , vn)t and w = (w1, . . . , wn)t are two column
vectors with the property that the dot product wtv = 0, and suppose also that
wi = 0 for some i ≤ n. Then, In + vwt ∈ En(R).

Proof.
We may assume without loss of generality that wn = 0; indeed, if wi = 0 and
i < n, then for

g = ein(−1)eni(1)ein(−1),

we have
g(In + vwt)g−1 = In + v(0)w(0)t

where v0 = gv, w(0)t = wtg−1.
Note that w(0)tv(0) = 0 and w(0)n = 0.
Therefore, let us assume that the given w has wn = 0.
If we consider w′ = (w1, · · · , wn−1)

t ∈ Rn, v′ = (v1, · · · , vn−1)
t ∈ Rn, then

In−1 + v′w′t ∈ En−1(R) by the above observation since w′tv′ = wtv = 0.

We note that In + vwt =

(
In−1 + v′w′t 0

∗ 1

)
where the last column has 0’s

above the last entry 1.
Adding appropriate multiples of the last column to the other columns (which
is equivalent to multiplication by elements in En(R), we may make the last row
to consist of 0’s excepting the last entry. In other words, In +vwt is equivalent

to the matrix

(
In−1 + v′w′t 0

0 1

)
which itself is in En(R).

In the proof of Suslin’s theorem, we will use the following lemma. We view
elements of Rn as column vectors.
Recall that we defined a vector v in an R=module to be unimodular if the
cyclic module vR has a complement; this means that v can be completed to a
basis of Rn. If v is unimodular, clearly the ideal generated by the vi’s is the
unit ideal.

Lemma 4.4 If v is a unimodular vector and f : Rn → R is the R-linear map
given by ei 7→ vi (ei being the canonical basis of Rn for 1 ≤ i ≤ n), then

ker(f) = {w = (w1, . . . , wn)t ∈ Rn |
n

Σ
i=1

wivi = 0}

is generated by the elements

{vjei − viej | 1 ≤ i ≤ n}.
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Proof.
Basically, the proof is to construct a splitting of the short exact sequence.
There are elements r1, · · · , rn ∈ R such that

∑n
i=1 rivi = 1. Consider the

R-module homomorphism

g : R → Rn ; 1 7→ (r1, · · · , rn)t.

This is a splitting on the right of the above exact sequence
(because

∑
i rivi = 1).

Then, the map
θ : x 7→ x− g(f(x))

is a splitting on the left side of the exact sequence (from An to Ker(f)); that
is, θ|Ker(f) = 1Ker(f).
So, θ is surjective and thus, the elements θ(ei) generate Ker(f). Note that

θ(ei) = ei − g(f(ei)) = ei − g(vi) = ei − vi

∑
j

rjej

= (
∑

j

rjvj)ei −
∑

j

rjviej =
∑

j

rj(vjei − viej).

A further important generalization of the observation above is:

Lemma 4.5 (i) Let n ≥ 3. If v ∈ Rn is a unimodular vector, and w ∈ Rn

such that wtv = 0, then In + vwt ∈ En(R).
(ii) Let n ≥ 3. If w is unimodular and v is arbitrary satisfying wtv = 0, then
In + vwt ∈ En(R).

Proof.
We prove (i); then (ii) follows by taking transposes.
Define the R-linear map f : Rn → R by ei 7→ vi. The hypothesis wtv = 0
implies that wt ∈ Ker(f). By the above lemma, we have some elements rij ∈ R
such that

wt =
∑
i<j

rij(viej − vjei).

Writing wt
ij = viej − vjei for all i < j, we observe

In + vwt = In + v
∑
i<j

wt
ij =

∏
i<j

(In + vwt
ij).

As n ≥ 3, we have In + vwt
ij ∈ En(R) for all i < j. This completes the proof.
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Now we can deduce the proof of Theorem.

Proof of Suslin’s Theorem.
As En(R) is generated by eij(λ); λ ∈ R, it is sufficient to show that for α ∈
GLn(R) we must have αeij(λ)α−1 ∈ En(R). Let αi and βi (1 ≤ i ≤ n) be the
i-th column of α and i-th row of α−1 respectively. Then

αeij(λ)α−1 = α(In + λEij)α
−1 = In + λαiβj.

Since α, α−1 ∈ GLn(R), we observe that the ideal generated by the entries of
αi for any i is the unit ideal; likewise, the entries of βj generate the unit ideal
for each j.
Also, α−1α = In implies that βjαi = 0, for j 6= i. Hence from the above
mentioned remark, it follows that In + λαiβj ∈ En(R). 2

Remarks.
(i) If we take v = (X,−Y )t, and w = (Y, X)t. Then wtv = 0. Hence, the
observation above gives P.M.Cohn’s example

(
I2 + vwt 0

0 1

)
=

(
1 + XY X2

−Y 2 1−XY

)
∈ E3(A).

Indeed, it is [e31(Y )e32(X), e13(−X)e23(y)] as can be worked out from Vaser-
stein’s lemma.

Cohn’s matrix is stably elementary as seen above even though it is not in the
elementary subgroup as we will prove in the tutorials.

(ii) Suslin’s theorem on normality of En(R) holds for a noncommutative ring
R (for n > 2) if R is finitely generated as a Z(R)-module. This is due to
Tulenbaev.
More generally, it holds for R under the condition that n is bigger than the
stable range of R.

(iii) For a general ring R and for n ≥ 2, the centralizer of En(R) in GLn(R) is
the ‘scalar’subgroup

RLn(R) := {rIn : r ∈ Z(R)∗}.
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5 Congruence subgroups

Let R be an arbitrary ring with unity. Recall that we have fixed embeddings of
Mn(R) in Mm(R) for each m > n. This enabled us to define the stable groups

GL(R) =
⋃
n≥1

GLn(R)

and
E(R) =

⋃
n≥1

En(R).

