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No one would have had the imagination to invent

them
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This continued fraction appeared in Ramanujan’s first letter to
Hardy written on January 16, 1913. Of this and some other
formulae in that letter, Hardy said in 1937:
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“They defeated me completely. I had never seen anything in
the least like them before. A single look at them is enough to
show that they could only be written down by a
mathematician of the highest class. They must be true
because, if they were not true, no one would have had the
imagination to invent them.”

We mention in passing that a simple continued fraction is an
expression
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A less cumbersome notation is

l = a0 +
1

a1+

1

a2+
· · · := lim

n→∞
(a0 +

1

a1+

1

a2+
· · · 1

an
)

That is, l = a0 + 1/l1, l1 = a1 + 1/l2, l2 = a2 + 1/l3 etc.

For instance, 1 + 1
1+

1
1+
· · · equals the golden ratio.

√
7 = 2 + 1

1+
1
1+

1
1+

1
4+
· · · where the 1, 1, 1, 4 will keep

repeating; one writes briefly as [2; 1, 1, 1, 4, · · · ]

B.Sury Ramanujan’s mathematics - some glimpses



A less cumbersome notation is

l = a0 +
1

a1+

1

a2+
· · · := lim

n→∞
(a0 +

1

a1+

1

a2+
· · · 1

an
)

That is, l = a0 + 1/l1, l1 = a1 + 1/l2, l2 = a2 + 1/l3 etc.

For instance, 1 + 1
1+

1
1+
· · · equals the golden ratio.

√
7 = 2 + 1

1+
1
1+

1
1+

1
4+
· · · where the 1, 1, 1, 4 will keep

repeating; one writes briefly as [2; 1, 1, 1, 4, · · · ]

B.Sury Ramanujan’s mathematics - some glimpses



A less cumbersome notation is

l = a0 +
1

a1+

1

a2+
· · · := lim

n→∞
(a0 +

1

a1+

1

a2+
· · · 1

an
)

That is, l = a0 + 1/l1, l1 = a1 + 1/l2, l2 = a2 + 1/l3 etc.

For instance, 1 + 1
1+

1
1+
· · · equals the golden ratio.

√
7 = 2 + 1

1+
1
1+

1
1+

1
4+
· · · where the 1, 1, 1, 4 will keep

repeating; one writes briefly as [2; 1, 1, 1, 4, · · · ]

B.Sury Ramanujan’s mathematics - some glimpses



A less cumbersome notation is

l = a0 +
1

a1+

1

a2+
· · · := lim

n→∞
(a0 +

1

a1+

1

a2+
· · · 1

an
)

That is, l = a0 + 1/l1, l1 = a1 + 1/l2, l2 = a2 + 1/l3 etc.

For instance, 1 + 1
1+

1
1+
· · · equals the golden ratio.

√
7 = 2 + 1

1+
1
1+

1
1+

1
4+
· · · where the 1, 1, 1, 4 will keep

repeating; one writes briefly as [2; 1, 1, 1, 4, · · · ]

B.Sury Ramanujan’s mathematics - some glimpses



The continued fraction quoted in the beginning can be proved
using the so-called Rogers-Ramanujan identities which are, in
turn, intimately connected to the theory of partitions to which
Ramanujan made fundamental contributions.

B.Sury Ramanujan’s mathematics - some glimpses



A quick peek at partitions

Given a natural number n, the number p(n) of ways of
partitioning n as a sum of natural numbers seems simple
enough to study but turns out to be deceptively difficult.

The first few values

p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7

do not seem to give a clue as to either a formula or even of
how these numbers grow astronomically.

For instance, p(200) is almost 4× 1012.
So, it would be impossible to enumerate big numbers like
p(200) actually.
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Ramanujan first observed empirically, then conjectured and
finally also proved the following amazing congruences:

p(5n + 4) ≡ 0 (mod 5)

p(7n + 5) ≡ 0 (mod 7)

p(11n + 6) ≡ 0 (mod 11)
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Generating functions

The partition function has a nice generating function :

∞∑
n=0

p(n)qn =
∞∏
r=1

1

1− qr

where the convention is to put p(0) = 1.

