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Diophantus of Alexandria, Egypt lived during the 3rd century AD.
Here he is:
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Metrodorus indicated the life span of Diophantus through a puzzle
poetically as:
’Here lies Diophantus,’ the wonder behold.
Through art algebraic, the stone tells how old:
’God gave him his boyhood one-sixth of his life,
One twelfth more as youth while whiskers grew rife;
And then yet one-seventh ere marriage begun;
In five years there came a bouncing new son.
Alas, the dear child of master and sage
after attaining half the measure of his father’s life chill fate took
him.
After consoling his fate by the science of numbers for four years,
he ended his life.’
This puzzle implies that Diophantus’s age x = 84 is a solution of
the equation
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x
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Diophantus was interested in solving polynomial equations in many
variables where he sought solutions in integers or, more generally,
in rational numbers.
He wrote a number of books titled ‘Arithmetica’ many of which
have got lost.
The amateur mathematician Pierre de Fermat had, in his copy of
Bachet’s translation of Diophantus’s Arithmetica, made a famous
marginal note which came to be known as Fermat’s last theorem.
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Many problems of mathematics can be formulated as seeking
solutions of certain Diophantine equations. In fact, in a sense of
mathematical logic, every problem can be so formulated!
The subject of Diophantine equations is an area of mathematics
where solutions to very similar-looking problems can vary from the
elementary to the deep.
Typically, problems are easy to state, but it is usually far from clear
whether a given one is trivial to solve or whether it must involve
deep ideas.
Even the type of mathematical tools used varies drastically for
equations which seem similar on the first glance.
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There are several questions like Fermat’s last theorem asserting the
nonexistence of solutions in positive integers of the equations
xn + yn = zn for n > 2 (which is solved now), and
Catalan’s conjecture asserting that the only solution in positive
integers of xm − yn = 1 is x = 3,m = 2, y = 2, n = 3 (which is
also solved now)
which require very different techniques.
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There is the as-yet-unsolved conjecture on the generalized Fermat
equation:
This conjecture (for which a businessman and mathematics lover
Robert Beals has offered a million dollar prize) asserts that
xa + yb = zc for a, b, c > 2 implies that x , y , z must have a
common prime factor.
The conditions are necessary as shown by the examples

73 + 132 = 29

274 + 1623 = 97
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I mention briefly that the ancient Indians contributed to a famous
Diophantine equation known as Pell’s equation which has nothing
to do with Pell!
Brahmagupta (6th century) and Bhaskara (12th century) not only
solved equations of the form x2 − dy2 = ±1 completely when d is
a square-free positive integer, they gave the marvellous chakravala
algorithm to do that.
In 1150 A.D., Bhaskara II gave the explicit solutions

17663190492 − 61(226153980)2 = 1

1580706719862492 − 109(15140424455100)2 = 1!

In fact, Brahmagupta had already solved this equation in 628 A.D.
for several values like N = 83 and N = 92.
He is said to have remarked, “a person who is able to solve these
two cases within a year is truly a mathematician”’ !
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A 1657 challenge of Fermat “to the English mathematicians and
all others” was posed in a letter to his friend Frenicle; he posed the
problem of finding a solution of x2 − Ny2 = 1 “pour ne vous
donner pas trop de peine” like N = 61, 109.
André Weil, one of the greatest mathematicians of the 20th
century, who is also an Indophile, says of this:
“What would have been Fermat’s astonishment if some missionary,
just back from India, had told him that his problem had been
successfully tackled there by native mathematicians almost six
centuries earlier?”.
In this talk, we concentrate on some relatively elementary problems
and their pretty connections which are quite amazing already!
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• The Congruent Number Problem:
A natural number d is said to be a congruent number if there is a
right-angled triangle with rational sides and area d .
For example, 5, 6, 7 are congruent numbers.
Why?
6 is easy from the usual 3, 4, 5 triangle.
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To see that 5 is a congruent number, consider the right-angled
triangle with sides 3/2, 20/3, 41/6.
What about 7?
Look at a right triangle with sides 35/12, 24/5, 337/60.
How did we guess this? More importantly, how do we decide if a
given number is a congruent number?
This will be done by relating it to another problem!
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Question. Can we have an arithmetic progression of three
terms which are all squares of rational numbers and the
common difference d?
That is, can x2 − d , x2, x2 + d be squares of rational numbers
and x rational?
The congruent number problem and the above question are
equivalent!
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Indeed, Let u ≤ v < w be the sides of a right triangle with rational
sides.
Then x = w/2 is such that (v − u)2/4,w2/4, (u + v)2/4 form an
arithmetic progression.
Conversely, if x2 − d = y2, x2, x2 + d = z2 are three rational
squares in arithmetic progression, then:
z − y , z + y are the legs of a right angled triangle with rational
legs, area (z2 − y2)/2 = d and rational hypotenuse 2x because
2(y2 + z2) = 4x2.
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1, 2, 3 are not congruent numbers.
Why?
The fact that 1, 2 are not congruent numbers is essentially
equivalent to Fermat’s last theorem for the exponent 4(!)
Indeed, if a2 + b2 = c2, 1