For any two-sided ideal I of R, we define the principal congruence subgroup of
level I to be the normal subgroup

GLn(R, I) := {g ∈ GLn(R) : gij − δij ∈ I ∀ i, j}.

Notice that this is the kernel of the homomorphism from GLn(R) to GLn(R/I)
induced by the quotient map R → R/I.
Recall also that we defined En(R, I) to be the normal subgroup of En(R)
generated by eij(t) as t varies in I and i 6= j vary. Clearly, En(R, I) ≤
GLn(R, I) as generators are all in the congruence subgroup. We may define
the stable groups E(R, I) and GL(R, I) similarly.
In order to study some natural questions (like the question of normality of
En(R, I) in GLn(R)), it is convenient to introduce the notion of Cartesian
squares. Specifically, one problem is to determine if En(R, I) defined as above
coincides with the kernel of En(R) → En(R/I). We will use special Cartesian
squares called ”doubles” to prove that this is so.

5.1 Doubles & Cartesian squares

Roughly speaking, if I is a two-sided ideal of a ring R and G is a functor from
rings to groups, then we would like to define a natural group G(R, I) such that
we may get an exact sequence of the form G(R, I) → G(R) → G(R/I).
The tool which helps us to do this is the following.

Let R be a ring with unity and I, a two-sided ideal. The double of R along I
is defined to be the subring

R×I R := {(a, b) ∈ R×R : a− b ∈ I}

of R × R. Consider the diagram below where p1, p2 are the two projections
and i is the natural quotient map.
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R×I R
p1→ R

p2 ↓ ↓ i

R
→
i R/I.

Note that
i(r1) = i(r2) ⇔ (r1, r2) ∈ R×I R.

Moreover, the tuple (r1, r2) above is unique with the above property and the
diagonal map δ : R → R×R splits both p1 and p2 simultaneously.
In fact, there is another way to view the double of R along I. Consider the
semidirect product

R ∝ I := {(a, b) : a ∈ R, b ∈ I}

where the product is defined as

(a, b)(c, d) := (ac, ad + bc− bd).

Observe that
(a, b) 7→ (a, a− b)

yields an isomorphism from the double to the semidirect product.
We make a useful observation now.

Observation. Let G be an exact functor from rings to groups. Suppose R is
a ring and I, a two-sided ideal. Then,
(i) G(p2) :ker (G(p1) : G(R ×I R) → G(R)) → ker (G(i) : G(R) → G(R/I))
is an isomorphism.
(ii) Denote the above kernel by G(R, I). Then, G(R×I R) ∼= G(R) ∝ G(R, I).
Proof.
(i) follows by definition.
For (ii), just observe that the diagonal map δ simultaneously splits both the
projections p1 and p2 from the double.
Details to be worked out in the tutorials!

Proposition.
Let R be any ring and I, any two-sided ideal in it.
(i) The diagonal map δ from GLn(R) to GLn(R×IR) maps En(R) into En(R×I

R).
(ii) p2( ker p1|En(R×I R)) = En(R, I).
(iii) If R is commutative and n ≥ 3, En(R, I) is normal in GLn(R).
Proof.
Part (i) is clear since δ(eij(t)) = eij(t, t).
Part (ii) is really just (ii) of the observation. More precisely, first note that
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δ(En(R))ker (p1|En(R×IR)) is a subgroup of En(R×I R). We observe that they
are equal. Indeed, let eij(s, t) ∈ En(R×I R). Then,

eij(s, t) = eij(s, s)eij(0, t− s) ∈ δ(En(R))ker(p1|En(R×IR)).

It is clear that
δ(En(R)) ∩ ker(p1|En(R×IR)) = {1}.

Thus, we have a unique decomposition of each element of En(R ×I R) is a
unique product of the form xy where x ∈ δ(En(R)) and y ∈ kerp1|En(R×IR).
So, we have shown that

1 → p2(kerp1|En(R×IR)

p−1
2→ En(R×I R)

p1→ En(R) → 1

is a split extension with a splitting δ : En(R) → En(R×I R).
If S = {eij(s, s) : s ∈ R} and T = {eij(0, t) : t ∈ I}, then these are subsets of
δ(En(R)) and ker (p1|En(R×IR)) respectively, and together generate the whole
of En(R×I R). Thus,

En(R×I R) =< S >< T ><S>

Since < T ><S>≤ ker(p1|En(R×IR)), they must be equal since < S >≤
δ(En(R)). Taking the images under p2, we get

p2(kerp1|En(R×IR)) = p2 < T >p2<S>=< {eij(t) : t ∈ I} >En(R)= En(R, I).

So, (ii) is proved.
To prove (iii), let R be commutative and n ≥ 3. Then, as we proved, En(R×I

R) is normal in GLn(R ×I R). Therefore, (kerp1) ∩ En(R ×I R) is normal in
GLn(R ×I R). Since p2 is an epimorphism from GLn(R ×I R) onto GLn(R),
we have that p2(kerp1 ∩En(R×I R) is normal in GLn(R). The left hand side
is En(R, I) by (ii). The proof is complete.

5.2 Normality results for elementary congruence sub-
groups

Theorem. Let n ≥ 3 and R be any ring with unity.
(i) If H ≤ GLn(R) is normalized by En(R), and F is a subset of En(R) ∩H,
then H ≥ En(R, I) where I is the two-sided ideal generated by all the entries
of In − e as e varies in F .
(ii) If I, J are two-sided ideals, then

[En(R, I), En(R, J)] ≥ En(R, IJ).
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In particular,
[En(R), En(R, I)] = En(R, I).