The above identity is formally seen to be true as an identity in
q by expanding each term of the right hand side as a
geometric series.

The following wonderful identities have reformulation in terms
of the partition functions.
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Rogers-Ramanujan identities

These are:
If |q| < 1, then

1 +
∑
n≥1

qn2

(1− q) · · · (1− qn)
=
∏
n≥0

1

(1− q5n+1)(1− q5n+4)

and

1 +
∑
n≥1

qn(n+1)

(1− q) · · · (1− qn)
=
∏
n≥0

1

(1− q5n+3)(1− q5n+4)
.

These identities are equivalent forms of:
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(i) The number of partitions of n into parts, any two of which
differ by at least 2, equals the number of partitions of n into
parts congruent to ±1 modulo 5.

(ii) The number of partitions of n into parts > 1, any two of
which differ by at least 2, equals the number of partitions of n
into parts congruent to ±2 modulo 5.

Partition identities are intimately related to many subjects like
statistical mechanics, representation theory, modular forms etc.
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What is the exact number of partitions?

p(n) =
1√
2π

∞∑
q=1

Aq(n)
√

q[
d

dx

sinh((π/q)(2(x−1/24)
3

)1/2)

(x − 1/24)1/2
]x=n

where Aq(n) =
∑
ωp,qe−2npπi/q, the last sum being over p’s

prime to q and less than it, ωp,q is a certain 24q-th root of
unity.

The exact formula above is due to Rademacher but it was
based on an asymptotic formula of Hardy and Ramanujan.
Here is an interesting aspect which may not be well-known!
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Thus spake Selberg

25 years back, a conference was held in TIFR Bombay to
celebrate Ramanujan’s centenary, where my favourite
mathematician Atle Selberg (who won the Fields medalis for
his elementary proof of the prime number theorem) mentioned
the following words:
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“If we look at Ramanujan’s first letter to Hardy, there is a
statement which has relation to his later work on the partition
function. He claims an approximate expression for a certain
coefficient of a reciprocal of a theta series. This is the exact
analogue of the leading term in Rademacher’s formula.

Ramanujan, in whatever way, had been led to the correct
term. It must have been, in a way, Hardy who did not fully
trust Ramanujan’s insight and intuition when he chose another
expression which they developed into an asymptotic formula.

If Hardy had trusted Ramanujan more, they would have
inevitably ended with the Rademacher series.”
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He also went on to say:

“One might speculate, although it may be somewhat futile,
about what would have happened if Ramanujan had come in
contact not with Hardy but with a great mathematician of
more similar talents, someone who was more inclined in the
algebraic directions, for instance, Erich Hecke in Germany.
This might perhaps proved much more beneficial and brought
out new things in Ramanujan that did not come to fruition by
his contact with Hardy. But Hardy deserves greatest credit for
recognizing Ramanujan’s originality and assisting him and his
work in the best way he could.”
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Ramanujan’s Tau function

Ramanujan’s work on the tau function (named after him) is
arguably the deepest; it has a profound influence on several
parts of mathematics.

We discussed the partition function p(n) which has the
generating function

∞∑
n=0

p(n)qn =
∞∏
r=1

1

1− qr

Related to p(n) is the function

∆(z) := q
∞∏
n=1

(1− qn)24

where q = e2iπz and z = x + iy with y > 0.
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It is outside the scope of this talk to give a good motivation of
why this function is studied. Suffice it to say that this function
helps in determining the number of ways of writing a given
positive integer N as a sum of 2r squares for any r > 1 etc.

∆(z) has strong transformation properties under the
transformations z 7→ z + 1 and z 7→ −1/z ; indeed
∆(z + 1) = ∆(z).

So ∆(z) has a Fourier expansion in powers of q = e2iπz :

∆(z) = q
∞∏
n=1

(1− qn)24 =
∑
n≥1

τ(n)qn

where τ(n) is now known as Ramanujan’s tau function.
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Ramanujan predicted remarkable properties of the tau function
and they have been proved much later leading to some more
deep discoveries.