2ab = 1 for some rational numbers a, b, c
then x = c/2, y = |a2 − b2|/4 are rational numbers satisfying
y2 = x4 − 1.
Similarly, if a2 + b2 = c2, 12ab = 2 for rational numbers a, b, c , then
x = a/2, y = ac/4 are rational numbers satisfying y2 = x4 + 1.
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The equations y2 = x4 ± 1 over rational numbers, reduce to the
equation x4 ± z4 = y2 over integers which was proved by Fermat
using the method of descent not to have nontrivial solutions.
The unsolvability of y2 = x4 ± 1 in rational numbers are exactly
equivalent to showing 1, 2 are not congruent.
In fact y2 = x4 − 1 for rational x , y gives a right-angled triangle
with sides y/x , 2x/y , (x4 + 1)/xy and area 1.
Similarly, y2 = x4 + 1 for rational x , y gives a right-angled triangle
with sides 2x , 2/x , 2y/x and area 2.
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Here is a (rather unusual!) way of using the above fact that 1 is
not a congruent number to show that

√
2 is irrational!

Indeed, consider the right-angled triangle with legs
√

2,
√

2 and
hypotenuse 2. If

√
2 were rational, this triangle would exhibit 1 as

a congruent number!
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Though it is an ancient problem to determine which natural
numbers are congruent, it is only in late 20th century that
substantial results were obtained and progress has been made
which is likely to lead to its complete solution.
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The rephrasing in terms of arithmetic progressions of squares
emphasizes a connection of the problem with rational solutions of
the equation y2 = x3 − d2x .
Such equations define elliptic curves.
It is easy to show:
d is a congruent number if, and only if, the elliptic curve
Ed : y2 = x3 − d2x has a solution with y 6= 0.
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In fact, a2 + b2 = c2, 12ab = d implies bd/(c − a), 2d2/(c − a) is a
rational solution of y2 = x3 − d2x .
Conversely, a rational solution of y2 = x3 − d2x with y 6= 0 gives
the rational, right-angled triangle with sides
(x2 − d2)/y , 2xd/y , (x2 + d2)/y and area d .
In a nutshell, here is the reason we got this elliptic curve.
The real solutions of the equation a2 + b2 = c2 defines a surface in
3-space and so do the real solutions of 1

2ab = d . The intersection
of these two surfaces is a curve whose equation in suitable
co-ordinates is the above curve!
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The set of rational solutions of an elliptic curve over Q forms a
group and, it is an easy fact from the way the group law is defined,
that there is a solution with y 6= 0 if and only if there are infinitely
many rational solutions.
Therefore, if d is a congruent number, there are infinitely many
rational-sided right-angled triangles with area d(!)
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The connection with elliptic curves has been used, more generally,
to show that numbers which are 1, 2 or 3 mod 8 are not congruent.
This is rather deep.
Further, assuming the truth of a famous, deep, open conjecture
known as the weak Birch & Swinnerton-Dyer conjecture, it has
been shown that this is a complete characterization of congruent
numbers!
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Here is a set of questions on arithmetic progressions of natural
numbers which leads us to some very interesting Diophantine
equations.
Can we have a finite arithmetic progression

a, a + d , a + 2d , · · · , a + nd

such that a first part a, a + d , · · · , a + (r − 1)d has the same sum
as that of the second part a + rd , a + (r + 1)d , · · · , a + nd?
Note

20 + 25 + 30 = 35 + 40

14 + 21 + 28 + 35 + 42 + 49 = 56 + 63 + 70

This question is very easy to settle and we leave this as an exercise
and proceed to a more general case as follows.
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Can we break an arithmetic progression into THREE parts with
equal sums?
Here, we mean that each of the three parts consist of consecutive
terms.
Another question: Can we have four perfect squares of positive
integers in arithmetic progression?
If a2, b2, c2, d2 are in arithmetic progression, then

b2 − a2 = c2 − b2 = d2 − c2

So
2a + 1, 2a + 3, · · · , 2b − 1

2b + 1, 2b + 3, · · · , 2c − 1

2c + 1, 2c + 3, · · · , 2d − 1

are 3 parts of an A.P. whose sums are all equal.
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Therefore, if the answer to the second question is ‘yes’, then the
answer to the first question is ‘yes’.
The answer to the first question is NO as we show now. In fact,
we prove more generally:
Theorem.
(i) If an A.P. is broken into three parts of lengths a > b > c with
equal sums, then

(a− c)2b = (a + c)(ac − b2).