(iii) [GLn(R), GLn(R, I)] ≤ E2n(R, I).
Proof.
(i) Let eij(t) ∈ H. Then, since H is normalized by En(R), each elementary ma-
trix of the form ekl(atb) ∈ H where k 6= l and a, b ∈ R. Therefore, H ≥ En(I)
where I = RtR. As t varies, we get (i).
(ii) As [eij(a), ejk(b)] = eik(ab) for i, j, k distinct, we have that [En(R, I), En(R, J)]
contains all eij(c) for i 6= j and c ∈ IJ . Since [En(R, I), En(R, J)] is normal-
ized by En(R), (i) implies the result. The particular case follows from the
J = R case.
Finally, (iii) is a consequence of Whitehead’s lemma. Indeed, let g ∈ GLn(R)
and h ∈ GLn(R, I). From the Whitehead lemma, we have the equivalence of(

gh 0
0 In

)
and

(
hg 0
0 In

)
modulo E2n(R, I). It follows that

(
gh(hg)−1 0

0 In

)
∈ E2n(R, I).

6 Stable linear groups and K1

Before defining the group K1 etc., we define the notion of a level.

Definition. A subgroup H ≤ GLn(R) is said to be of level I for a two-sided
ideal I if

En(R, I) ≤ H ≤ GLn(R, I).

This is meaningful because of the following observation:

Lemma. If n > 1, then a subgroup H of GLn(R) which has a level, has a
unique level.
Proof.
Suppose H has levels I, J for two two-sided ideals. The epimorphism of rings

θ : R → R/J,

implies an epimorphism of groups

En(R, I) → En(R/J, θ(I)).

But, the inclusion En(R, I) ≤ GLn(R, J) shows that En(R/J, θ(I)) is trivial.
Hence, the ideal θ(I) = 0 (as n > 1). That is, I ⊆ J . By symmetry, they are
equal.
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Define K1(R) := GL(R)/E(R). More generally, for any ideal I, we define the
groups K1(R, I) = GL(R, I)/E(R, I) and SK1(R, I) = SL(R, I)/E(R, I) (the
latter when R is commutative).
At the finite level, we define the coset spaces K1,n(R, I) = GLn(R, I)/En(I)
and there are obvious maps from K1,n(R, I) to K1,m(R, I) for m > n and hence
to the whole of K1(R, I).
Some natural interesting questions are to determine the possible injectivity of
the maps K1,n(R, I) → K1,m(R, I) for m > n and the possible surjectivity of
the maps K1,n(I) → K1(I).
As we proved earlier, for Euclidean rings R, we have SK1(R) = {1} and so,
K1(R) ∼= R∗.
Thus, the study of K1 of a ring generalizes the unit group.
Finally, we prove the main theorem of this section which enables us to classify
all normal subgroups of the stable group GL(R).

Theorem. Let R be any ring with identity.
(i) If H ≤ GL(R) is normalized by E(R), then there is a unique two-sided
ideal I in R such that H has level I; that is,

E(R, I) ≤ H ≤ GL(R, I).

(ii) If H is any subgroup of GL(R) whose level is a two-sided ideal I, then

[GL(R), H] = [E(R), H] = E(R, I) ≤ H.

In particular, H is normal in GL(R). A still particular case shows that E(R, I)
is normal in GL(R).
(iii) Let θ : R → S be an epimorphism of rings. If H ≤ GL(R) has level I for
some two-sided ideal I in R, then

E(R, I) → E(S, θ(I))

is an epimorphism of groups and θ(H) is a normal subgroup of GL(S) with
level θ(I).
Proof.
Part (iii) follows from (i) and (ii).
Part (ii) follows from assertion proved earlier that:

[En(R), En(R, I)] = En(R, I) if n ≥ 3.

and from Whitehead’s lemma.
To prove (i), we first observe that the uniqueness of I follows from (ii).

20



If H is nontrivial, we first prove the existence of some non-zero ideal I such
that E(R, I) ≤ H. Indeed, for each n, look at the subgroup

Hn := H ∩GLn(R).

Look at Hn in the affine group

(
GLn(R) Rn

0 1

)
∼= GLn(R) ∝ Rn of GLn+1(R).

The subgroup Hn is nontrivial for large enough n.
Note that since H is normalized by E(R), the subgroup [Hn, R

n] of Rn (in the
affine group above) is contained in H.
But, [Hn, Rn] is clearly the additive subgroup

∑
g∈Hn

Im(g − In) of Rn in the
affine group and it is invariant under En(R). But, an additive subgroup of
Rn which is invariant under En(R) is also invariant under the additive group
generated by En(R) which is the whole of Mn(R). Thus, such a nontrivial
subgroup must be RnL for some non-zero left ideal L of R. That is, we have

proved that H contains all matrices of the form

(
In a
0 1

)
with a ∈ Ln. As

shown earlier, this implies that H contains E(R,LR) for the two-sided ideal
LR.
Thus, we have shown that a nontrivial H in (i) must contain E(R, I) for some
non-zero two-sided ideal I.

Let I0 be the biggest such two-sided ideal. We claim that H ≤ GL(R, I0).
Suppose this is not true.
Then, look at the homomorphism GL(R) → GL(R/I0) and induced by R →
R/I0. We know that E(R) → E(R/I0) is an epimorphism. The image H̄
of H in GL(R/I0) is nontrivial (by assumption that H 6≤ GL(R, I0)) and is
normalized by E(R/I0). Applying the earlier argument to R/I0 instead of
R, there is a two-sided ideal I1 ⊃ I0, I 6= I0 in R so that E(R, I1/I0) ≤ H̄.
Looking at the preimage in GL(R), we get

E(R, I1) ≤ GL(R, I0)H.

So E(R, I1) = [E(R), E(R, I1)] ≤ H because E(R) normalizes H and

[E(R), GL(R, I0)] ≤ E(R, I0) ≤ H.