Ramanujan’s tau function takes integer values and he
conjectured:
τ(mn) = τ(m)τ(n) if m, n are coprime;
τ(pr+1) = τ(pr )τ(p)− p11τ(pr−1) for r > 0 and p prime;
|τ(p)| ≤ 2p11/2 for prime p.

The first two conjectures were proved by Mordell not very long
after they were made but the third one was proved by Pierre
Deligne who won a Fields medal for that work in 1974.
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An elementary (but perhaps bizarre-looking) implication is
that for any natural number n, the value τ(n) differs from
σ11(n) by a multiple of the prime 691.
Here σ11(n) denotes the sum of the 11-th powers of the
divisors of n!

A famous unsolved conjecture of D.H.Lehmer from 1947
asserts that Ramanujan’s tau function never vanishes! In fact,
even the question whether p divides τ(p) for infinitely many
primes p is open.

B.Sury Ramanujan’s mathematics - some glimpses



An elementary (but perhaps bizarre-looking) implication is
that for any natural number n, the value τ(n) differs from
σ11(n) by a multiple of the prime 691.
Here σ11(n) denotes the sum of the 11-th powers of the
divisors of n!

A famous unsolved conjecture of D.H.Lehmer from 1947
asserts that Ramanujan’s tau function never vanishes! In fact,
even the question whether p divides τ(p) for infinitely many
primes p is open.

B.Sury Ramanujan’s mathematics - some glimpses



Ramanujan primes

A beautiful theorem about primes which goes under the name
Bertrand’s postulate asserts that there is always a prime
n < p ≤ 2n for any n > 1. Several proofs are known including
an elegant one due to Ramanujan.

The wandering mathematician Paul Erdös write his first paper
on a proof of this. It happens to be very close to Ramanujan’s
proof.

Ramanujan went further and analyzed the number of primes
between n and 2n - this increases with n.
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Indeed, for each r , if nr is the smallest positive integer such
that there are at least r primes between N/2 and N for any
N ≥ nr , then clearly nr is itself a prime - called the r -th
Ramanujan prime.

The first few are 2, 11, 17, 29, 41, 47.

It is a consequence of the prime number theorem (PNT) that
the n-th Ramanujan prime is between the 2n-th prime and the
4n-th prime for every n.

We mention in passing that the PNT is the statement that the
number of primes up to x is asymptotic to x/ log(x);
equivalently, the n-th prime is asymptotic to n log(n).
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Recently, it has been proved that the n-th Ramanujan prime
Rn is asymptotic to the 2n-th prime and that Rn < p3n (this
last fact proved by one of my colleagues).

There are interesting open conjectures like there are arbitrarily
long strings of primes which consist entirely of Ramanujan
primes etc.!
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Ramanujan and denesting

It is elementary to prove that the ‘nested’ radical converges
and gives √

1 + 2

√
1 + 3

√
1 + · · · = 3

Ramanujan had posed similar, more complicated problems of
“de-nesting radicals”. In this regard, he proved the following
beautiful theorem :
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If m, n are arbitrary, then√
m 3
√

4m − 8n + n 3
√

4m + n =

±1

3
( 3
√

(4m + n)2 + 3
√

4m − 8n)(4m + n)− 3
√

2(m − 2n)2).

Actually, this is easy to verify simply by squaring both sides !
However, it is neither clear how this formula was arrived at nor
how general it is. Are there more general formulae?
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In fact, it turns out that Ramanujan was absolutely on the dot
here; the following result shows Ramanujan’s result cannot be
bettered :

Let α, β ∈ Q∗ such that α/β is not a perfect cube in Q.

Then,
√

3
√
α + 3
√
β can be denested if and only if there are

integers m, n such that α
β

= (4m−8n)m3

(4m+n)n3
.

For instance, it follows by this theorem that
√

3
√

3 + 3
√

2
cannot be denested.
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In fact, the proof of theorems like the one above use deep
mathematics - for those in the know, the above theorem uses
Kummer theory of Galois extensions.

Ramanujan probably did not know this theory but then he had
this uncanny ability to unearth a special result which turns out
each time to be the only one of its kind!
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Taxicabs and Door numbers

Everyone must have heard of the famous taxicab number
1729. We know it thanks to Prasanta Chandra Mahalanobis
who was the founder of my institute and a contemporary of
Ramanujan at the Cambridge university.

