
Weierstrass’s theorem - leaving no Stone unturned

B.Sury

Stat-Math Unit
Indian Statistical Institute

Bangalore

Workshop on linear algebra and analysis

University of Hyderabad

September 14-17, 2006

1



In these talks, we discuss the basic theme of approximating functions by
polynomial functions. Although it is exemplified by the classical theorem of
Weierstrass, the theme goes much further. Even on the face of it, the ad-
vantage of polynomial approximations can be seen from the fact that unlike
general continuous functions, it is possible to numerically feed polynomial
interpolations of such functions into a computer and the justification that we
will be as accurate as we want is provided by the theorems we discuss. In
reality, this theme goes deep into subjects like Fourier series and has applica-
tions like separability of the space of continuous functions. Marshall Stone’s
generalisation to compact Hausdorff spaces is natural and important in math-
ematics. Applications of the Weierstrass approximation theorem abound in
mathematics, and we discuss a few of them, including one addressing Gaus-
sian quadrature. Although there are standard reference texts like Rudin’s
‘Principles of Mathematical Analysis’ and Apostol’s ‘Mathematical Analy-
sis’, a reference whose style we have adopted for a lot of this material is
Körner’s book [K].

The starting point of all our discussions is :

Weierstrass’s Theorem (1885) :
If f : [a, b] → C is continuous, then for each ε > 0, there is a polynomial
P (x) such that

|f(x)− P (x)| < ε ∀ x ∈ [a, b].

A topologist would re-phrase this as “the set of polynomials is dense in the
space of continuous functions on [a, b] for the metric given by the sup norm.”
The first question which arises is whether one could not expect a continuous
function to be itself expressible at least as a power series if not actually as a
polynomial. Unfortunately, even this is too much to expect as the following
example shows.

Proposition (C∞ but not analytic) :
The function h : R → R given by h(x) = e−1/x2

for x 6= 0 and h(0) = 0 is
infinitely differentiable, but there does not exist any ε > 0 such that in the
interval |x| < ε, the h(x) could be expressed as a power series

∑∞
n=0 anxn.

Proof.
First, let us note that for a function f(x) given on a fixed interval of the form
|x| < ε by the convergent power series

∑∞
n=0 anxn, the coefficients satisfy
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an = f (n)(0)
n!

.
For our function h(x), an easy induction shows that for any x 6= 0, one has
h(n)(x) = Qn(1/x)exp(−1/x2) for some polynomial Qn(x). Thus, h(x) is
infinitely differentiable at all x 6= 0.
Further, h(x) is infinitely differentiable at x = 0 also and h(n)(0) = 0 as seen
by induction on n and the earlier inductive hypothesis for non-zero points
since exp(t2) diverges faster than any polynomial as t →∞. Indeed,

h(n)(x)− h(n)(0)

x
= x−1Qn(x−1)exp(−x−2) → 0 as x → 0.

Thus, the observation made at the beginning of the proof shows that if h(x)
were to be expressible as a power series in any interval of the form (−ε, ε),
then its coefficients would all be zero ! Evidently, h(x) is not the zero function
in any such interval.

When Weierstrass proved the approximation theorem, he was 70 years old.
Twenty years later, another proof was given by the 19-year old Fejer - this
is what is charming about mathematics ! It is interesting to learn that in
the beginning, Fejer was considered weak in mathematics at school and was
required to have special tuition ! Fejer’s proof is via Fourier series, and it
turns out that Weierstrass’s theorem itself is equivalent to its periodic ver-
sion. Towards proving Fejer’s theorem which implies Weierstrass’s theorem,
we recall what Fourier series are.

Let f : R → C be a continuous function which is periodic, of period 2π
(equivalently, f can be considered as a function on the unit circle T ). One
defines the Fourier coefficients of f for any integer r by

f̂(r) =
1

2π

∫ 2π

0
f(t)exp(−irt)dt.

The idea of defining this was clear - it is natural to expect a periodic function
to be expressible as a linear combinations of the functions t 7→ exp(irt) for
various r; the coefficient of exp(irt) for a particular r is obtained using the
orthogonality property

∫ 2π
0 eirtdt = 0 if r 6= 0, of these special functions.

The question whether this natural expectation is well-founded is answered
by Dirichlet affirmatively for good functions; this is :
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Theorem (Dirichlet) :
If f is continuous and has a derivative function, which is continuous and
bounded (except possibly at finitely many points), then the sums Sn(f, t) =∑n
−n f̂(r)exp(irt) → f(t) as n →∞, at all points t where f is continuous.

The hypothesis is rather restrictive; for example, there are continuous func-
tions f for which the sums Sn(f, 0) have infinite limsup as observed by Du
Bois-Reymond. However, it still does not rule out the possibility of deter-
mining a continuous f (possibly not satisfying the hypothesis of Dirichlet’s
theorem) from its Fourier coefficients f̂(r), r ∈ Z. This was answered in a
surprising manner by the 19-year old Fejer who showed that the sequence
Sn(f, t) may not be well-behaved but their averages σn = S0+S1+···+Sn

n+1
behave

better. His result was :

Theorem (Fejer) :
(i) If f : T → C is Riemann integrable, then at any point t where f is
continuous, we have

σn(f, t) =
1

n + 1

n∑

k=0

Sk(f, t) =
n∑

r=−n

n + 1− |r|
n + 1

f̂(r)exp(irt) → f(t).

(ii) If f : T → C is continuous then

σn(f, t) =
n∑

−n

n + 1− |r|
n + 1

f̂(r)exp(irt) → f(t)

uniformly.