This contradicts the choice of I0. Therefore, we have a two-sided ideal as in
(i) of the theorem.

The theorem enables us to define, for each two-sided ideal, the group

K1(R, I) := GL(R, I)/E(R, I).

Moreover, the theorem implies that:
The determination of all normal subgroups of GL(R) is equivalent to deter-
mining K1(R, I) for every two-sided ideal I.
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7 Steinberg group

Definition.
Let R be any associative ring with unity.
For n ≥ 3, recall we defined the Steinberg group Stn(R) to be generated by the
symbols xij(t) for i 6= j and t ∈ R, subject to the following relations:

t 7→ xij(t) are homomorphisms such that

[xij(t), xjk(u)] = xik(tu) if i 6= k

[xij(t), xkl(u)] = 1 if j 6= k , i 6= l.

Further, for any unit u in R, the elements

wij(u) = xij(u)xji(−u−1)xij(u)

and
hij(u) = wij(u)wij(−1)

will be useful while discussing properties of Stn(R).
If R is commutative, it is easy to check (exercise for tutorials!) that

wij(u) = xji(−u−1)xij(u)xji(−u−1).

For n = 2, St2(R) is defined by the generators x12(t), x21(u) where x12, x21

satisfy the relations
xij(t)xij(u) = xij(t + u)

and the relations

wij(t)xji(u)wij(−t) = xij(−tut)if t ∈ R∗

for (i, j) = (1, 2) or (2, 1) where,

wij(t) = xij(t)xji(−t−1)xij(t).

Remark.
The last relation for (i, j) = (1, 2) implies the relation for (i, j) = (2, 1); that
is,

w21(t)x12(u)w21(−t) = x21(−tut)if t ∈ R∗.

Definition.
There is an obvious epimorphism from Stn(R) to En(R) given by

φn : xij(t) 7→ eij(t).
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Passing to the direct limit, we thus have an epimorphism

φ : St(R) → E(R) = [GL(R), GL(R)] = [E(R), E(R)].

We define K2(R) = Ker(φ).
K2(R) can be thought of as the set of all nontrivial relations between elemen-
tary matrices over R.
More generally, we define K2(n,R) = Ker(φn).

Remarks.
We will prove that K2(R) = Center of St(R). In fact, we will also show
that St(R) is the so-called universal central extension of E(R). Thus, one
may identify K2(R) with the Schur multiplier of E(R) (which is the homology
group H2(E(R),Z) by definition). In other words, K2(R) is like the (dual of
the) “fundamental group”.

Proposition. K2(R) is the center of St(R).
Proof.
Now, an n× n matrix over R which commutes with all eij(t) as t varies in R
and i 6= j vary, if and only if, it is a scalar matrix diag (a, · · · , a) with a ∈ R∗

(exercise for the tutorials). Thus, no nontrivial element of En−1(R) centralizes
the whole of En(R). Hence, the center of E(R) is trivial.
Suppose c ∈ Z(St(R)). Then, φ(c) is in the center of E(R) (which is trivial
by the above observation) and, hence c ∈ Ker(φ).
Conversely, suppose c ∈ Ker(φ).
We will show that c commutes with each Steinberg generator xij(t).
Firstly, choose n so large that c is a word in the generators xij(t) for i, j < n
and t ∈ R.
Now, we have a simple observation (proof in tutorials):
Fact. The subgroup Rn of St(R) generated by xin(t) as i varies from 1 to n−1
and t varies in R, is abelian. Moreover, each of its elements is a unique word
of the form

x1n(t1)x2n(t2) · · ·xn−1,n(tn−1).

From this fact, it follows that Rn maps isomorphically onto its image in E(R).
Now, evidently the generators

xij(t)Rnxij(−t) ≤ Rn

if both i, j < n. Hence, the element cRnc
−1 ≤ Rn. As φ(c) = 1, the injectivity

of φ restricted to Rn shows that c centralizes Rn. In particular, c commutes
with each xin(t) for i < n. Similarly, it follows that c commutes with each
xnj(t) for j < n. Therefore, c commutes with

xij(t) = [xin(t), xnj(1)]
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for all i, j < n. Since n can be arbitrarily large, this means that c is in the
center of St(R).

Remarks.
Now, we digress a bit to recall some generalities on central extensions which
will be useful while proving the universality of St(R) over E(R).

Definition. A central extension of groups is an exact sequence

1 → A → E → G → 1

where the image of A is contained in the center of E.
For instance, for an abelian group A, the direct product of G and A gives such
a central extension.

A central extension as above is to be thought of as a way of extending G by
A. With this point of view, it is natural to call another such central extension

1 → A → F → G → 1

equivalent to the first one if there is an isomorphism between E and F giving a
commutative diagram as in the figure. This is clearly an equivalence relation.
Also, any central extension is equivalent to one in which the homomorphism
from A to E is simply inclusion (exercise).

A central extension
1 → A → E → G → 1

is said to be split if it is equivalent to the trivial extension

1 → A → A×G → G → 1

The terminology comes because these are precisely the extensions for which
there is a splitting homomorphism from G to E giving the identity on G on
composing it with the given surjection from E to G.

Let us see what the obstruction is to the existence of a splitting for a given
central extension

1 → A → E
π→ G → 1

One can, of course, choose some section i.e., set-theoretic splitting s : G →
E. Then, s is a group-theoretic splitting if f(x, y) := s(x)s(y)s(xy)−1 is the
identity. Note that the values of f land in A, the kernel of π. The map
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f : G × G → A is, in fact, a 2-cocycle where the action of G on A is trivial.
Moreover, the element defined in H2(G,A) is independent of the choice of
s (see exercise below). In other words, there is a group-theoretic splitting
precisely when the corresponding f gives the trivial element in H2(G,A). In
particular, if H2(G,A) itself is trivial, any central extension is trivial.
Notice that if

1 → A → E
π→ G → 1

is an exact sequence with A abelian, then G acts on A by means of the in-
ner automorphisms of E. In this way, even for a nontrivial action of G, the
cohomology group H2(G,A) characterizes all extensions of G by A i.e., exact
sequences as above. In this more general situation, the trivial element of H2

corresponds to the semi-direct product of G and A.