(ii) If
(a− c)2b = (a + c)(ac − b2)

has solutions in integers a > b > c, then there are four consecutive
terms of an A.P. of integers whose product is a square.
Further, the latter is impossible.
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Proof (i).
Suppose, more generally, that we have an A.P. of real
numbers. By dividing out all terms by the common
difference, we may assume that the A.P. is

t+1, t+2, · · · , t+a, t+a+1, · · · , t+a+b, t+a+b+1, · · · , t+a+b+c

with

a∑
i=1

(t + i) =
b∑

i=1

(t + a + j) =
c∑

i=1

(t + a + b + i).
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As 2
∑a

i=1(t + i) = 2ta + a(a + 1),

2
∑b

i=1(t + a + j) = 2b(t + a) + b(b + 1), and
2
∑c

i=1(t + a + b + i) = 2c(t + a + b) + c(c + 1),
are equal, we have
2t + 1 = 2ab

a−b − (a + b) from the first two, and

2t + 1 = 2bc
b−c − (2a + b + c) from the 2nd and 3rd equations.

Subtracting and rearranging, we have the equality
(a− c)2b = (a + c)(ac − b2).
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Proof of (ii).
The equation b(a− c)2 = (a + c)(ac − b2) can be rewritten as
(a− c)2(a + c + 4b) = (a + c)(a + c − 2b)(a + c + 2b).
Multiplying by a + c + 4b, the LHS is a perfect square while
the RHS is a product of 4 consecutive terms of an A.P. of
positive integers.
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Leonhard Euler proved that four consecutive terms of an A.P. of
positive integers cannot have product a square.
Therefore, Euler’s result shows by the theorem above that:
There does not exist a A.P. of positive integers which has length
a + b + c and such that the sum of the first a terms, the sum of
the next b terms and then the sum of the last c terms are all equal.
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Euler’s theorem can be proved easily by first observing that the
4-term A.P. with a square product can be reduced to a 4-term A.P.
a + d , a + 2d , a + 3d , a + 4d with a, d coprime; then observing that
each of the 4 terms must be a square up to extra factor of 2 or 3.
We leave the completion of this proof as an exercise and discuss
another approach.
Before that, we mention in passing that Euler’s theorem has an
even easier proof when the common difference is 1:
Note that

(a + 1)(a + 2)(a + 3)(a + 4) = (a2 + 5a + 5)2 − 1.

So, if there were b2, we would have a solution to the equation
y2 = x2 − 1 in positive integers, which is impossible.
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Recall that if we have a decomposition of an A.P. into parts of
sizes a, b, c, we have

(a− c)2b = (a + c)(ac − b2)

which is also expressible as:
(a + c)b2 + (a− c)2b − ac(a + c) = 0.
Writing u = a + c , v = a− c, the discriminant

(a− c)4 + 4ac(a + c)2 = u4 − u2v2 + v4.

So u4 − u2v2 + v4 is a square, which can be shown to be possible
in positive integers only if u = v (this is not possible in our case as
c 6= 0).
The way to show the above impossibility is by considering it as an
equation

(u2 − v2)2 + (uv)2 = w2

and showing that any solution leads to a ‘smaller’ solution; this
method is known as descent.
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We end this circle of problems with the following one which can be
investigated further.
Suppose an A.P. of a + b + c positive integers has the sum of first
a terms to that of the next b terms to that of the next c terms in
the ration u : v : w .
What are the possible u, v ,w?
In fact, our earlier discussion can be generalized without any extra
effort to show that such an A.P. gives rise to a Diophantine
equation

(ub − va)c(b + c) + (wb − vc)a(a + b) = 0.

In the above equation, we are looking for solutions under the
condition u/a, v/b,w/c must be distinct.
We leave the investigation open for students to try.
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Now, we discuss a natural problem which leads to a Diophantine
equation discussed above.
Look at the figure below of a square of unit area.

�
�
�
�
�
��

#
#

#
#
#
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The rule is to walk from the bottom left corner on a straight line
to some point of the middle vertical line as in the figure and, on
reaching that point, walk towards the top right corner along a
straight line.
Thus, we have a path as in the figure consisting of one segment of
length r until the middle line is reached and the other of length s
from that point to the opposite corner.
The question is whether we can follow such a path with both the
distances r , s rational numbers. Suppose such a ‘rational’ path is
possible.
Let us call the vertical distance x on the middle line from the
bottom to the point we reach on it; of course, the rest of the
vertical distance is 1− x .
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Now,

r2 − 1

4
= x2

s2 − 1

4
= (1− x)2

This gives 2x = 1 + r2 − s2, which is then rational.
Then, writing r = p/q and s = u/v , we have two equations√

4p2 − q2

2q
= x ,

√
4u2 − v2

2v
= 1− x
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Therefore, since the square-roots in√
4p2 − q2

2q
= x

√
4u2 − v2

2v
= 1− x

are rational, they must be integers and so, q = 2Q (if q were odd,
the number 4p2 − q2 would be −1 modulo 4 which cannot be a
square).