In the Strand magazine, Mahalanobis had seen the following
problem which he mentioned to Ramanujan:

Imagine that you are on a street with houses marked 1
through n. There is a house in between such that the sum of
the house numbers to the left of it equals the sum of the
house numbers to its right. If n is between 50 and 500, what
are n and the house number?
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Ramanujan thought for a moment and replied “Take down the
solution” and dictated a continued fraction saying that it
contained the solution!

Evidently, Ramanujan wanted to have some fun instead of
directly giving the answer! So, what is behind this?
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If the house number is r , then we have

1 + 2 + · · ·+ (r − 1) = (r + 1) + · · ·+ n

The LHS is (r−1)r
2

and if we add 1 + 2 + · · ·+ r = r(r+1)
2

to
both sides, we have:

r 2 = n(n+1)
2

.

Multiplying by 8 and adding 1, we have 8r 2 + 1 = (2n + 1)2.
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This is the Brahmagupta equation (popularly and mistakenly
called Pell’s equation) for which the ancient Indian
mathematicians Brahmagupta and Bhaskara had given
complete solutions!

Their solution - the ‘CHAKRAVALA’ method - can be
expressed using continued fractions as follows.
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For a positive integer N which is not a perfect square, the
continued fraction expansion of

√
N looks like√

N = [b0; b1, b2, · · · , br , 2b0].

Further, the penultimate convergent [b0; b1, b2, · · · , br ]; in
fact, each of the convergents

[b0; b1, b2, · · · , br , 2b0, b1, b2, · · · , br ]

etc. gives a solution of x2 − Ny 2 = −1 or of x2 − Ny 2 = 1
according as to whether the period r + 1 above is odd or even.
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As
√

8 = [2; 1, 4], the convergents 3
1
, 17

6
, 99
35
, 577
204
, 3363
1189

, · · · give
solutions of x2 − 8y 2 = 1.

In the above problem, (2n + 1)2 − 8r 2 = 1 means
(n, r) = (1, 1), (8, 6), (288, 204), (1681, 1189), · · · .
The unique solution for n between 50 and 500 is n = 288 and
the house number is r = 204 but there are infinitely many
solutions all given by the continued fraction of

√
8 as

Ramanujan dictated!
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Ramanujan and fast convergents to Pi

Ramanujan wrote a paper, ‘Modular equations and
approximations to π’ where one of his amazing formulae reads

1

π
=

√
8

9801

∞∑
n=0

(4n)!(1103 + 26390n)

(n!)43964n
.

In the centenary volume, J.M.Borwein and P.B.Borwein assert
that the partial sums in the above infinite series converge to
the true value more rapidly than any other calculation of π
until the 1970’s.

Each successive term adds roughly eight more correct digits.
The Borweins bettered Ramanujan’s result in 1987. In an
article in Scientific American of 1988, they say:
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”Iterative algorithms (where the output of one cycle is taken
as the input for the next) which rapidly converge to pi were, in
many respects, anticipated by Ramanujan, although he knew
nothing of computer programming.
Indeed, computers not only have made it possible to apply
Ramanujan’s work but have also helped to unravel it.
Sophisticated algebraic manipulations software has allowed
further exploration of the road Ramanujan travelled alone and
unaided 75 years ago.”

A sense of incredulity prevails on reading these words when
one pictures Ramanujan sitting and writing on a slate and
erasing with his elbow !
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Highly composite numbers

A number n is highly composite if the number of divisors d(m)
of m satisfies d(m) < d(n) for all m < n.

Ramanujan wrote a long paper on ‘highly composite numbers’
which inspired Erdös for his beginning work.

Erdös recalls that he got access to a manuscript of Ramanujan
on this topic which was not completely published because
“during the first world war, paper was expensive”!
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Probabilistic number theory

Ramanujan proved - in collaboration with Hardy - that most
positive integers have at least log log n distinct prime factors.