Exercise.
If s is a set-theoretic splitting of a central extension

1 → A → E
π→ G → 1

then show that fs : G × G → A ; (x, y) 7→ s(x)s(y)s(xy)−1 is an element of
Z2(G, A) for the trivial action of G on A.

Calculating central extensions of groups.

Given a finite presentation < X | R > for a group G there is a canonical
central extension induced. This is

1 → R/[F, R] → F/[F,R] → G → 1

Here, we have used R to denote also the normal subgroup of F = F (X)
generated by the relations R. The context will make it clear whether one is
talking about the normal subgroup R or the set of relations R. Moreover, if
G is finite, it is easy to see that the finitely generated abelian group R/[F, R]
is isomorphic to the direct product of Zn and the finite subgroup ([F, F ] ∩
R)/[F, R] where n = rank(F ).

The notion of central extensions is an algebraization of the notion of covering
spaces. In covering space theory, one has the universal covers which have no
nontrivial covers themselves. The corresponding notion here is that of universal
central extensions (abbreviated u.c.e).
A central extension

1 → A → E
π→ G → 1

is universal if for any other central extension

1 → B → E ′ π′→ G → 1
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there is a unique homomorphism θ : E → E ′ so that π = π′ ◦ θ. By the
requirement of a unique θ, it follows that if there is a u.c.e of G, then it is
unique up to equivalence. Sometimes, one simply writes (π,E) for the u.c.e.
and Ker(π) is called the Schur muliplier of G.

Lemma.
(a) If (π,E) is a u.c.e of G, then E = [E, E] and [G, G] = G.
(b) If G = [G,G], there exists a u.c.e of G.

Exercises.
If (π, E) is a u.c.e of G, then prove :
(i) that (Id, E) is a u.c.e of E, and
(ii) that every projective representation of G can be lifted uniquely to an actual
representation of E.
(iii) For any abelian group A, one has H2(G,A) ∼= Hom(SchG,A) where SchG
is the Schur multiplier of G.

We can prove now:

Theorem. If n ≥ 5 and, if Stn(R) → En(R) is a central extension, then it is
the universal central extension.
Therefore, for any ring R, the stable Steinberg St(R) is the universal central
extension of E(R).
In particular, K2(R) = H2(E(R),Z).
Proof.
The second and third statements follow from the first one, which we now prove.
Consider any central extension

1 → C → X
φ→ Stn(R) → 1

where n ≥ 5.
Because of centrality, we know that for any pair of elements x, y ∈ Stn(R),
the commmutator [x′, y′] is uniquely defined in X for arbitrary lifts x′ and
y′ of x, y respectively. Therefore, we denote the above commutator in X as
[φ−1(x), φ−1(y)] for simplicity.
Step I: If j 6= k, l 6= i, then for all s, t ∈ R,

[φ−1(xij(s)), φ
−1(xkl(t))] = 1.

Proof of step I:
Indeed, choose h different from i, j, k, l (as n ≥ 5) and write

xij(s) = [xih(s), xhj(1)].
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Let x ∈ φ−1(xih(s)), y ∈ φ−1(xhj(1)), z ∈ φ−1(xkl(t)).
Now, [x, y] ∈ φ−1(xij(s)). Write [x, z] = c1 ∈ C, [y, z] = c2 ∈ C.
So, xzx−1 = c1z, yzy−1 = c2z.
Hence x−1zx = c−1

1 z, y−1zy = c−1
2 z.

Then,
xyx−1y−1z(yxy−1x−1 = z

which shows step I.

Step II: Let i, j, k, l be distinct. Then, for s, t ∈ R, we have

[φ−1(xij(s)), φ
−1(xjl(t))] = [φ−1(xik(1)), φ−1(xkl(st))].

Proof of step II:
Consider the subgroup Y of X generated by the elements of

φ−1(xik(1)), φ−1(xkj(s)), φ
−1(xjl(t)).

Then, the commutator subgroup DY := [Y, Y ] is generated by the elements of
φ−1(xij(s)), φ

−1(xkl(st)) and φ−1(xil(st)). BY step I, these generating elements
commute among themselves and, thus D2Y := [DY, DY ] is trivial.
Now, for any group G, and elements x, y, z, we have (attend tutorial to work
out the proof!)

[x, [y, z]] = [[x, y], z] mod D2G.

Hence, in Y ≤ X, taking x, y, z to be elements of φ−1(xik(1)), φ−1(xkj(s)) and
φ−1(xjl(t)) respectively, we have that

[x, [y, z]] = [[x, y], z]

which is exactly step II.

Step III: For distinct i, j, k and elements t ∈ R, the element

sij(t) := [φ−1(xik(1)), φ−1(xkj(t))]

is independent of the choice of k.
Proof of step III:
Take s = 1 in step II.

Step IV: The elements sij(t) give rise to a splitting of the central extension;
that is, they satisfy the Steinberg relations.
Proof of step IV:
Firstly, note the following commutator identity is valid in an arbitrary group:

[u, v][u,w] = [u, vw][v, [w, u]].

27



Now, we consider in X, elements u in φ−1(xik(1)), v in φ−1(xkj(s)) and w in
φ−1(xkj(t)) where i, j, k are distinct and s, t ∈ R. The commutator relation
above shows that sij(s)sij(t) = sij(s + t) because

[u, v] = sij(s), [u,w] = sij(t), [u, vw] = sij(s + t), [v, [u,w]] = 1.