Thus, x =

√
p2−Q2

2Q = l
2Q for some l with (l ,Q) = 1.

Similarly, v = 2V and 1− x =
√
u2−V 2

2V = m
2V with (m,V ) = 1.

Thus, 1 = l
2Q + m

2V gives 2QV = lV + mQ.
As (l ,Q) = 1 = (m,V ), we get Q|V ,V |Q; that is, Q = V as both
are positive integers.
Hence, we have obtained:
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l2 + Q2 = p2,m2 + Q2 = u2, l + m = 2Q with
(l ,Q) = 1 = (m,Q).
We leave it as an exercise to show that these equations are
solvable if and only if the equation X 4 − Y 4 = Z 2 is solvable in
positive integers.
The last equation is not solvable in integers (equivalently, 1 is not
a congruent number!).
Therefore, such a ‘rational’ walk is impossible because 1 is not a
congruent number!
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We have seen some Diophantine equations arising naturally while
considering the congruent number problem or while looking at
some natural questions on A.P’s.
Another natural question is:
Which natural numbers have all their digits to be 1 with respect to
two different bases?
Equivalently, solve

xm − 1

x − 1
=

yn − 1

y − 1

in natural numbers x , y > 1; m, n > 2.
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For example 31 and 8191 have this property;

(11111)2 = (111)5 , (111)90 = 213 − 1.

(Observed by Goormaghtigh nearly a century ago).
However, it is still unknown whether there are only finitely many
solutions in x , y ,m, n. In fact, no other solutions are known.
For any fixed bases x , y , it was proved only as recently as in 2002
that the number of solutions for m, n is at the most 2.
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Another problem is:
• Can one have different finite arithmetic progressions with the
same product?
Note that

2.6 · · · (4n − 2) = (n + 1)(n + 2) · · · (2n)

for all natural numbers n.
Are there other solutions to the equation

x(x + d1) · · · (x + (m − 1)d1) = y(y + d2) · · · (y + (n − 1)d2)

where d1, d2 are positive rational numbers and d1 6= d2 if m = n ?
It is only in 1999 that using ideas from algebraic geometry, it was
proved that if m, n, d1, d2 are fixed, then the equation has only
finitely many solutions in integers apart from some exceptions
which occur when m = 2, n = 4.
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The fact that a product of k consecutive numbers (where k ≥ 3)
can not be a perfect power was settled in 1975 by Erdös &
Selfridge.
They used a classical theorem due to Sylvester which asserts that
any set of k consecutive numbers with the smallest one > k
contains a multiple of a prime > k .
The special case of this when the numbers are k + 1, · · · , 2k is
known as Bertrand’s postulate.
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In contrast with the above Erdös- Selfridge result, there is a much
deeper conjecture due to Erdös in 1975 that:
For each c ∈ Q, the number of (x , y ,m, n) satisfying

x(x + 1) · · · (x + m − 1) = cy(y + 1) · · · (y + n − 1)

with y ≥ x + m , min(m, n) ≥ 3, is finite.
This is unsettled as yet.
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Apollonian circle packing

Apollonius from 200 BC discovered something beautiful.
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If we have three circles touching each other, one may place
another circle touching all three.
In the 17th century, Descartes discovered the remarkable fact that
the radii satisfy the equation(∑4

i=1
1
ri

)2

= 2
∑4

i=1
1
r2i

.

Here, the circles are supposed to have no common interior point
which means by convention that the outermost circle’s exterior is
the interior and the interior is the exterior and the radius is
negative.
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In terms of the curvature, which is the reciprocal of the radius, the
equation becomes

(C1 + C2 + C3 + C4)2 = 2(C 2
1 + C 2

2 + C 2
3 + C 2

4 ).

Thus, if we are given 3 of the circles and they have integer
curvatures,t he fourth must also have integral curvature because of
the equation!
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In the figure here, the curvatures are −1, 2, 2, 3.
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In this manner, we can get a packing by circles and it is a nontrivial
problem to find all solutions of the above Diophantine equation.
Recently, very deep mathematical tools have been brought to bear
on these problems and there is a veritable treasure for the eye as
well as the brain awaiting you if you are interested!
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