It is now well-documented that this was the key result that
inspired Erdös and Mark Kac to come up with a new subject
now called probabilistic number theory.
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Ramanujan sums

In 1918, Ramanujan published a famous paper titled ‘On
certain trigonometrical sums and their applications in the
theory of numbers’ in the Transactions of the Cambridge
Philosophical Society.

He proved several nice properties of certain finite sums which
are now known as Ramanujan sums. Even though Dirichlet
and Dedekind had already considered these sums in the 1860’s,
according to G.H.Hardy, Ramanujan was the first to appreciate
the importance of the sum and to use it systematically.
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Ramanujan sums play a key role in the proof of a famous
result due to Vinogradov asserting that every large odd
number is the sum of three primes.

These sums have numerous other applications in
combinatorics, graph theory and even in physics; they have
applications in the processing of low-frequency noise and in
the study of quantum phase locking - subjects about which
Ramanujan had no remarkable knowledge! So, what are these
sums?
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For integers n ≥ 1, k ≥ 0, the sum cn(k) =
∑

(r ,n)=1 e2ikrπ/n is
called a Ramanujan sum.

In other words, it is simply the sum of the k-th powers of the
primitive n-th roots of unity - ‘primitive’ here means that the
number is not an m-th root of unity for any m < n.

Note that the primitive n-th roots of unity are the numbers
e2ikrπ/n for all those r ≤ n which are relatively prime to n.

The first remarkable property the Ramanujan sums have is
that they are integers!
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Ramanujan showed that several arithmetic functions (that is,
functions defined from the set of positive integers to the set of
complex numbers) have ‘Fourier-like’ of expansions in terms of
the sums; hence, nowadays these expansions are knows as
Ramanujan expansions.

They often yield very pretty elementary number-theoretic
identities. Recently, mathematicians have used the theory of
group representations of the permutation groups (the so-called
supercharacter theory) to re-prove the old identities in a quick
way and also discover new identities.
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Look at the sum of the r -th powers of divisors function

σr (n) =
∑
d |n

d r

If ζ(s) denotes the sum of the series
∑∞

l=1
1
ns

for any s > 1,
we have:

σr (k) = k rζ(r + 1)
∞∑
n=1

cn(k)

nr+1

Note that these give expansions for σr when r ≥ 1.

The expansion for the divisor function d(k) = σ0(k) can also
be deduced from the above as

d(k) =
∞∑
n=1

−cn(k)
log(n)

n
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For any m ≥ 1, a generalization of the Euler’s totient function
is φm(k) = km

∏
p|k(1− p−s) where the product on the right

is over all the prime divisors of k ; φ1 is the phi function.

Ramanujan showed for any m ≥ 1 that

φm(k) =
km

ζ(m + 1)

∞∑
n=1

µ(n)cn(k)

φm+1(n)

Let rm(k) = |{(a, b) : a, b ∈ Z, am + bm = k}|, the number of
ways to write k as a sum of two m-th powers.
Ramanujan obtained expressions for r2, r4, r6, r8 and a few
other related arithmetic functions.
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For r2(k), this is:

r2(k) = π

(
c1(k)

1
− c3(k)

3
+

c5(k)

5
− c7(k)

7
+ · · ·

)
where the signs repeat with period 4.

Here is a curiosity: a form of the famous prime number
theorem is the assertion that

∑
n
µ(n)
n

= 0 and this is also

equivalent to the assertion that
∑

n≥1
cn(k)
n

= 0 for all k !
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Ramanujan sums and cyclotomic polynomials

It is convenient to write

∆n = {e2irπ/n : (r , n) = 1}

Then, the set of all n-th roots of unity {e2ikπ/n : 0 ≤ k < n} is
a union of the disjoint sets ∆d as d varies over the divisors of
n.

Introduce the ‘characteristic’ function δk|n which has the value
1 when k divides n and the value 0 otherwise.