Finally, step II gives immediately that for i, j, k distinct and s, t ∈ R, we have

[sik(s), skj(t)] = sij(st).

Hence, the central extension splits; that is, Stn(R) is a u.c.e. of En(R) if it is
a c.e. and if n ≥ 4.

8 Steinberg symbols and K2(Z)

In this section, we shall show that K2(Z) is of order 2. This follows once we
establish that the Stn(Z) is a central extension of En(Z) = SLn(Z) whose
kernel is of order 2 when n ≥ 3 (the kernel is infinite cyclic when n = 2). That
will also thus give a presentation for SLn(Z). Steinberg’s results have been
generalized by M.R.Stein to all types of root systems over any commutative
rings. Thus, the case we discuss here corresponds to the type An and the ring
Z. Over fields, a Bruhat decomposition for the Steinberg group is vital to the
study. This can be carried over to rings which are actually generated by the
units. The ring Z is harder to study!

We first prove a result which is valid for a general commutative ring R. First,
we introduce a notion and a notation in Stn(R).
A Steinberg symbol is an element of Stn(R) of the form

hij(uv)hij(u)−1hij(v)−1 , i 6= j

where u, v are units. Note that if we take u = v = −1, then wij(1)4 is a symbol
for any i 6= j. The symbols have remarkable properties when n ≥ 3.
For instance, hij(uv)hij(u)−1hij(v)−1 = [hik(u), hij(v)] for any k different from
i, j.
This immediately makes it clear that since the symbol is a central element,
it is fixed under conjugation and therefore, it is independent of the choice of
the distinct indices i, j, k. One suppresses the hij’s and writes {u, v} for the
symbol. Thus, it is obvious that the symbol is skew-symmetric and bilinear.

Lemma.
For any commutative ring R, consider the kernel C of the homomorphism from
Stn(R) onto En(R). Then the central subgroup C ∩W of Stn(R) is generated
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by Steinberg symbols.
Proof
The subgroup H generated by hij(u) is normal in W . In W/H, one has rela-
tions wij(u) = wij(1) for every unit u. One can call this common class simply
as wij. If

x = wi1,j1(u1) · · ·wiljl
(ul) ∈ C ∩W,

one has
x ≡ wi1,j1 · · ·wiljl

mod H.

One can use the conjugation formulae in the lemma below to push all the
terms of the form w1r to the beginning. Moreover, w2

1r = 1 mod H and
w1rw1sw1r = wrs for r 6= s. Thus, we can cancel off the w1r’s one or two at
a time. After this is done, if there is a single w1r left, it cannot map to the
identity in SLn(R). Similarly, we can do with the elements of the form w2s

and so on to get c ∈ H.
If D denotes the subgroup generated by the symbols, then clearly one has
hij(uv) ≡ hij(v)hij(u) ≡ hij(u)hij(v) mod D. Let us write c as a product
of elements of the form h1r(u)± which we can do again by the conjugation
relations

hjk(u) = h1k(u)h1j(u)−1

which follows from the lemma below.
Further, h1l(uv) ≡ h1l(u)h1l(v) mod D; so,

h1l(u)−1 ≡ h1l(u
−1) mod D.

Then, c ≡ h12(u1) · · ·h1n(un−1) mod D for certain units ui.
As h12(u1) · · ·h1n(un−1) maps to the diagonal matrix

diag(u1 · · · un−1, u
−1
1 , · · · , u−1

n−1)

while c maps to the identity element, it follows that

u1 = u2 = · · · = un−1 = 1;

so, c ∈ D. This proves the lemma.

Exercises (tutorials!).
Let R be any commutative ring and n ≥ 3. Prove:
(i) For i 6= j, the Steinberg symbol hij(uv)hij(u)−1hij(v)−1

equals the commutator [hik(u), hij(v)] for any k different from i, j.
(ii) The symbol {u, v} is skew-symmetric and bilinear in u, v.
(iii) {u, 1− u} = 1 for all units u.
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Recall that Stn(Z) is generated by elements xij for i 6= j. We also denote by
wij the element wij(1).

Lemma.
Let R be any commutative ring. For any n ≥ 2, let Wn denote the group
generated by wij(t), i 6= j and t ∈ R∗. Then, Ker(φn)∩Wn is a central subgroup
of Stn(Z) if n ≥ 2.
Proof
This is easy to see for n ≥ 3 from the following lemma which shows that every
element w ∈ Wn conjugates any Steinberg generator xij(s) to some x±1

kl (t).
For n = 2, it follows because of the very definition of St2(R).

Lemma.
Let R be a commutative ring. If n ≥ 3, i, j, k, l are distinct and t, u ∈ R∗, then
we have :
(a) [wij(u), xkl(t)] = 1.
(b) wij(u)xik(t)wij(u)−1 = xjk(−tu−1).
(c) wij(u)xkj(t)wij(u)−1 = xki(tu

−1).
(d) wij(u)xki(t)wij(u)−1 = xkj(−tu).
(e) wij(u)xjk(t)wij(u)−1 = xik(tu).
(f) wij(u)xij(t)wij(u)−1 = xji(−tu−2).
(g) wij(u)xji(t)wij(u)−1 = xij(−tu2).
(h) wij(t)

−1 = wij(−t).
(i) wij(u)wik(t)wij(u)−1 = wjk(−tu−1).
(j) wij(u)wjk(t)wij(u)−1 = wik(tu).
(k) wij(u)wkj(t)wij(u)−1 = wki(tu

−1).
(l) wij(u)wki(t)wij(u)−1 = wkj(−tu).