Recall the Möbius function defined by
µ(n) = 1,if n = 1;
µ(n) = (−1)k if n = p1 · · · pk , a product of k distinct primes;
µ(n) = 0 otherwise.
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Properties of ck(n)

(i) cn(k) = cn(−k) = cn(n − k);
(ii) cn(0) = φ(n) and cn(1) = µ(n);
(iii) cn(ks) = cn(k) if (s, n) = 1;
in particular, cn(s) = µ(n) if (s, n) = 1;
(iv) cn(k) = cn(k ′) if (k , n) = (k ′, n);
in particular, cn(k) ≡ cn(k ′) mod n if k ≡ k ′ mod n;
(v)
∑n−1

k=0 cn(k) = 0;
(vi)

∑
d |n cd(k) = δn|kn and

cn(k) =
∑

d |n dµ(n/d)δd |k =
∑

d |(n,k) dµ(n/d);

(vii) cmn(k) = cm(k)cn(k) if (m, n) = 1.

The equality cn(k) =
∑

d |n dµ(n/d)δd |k is very useful; even

computationally the defining sum for cn(k) requires
approximately n operations where as the other sum requires
roughly log(n) operations.
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Recall that cn((k , n)) = cn(k); thus, for each fixed n, one may
say that the function k 7→ cn(k) is “even modulo n”. This is
in analogy with even functions which are ‘even modulo 2’. The
following beautiful general theorem holds good.

Let n be a fixed positive integer and let f be any arithmetic
function which is even modulo n. Then, there exists unique
numbers ad for each d |n which satisfy

f (k) =
∑
d |n

adcd(k)

In fact, for each d |n, we have

ad =
1

n

∑
e|n

f (n/e)ce(n/d)
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Orthogonality relations:
•
∑

r |n φ(r)cd(n/r)ce(n/r) = nφ(d) or 0 according as to
whether d = e or not.
•
∑

r |n
1

φ(r)
cr (n/d)cr (n/e) = n

φ(d)
or 0 according as to whether

d = e or not.

• If (mu, nv) = 1, then cmn(uv) = cm(u)cn(v).

•
∑

d |n cd(n/d) =
√

n or 0 according as to whether n is a
perfect square or not.

• cd(n/e)φ(e) = ce(n/d)φ(d) if d , e are divisors of n.

•
∑

d ,e|n cd(n/e)ce(n/d) = nd(n) for divisors d , e of n.
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Mixed orthogonality relations:

• For divisors d , e of n, we have
∑

r |n cd(n/r)cr (n/e) = n or 0
according as to whether d = e or not.

• For a divisor d of n, we have
∑

r |n cd(n/r)µ(r) = n or 0
according as to whether d = n or not.
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Mock theta functions

There are several other topics like Ramanujan graphs and the
circle method which we have not even alluded to due to
shortage of time. We just look at one other topic - mock
theta functions - which Ramanujan mentioned in his last letter
to Hardy 3 months before his death and which is proving to be
of deep interest today in conformal field theory, the theory of
black holes and quantum invariants of some special
3-dimensional manifolds.

In this last letter, Ramanujan talks excitedly about some
functions called ‘mock theta functions’. He does not define
these functions but gives 17 examples and observes a certain
key property they possess.
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It has been said that there are 5 basic operations in
mathematics - addition, subtraction, multiplication, division
and modular forms!

Lest it sound incredible, let me hasten to add that most of the
time, modular forms are present somewhat below the surface
making things work! Properties of arithmetic nature like the
analysis of the number of divisors of an integer, the number of
partitions or the number of expressions of a number as a sum
of squares of integers are ‘ruled’ by modular forms.
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Modular forms are functions which have a lot of symmetry in
them due to their transforming nicely under some natural
transformations like the so-called Möbius transformations.

A classical example is Jacobi’s theta function
θ(x) =

∑
n∈Z e iπn2x ; it transforms nicely under x 7→ −1/x and

x 7→ x + 1. It is effective in determining the number of
expressions of a positive integer as a sum of 4 squares.

Ramanujan gave examples of functions which were not
modular forms (which he called mock theta functions) but
which asymptotically behaved like theta functions when the
argument approached a root of unity.
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Since Ramanujan’s death, several mathematician have studied
his examples but there was no unified theory behind them.
Almost 82 years later in 2002, Zwegers, in his Bonn Ph.D.
work done under the supervision of the versatile
mathematician Don Zagier, uncovered such a theory.