Proof
(a) is obvious.
It is fun to prove the other parts (tutorials!).
We indicate some of them. For instance, let us prove (e):

wij(u)xjk(t)wij(u)−1 = xik(tu)

The left hand side equals

xij(u)xji(−u−1)xij(u)xjk(t)xij(−u)xji(u
−1)xij(−u)

= xij(u)xji(−u−1)xik(ut)xjk(t)xji(u
−1)xij(−u)

on using [xij(u), xjk(t)] = xik(tu). This is further equal to

xij(u)xjk(t)xji(−u−1)xik(ut)xji(u
−1)xij(−u)
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= xij(u)xjk(t)xjk(−t)xik(ut)xij(−u)

= xij(u)xik(ut)xij(−u) = xik(ut).

One can similarly prove (b),(c), and (d).
To prove (f), one only needs to write

xij(t) = [xik(t), xkj(1)]

for some k different from i, j. This is possible because n ≥ 3.
Finally, (h) follows by applying (f) and (g).

Theorem.
For n ≥ 3, SLn(Z) is generated by the n(n − 1) elementary matrices Xij for
i 6= j subject to the relations

[Xij, Xjk] = Xik if i 6= k;

[Xij, Xkl] = I if j 6= k , i 6= l;

(X12X
−1
21 X12)

4 = Id.

Further, K2(Z) has order 2.
For SL2(Z), one has an analogous presentation by two generators X12, X21

and two relations
X12X

−1
21 X12 = X−1

21 X12X
−1
21

(X12X
−1
21 X12)

4 = I

Proof.
Let us lead to the proof in easy steps.
We shall show that, for all n ≥ 2,

1 → Cn → Stn(Z)
φn→ SLn(Z) → 1

is a central extension and that Cn is a cyclic group, which is generated by the
element (x12x

−1
21 x12)

4.

This will be done in two steps:
(i) Cn ⊆ Wn, and hence, central,
(ii) Cn is cyclic, generated by w4

12 where w12 = x12x
−1
21 x12.

For each n ≥ 2, there is an action of Stn(Z) on Zn on the right by means
of the homomorphism φn : Stn(Z) → SLn(Z). Define a norm on Zn by
‖ (a1, · · · , an) ‖=| a1 | + · · ·+ | an |. The subgroup Wn of Stn(Z) generated
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by the elements wij clearly preserves the norm. As we mentioned earlier, in the
absence of a Bruhat-type of decomposition for Stn(Z), one looks for some sort
of normal form for the elements of Stn(Z). This is provided by the following
lemma due to Silvester:

Lemma.
For any n ≥ 2, every element in Stn(Z) has an expression as a product
x1 · · ·xrw with w ∈ Wn and each xk one of the x±1

ij in such a way that

‖ ex1 ‖≤‖ ex1x2 ‖≤ · · · ‖ ex1x2 · · ·xr ‖

where e is a standard unit vector, say (0, 0, · · · , 1).
Proof - Tutorials!

Using the lemma, let us show by induction on n that Cn ⊆ Wn for all n ≥ 2.

In this set-up, the inclusion θn−1 : Stn−1(Z) ⊂ Stn(Z) corresponds to the left
hand upper corner inclusion; SLn−1(Z) ⊂ SLn(Z). If c ∈ Cn, let us write
c = x1 · · · xrw as in the lemma. Then,

1 ≤‖ ex1 ‖≤‖ ex1x2 ‖≤ · · · ≤≤‖ ex1x2 · · · xr ‖=‖ ex1x2 · · · xrw ‖=‖ e ‖= 1

and so, equality holds everywhere. Inductively, it follows that each xi leaves
e fixed, and since φn(x1 · · · xrw) = 1, w leaves e fixed too. Thus none of the
xk’s can be x±1

nj for some j. Using the Steinberg relations, one can push all the
factors of the form xin to the left and write x1 · · · xr = xθn−1(y) where x is a
product of factors of the form x±1

in for the i’s, and θn−1(y) ∈ θn−1(Stn−1(Z))
is a product of the other types of Steinberg generators. Thus, φn(x) is of the

form

(
In−1 ∗

0 1

)
while φn(yw) is of the form

(∗ 0
0 1

)
. Since In = φn(xyw), we

must have separately φn(x) = In = φn(yw). But, it is clear from the definition
of φn that then x = 1. Further, φn(w) = φn(z) for some z ∈ θn−1(Wn−1); so,
we can write w = zt for some t ∈ Wn∩Cn.Thus, the element yz ∈ θn−1(Wn−1)
by the induction hypothesis. Therefore, c = xyw = yw = yzt ∈ Wn. This
proves step I i.e., that Cn ≤ Wn and is central.

Finally, we have to show that Cn is cyclic, and generated by the element w4
12

where w12 := w12(−1).
For n = 2, this is clear since w12(−1)w21(−1) = Id and so Wn is generated by
w12; as φn(w12) has order 4, Cn =< w4

12 >.
For n ≥ 3, one considers the subgroup H of Wn generated by w2

ij for i 6= j.
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We first show that Cn ⊆ H. Let c ∈ Cn ⊆ Wn. We write c = wi1,j1 · · ·wir,jrh
where h ∈ H. Now I = φn(c), φn(h) is a diagonal matrix and φn(wij) is a
permutation matrix corresponding to the transposition (i, j), we must have
c = h. But, each wij can be written in terms of w12, w13, · · ·w1n. Hence c is
conjugate in H to w2u2

12 · · ·w2un
1n for some integers ui. This gives

In = φn(c) =




(−1)
P

ui 0 · · · 0
0 (−1)u2 · · · 0
...

. . .
...