It is outside the scope here to explain the theory but we can
definitely give some elementary consequences.
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Recall Ramanujan’s three congruences for partitions:

p(5n + 4) ≡ 0 (mod 5)

p(7n + 5) ≡ 0 (mod 7)

p(11n + 6) ≡ 0 (mod 11)

In order to understand these, the physicist Freeman Dyson
came up with the following conjecture which was proved to be
correct for the first 2 congruences by Atkin and
Swinnerton-Dyer:
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Call the rank of a partition to be the largest part minus the
number of parts.

Dyson’s (conjectural) refinement of the fact that p(5n + 4) is
a multiple of 5 is that the number of partitions of 5n + 4 falls
into 5 equal classes - the partitions whose rank is a given a
residue mod 5. The same explanation works for p(7n + 6)
being a multiple of 7. It does not work for the 3rd congruence
and Dyson later defined something called the ‘crank’ which we
don’t go into here.
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The generating function for the rank is:

∑
n≥1

(
∑
λ∈P(n)

w rank(λ))qn =
∑
n≥1

qn2∏
m≤n(1− wqm)(1− w−1qm)

When w = −1, this gives the first of Ramanujan’s examples of
a ‘mock theta function’ of order 3!

In fact, if one multiplies the above expression (for w = −1) by
q1/24, the resulting function behaves like a modular form of
weight 1/2.
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We end with a recent beautiful result due to Ken Ono and
Kathryn Bringmann which comes out of refining Zwegers’s
work on Ramanujan’s mock theta functions.

Let t be a positive integer and Q be a prime power which is
co-prime to 6. Then, there exists a positive integer A and a
residue class B modulo A such that for any residue class r
modulo t, and any positive integer n ≡ B modulo A, the
number N(r , t, n) of partitions of n which have rank congruent
to r modulo t is a multiple of Q.
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A myth

A popular myth attributes to Ramanujan the statement
“eπ

√
163 is “almost” an integer.”

It turns out that

eπ
√
163 = 262537412640768743.9999999999992 . . . .
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The first continued fraction that we started today’s talk with
is evaluated as a special value of a modular function.

Similarly, a special value of the so-called j-function at 1+
√
−163
2

is an integer.

This implies

eπ
√
163 = 262537412640768743.9999999999992 . . .

which, implies eπ
√
163 is “almost” an integer.
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The Nobel Laureate S.Chandrasekhar wrote 25 years ago: It
must have been a day in April 1920, when I was not quite ten
years old, when my mother told me of an item in the
newspaper of the day that a famous Indian mathematician,
Ramanujan by name, had died the preceding day; and she told
me further that Ramanujan had gone to England some years
earlier, had collaborated with some famous English
mathematicians and that he had returned only very recently,
and was well-known internationally for what he had achieved.

Though I had no idea at that time of what kind of a
mathematician Ramanujan was, or indeed what scientific
achievement meant, I can still recall the gladness I felt at the
assurance that one brought up under circumstances similar to
my own, could have achieved what I could not grasp. I am
sure that others were equally gladdened.”
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“The fact that Ramanujan’s early years were spent in a
scientifically sterile atmosphere, that his life in India was not
without hardships, that under circumstances that appeared to
most Indians as nothing short of miraculous, he had gone to
Cambridge, supported by eminent mathematicians, and had
returned to India with every assurance that he would be
considered, in time, as one of the most original
mathematicians of the century these facts were enough, more
than enough, for aspiring young Indian students to break their
bonds of intellectual confinement and perhaps soar the way
that Ramanujan did.”

In his short life, Ramanujan had such a wealth of ideas as to
transform 20th century mathematics. These ideas continue to
shape mathematics of the 21st century.
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I would describe Ramanujan’s inspiring mathematics poetically
as:

Ramanujan did mathematics somehow;

we still can’t figure out even now.

He left his mark on ‘p of n’,

wrote π in series quite often.

The theta functions he called ‘mock’

are subject-matter of many a talk.

He died very young - yes, he too !

He was only thirty-two !

His name prefixes the function tau.

Truly, that was his last bow !
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THANK YOU FOR LISTENING!
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