0 · · · · · · (−1)un




Hence ui are all even. So, Cn is generated by the 4-th powers of wij. Moreover,
obviously w4

ij ∈ Cn for all i 6= j. As Cn is central, and as w1jw1kw
−1
1j = w−1

jk ,
we have w4

ij = w4
kl for all i 6= j, k 6= l.

Thus, Cn =< w4
12 >.

Finally, it can be seen that w4
12 has order 2 in Stn(Z). Indeed, the symbol

{−1,−1} is
h12(1)h12(−1)−1h12(−1)−1 = w4

12

is bilinear since

{uv, w} = [h12(uv), h13(w)] = [{u, v}h12(v)h12(u), h13(w)]

= [h12(v)h12(u), h13(w)] = [h12(u), h13(w)][h12(v), h13(w)] = {u,w}{v, w}.
That is, K2(Z) has order ≤ 2. It can be shown (proof to be given!) that the
symbol {−1,−1} is not trivial in Stn(Z) for n > 2.
The proof of the theorem is complete.

Remarks.
It can be shown that w4

12 has infinite order in St2(Z).

9 Matsumoto’s theorem and K2(Q)

In this section, we do two things:
(a) we state a deep theorem of Matsumoto on K2 of any field which was applied
by him to solve the congruence subgroup problem for Chevalley groups;
(b) state and indicate a proof due to Tate of the computation of K2(Q).

Theorem (Matsumoto). For any field F , the group K2(F ) has a presenta-
tion where the generators are symbols {x, y} (for x, y ∈ F ∗) and the relations
are:
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(i) the symbol is bilinear and
(ii) {x, 1− x} = 1 for x 6= 0 6= 1− x.

Theorem (Tate).

K2(Q) ∼= {1,−1} ⊕
⊕
p>2

(Z/pZ)∗.

The proof - according to Tate - is a rewriting of Gauss’s first proof of the
quadratic reciprocity law! Indeed, the norm-residue symbol

(x, y)p := (−1)vp(x)vp(y)x
vp(y)

yvp(x)

is a symbol from Q∗ ×Q∗ to (Z/pZ)∗ for prime p > 2.
Define (x, y)2 = −1 if both x, y < 0 and 1 otherwise. The asserted isomorphism
is then given by

(x, y) 7→ ((x, y)p)p.

10 Congruence subgroup problem

In a naive form, the congruence subgroup problem for SLn(Z) asks whether
every subgroup of finite index in SLn(Z) contains a congruence subgroup; viz.,
a subgroup of the form Ker (SLn(Z) → SLn(Z/mZ)), for some integer m > 1.

Note that the question is meaningful because of the existence of plenty of
congruence subgroups in the sense that their intersection consists just of the
identity element.

Already in the late 19th century, Fricke and Klein showed that the answer to
this question is negative if n = 2.
Indeed, since the free group of rank 2 is the principal congruence subgroup
Γ(2) of level 2, any 2-generated finite group is a quotient of this group.

It turns out that the finite, simple groups which can occur as quotients by
congruence subgroups are the groups PSL2(Fp) for primes p.
But there are many finite, simple 2-generated groups (like An (n > 5), PSL3(Fq)
for odd prime q) which are not isomorphic to PSL2(Fp) (the latter has abelian
q-Sylow subgroups). So, the corresponding kernel cannot be a congruence sub-
group of SL2(Z).

An explicit example of a noncongruence subgroup is the following:

Let k be a positive integer which is not a power of 2.
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In the (free) group generated by the matrices X =

(
1 2
0 1

)
and Y =

(
1 0
2 1

)
,

the group of all matrices which are words in X,Y such that the exponents of
X, Y add up to multiples of k, is a subgroup of finite index in SL2(Z) but is
not a congruence subgroup.

In fact, it can be shown that there are many more noncongruence subgroups
of finite index in SL2(Z) than there are congruence subgroups!
It was only in 1962 that Bass-Lazard-Serre - and, independently, Mennicke -
showed that the answer to the question is affirmative when n ≥ 3.

Later, in 1965, Bass-Milnor-Serre generalised this to the special linear and the
symplectic groups over number fields.

The question can be generally asked for more general groups than SLn and
for the rings of S-integers in number fields. In this more general form, the
answer can be ‘no’ but a certain group called the congruence subgroup kernel
defined by Serre, measures the deviation from the property holding good. The
general problem is to compute this kernel. In particular, a conjecture of Serre
predicts when this is a finite group and this has been proved in many cases.
For SLn(OS), the congruence kernel is simply SK1(OS, I) when n > 2.

We indicate here the proof of CSP for SL3(Z). In the tutorials, we can com-
plete the details.
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Look at G = SL3(Z) and the embedded SL2(Z) in its left hand top corner.

For any r, consider the normal subgroup E3(r) generated by U12(r) in G.

For any element g of Γ3(r) (for SL3), one may apply elementary row and
column operations and get x, y in E3(r), with xgy in the principal congruence
subgroup Γ2(r) of level r for the embedded SL2.

This implies easily that the action of G on Γ3(r)/E3(r) by conjugation is trivial.

Now, the first rows (a, b) of Γ2(r) for SL2(Z) give rise to corresponding elements


a b 0
∗ ∗ 0
0 0 1


 of Γ3(r)/E3(r); these are the so-called Mennicke symbols M(a, b)

which will be shown to be trivial.

The Mennicke symbol has nice properties like:

(i) M(a + tb, b) = M(a, b) for all t ∈ Z,

(ii) M(a, rta + b) = M(a, b) for all t ∈ Z,

(iii) M(a, b) is multiplicative in b,

(iv) M(a, b) = 1 if b ≡ ±1 mod a.

Using these, one can show that it is actually trivial (tutorials!).

Therefore, Γ3(r) = E3(r); so, a normal subgroup of finite index which contains
E3(r) (as it must, for some r), also contains Γ3(r).

THANK YOU!
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