Fejer’s theorem (ii) above immediately implies the following explicit trigono-
metric version of Weierstrass’s theorem as σn(f,−) is a trigonometric polyno-
mial for each n. Here, one means by a trigonometric polynomial, a function
of the form

∑n
r=−n arexp(irt). The trigonometric version, in turn, will lead

easily to the Weierstrass theorem itself as we shall show :

Weierstrass’s theorem - Trigonometric version :
If f : T → C be continuous. The, for any ε > 0, there exists a trigonometric
polynomial P with

supt∈T |f(t)− P (t)| < ε.
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The class of functions which plays the key role in the proof of Fejer’s theorem
are the functions Kn(t) =

∑n
r=−n

n+1−|r|
n+1

exp(irt) which occur as ‘weights’ of

the Fourier coefficients f̂(r). Now, the function Kn is called a Fejer kernel
function and has the following remarkable properties.

Properties of Fejer’s kernel :
We may look at Kn(t) :=

∑n
r=−n

n+1−|r|
n+1

exp(irt) for any real t.

(i) Kn(t) = 1
n+1

(Sin((n+1)t/2)
Sin(t/2)

)2 for t 6= 0.
For t = 0, the expession on the right reduces to the limiting value n+1 which
matches the value Kn(0) clearly.
(ii) Kn(t) ≥ 0 for all t.
(iii) Kn → 0 uniformly outside [−δ, δ] for each positive δ.
(iv) 1

2π

∫
T Kn(t)dt = 1.

These properties are easily verified by first principles. If we draw graphs of
these functions, we will see that the support (width) gets smaller and smaller
as n increases. As the total area of each is 1, these properties are sometimes
expressed as asserting that the functions Kn form an approximate identity
for the convolution operation.

Before giving the rigorous proof of Fejer’s theorem, it is very easy to describe
it informally first.
Now

σn(f, t) =
n∑

r=−n

n + 1− |r|
n + 1

f̂(r)exp(irt)

=
n∑

r=−n

n + 1− |r|
n + 1

exp(irt)
1

2π
(
∫

f(x)exp(−irx)dx)

=
1

2π

∫ π

−π
f(x)Kn(t− x)dx =

1

2π

∫ π

−π
f(t− x)Kn(x)dx.

The idea is that for a positive, small δ, and large n, we have

1

2π

∫ π

−π
f(t− x)Kn(x)dx ≈ 1

2π

∫ δ

−δ
f(t− x)Kn(x)dx ≈ f(t)

2π

∫ δ

−δ
Kn(x)dx.

Therefore, we would have σn(f, t) ≈ f(t) for large n. Let us make this
rigorous now.

Proof of Fejer’s theorem.
(i) We have assumed that f is continuous at a certain point t on the circle.
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Being Riemann integrable, f is bounded on the circle; say |f(x)| ≤ M for
all x. Now, for any ε > 0, there is δ depending on t and on ε such that
|f(x) − f(t)| ≤ ε/2 whenever |x − t| < δ. By the property (iii) of the Fejer
kernels, there is N (depending, of course, on δ and, therefore, on t, ε) such
that

|Kn(x)| ≤ ε/4M ∀ x 6∈ [−δ, δ] , n ≥ N.

Then

|σn(f, t)− f(t)| = | 1

2π

∫

T
(f(t− x)− f(t))Kn(x)dx|

≤ 1

2π

∫

x∈[−δ,δ]
|(f(t−x)−f(t))Kn(x)|dx+

1

2π

∫

x 6∈[−δ,δ]
|(f(t−x)−f(t))Kn(x)|dx.

Now, in the first integral, one can use the inequality |f(t− x)− f(t)| ≤ ε/2
for the integrand and use the positivity and property (iv) on Kn being of
unit area; this bounds the first integral by ε/2. In the second integral, if we
use the bound |f(t− x)− f(t)| ≤ 2M , and the bound |Kn(x)| ≤ ε/4M , that
integral too will be bounded by ε/2. This completes the proof of (i) of Fejer’s
theorem.
Now (ii) follows quite immediately from the proof of (i) by noting that f must
be uniformly continuous on the circle and by replacing δ(t, ε) and N(t, ε) in
the proof by constants dependent only on ε.

We draw attention, in passing, to a rather interesting consequence of Fejer’s
theorem :

If f, g are both continuous complex-valued functions on the unit circle, and
if f̂(r) = ĝ(r) for all integers r, then f = g.

This is immediate from the fact that

0 = σn(f, t)− σn(g, t) → f(t)− g(t)

as n →∞.

Fejer’s proof of the Weierstrass theorem.
Recall the statement we are trying to prove here :
If f : [a, b] → C is continuous, then for each ε > 0, there is a polynomial
P (x) such that

|f(x)− P (x)| < ε ∀ x ∈ [a, b].
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Note first that the interval [a, b] can be taken to be [−π, π] without loss of

generality. Indeed, replace f by g(x) = f(a + (x+π)(b−a)
2π

) and, replace an

approximation Q(x) to g(x) by the approximation P (x) = Q(2π(x−a)
b−a

− π).
Thus, we assume [a, b] = [−π, π]. Consider the function F (x) whose values
in |x| ≤ π are taken to be f(|x|) and in |x| > π so that F has period 2π.
This is a continuous function. By Fejer’s theorem, there exists n ≥ 1 and
complex numbers a−n, · · · , a−1, a0, a1, · · · , an satisfying

|F (t)−
n∑

r=−n

arexp(irt)| < ε/2

for all t. But, the series
∑∞

k=0
(ix)k

k!
converges uniformly to exp(ix) in any

bounded interval [−M,M ]. Therefore, there exists m(r) corresponding to
each r ∈ [−n, n] so that

|
m(r)∑

k=0

(irt)k

k!
− exp(irt)| ≤ ε

(4n + 2)|ar|+ 1

for all t with |t| ≤ 1. Then, the polynomial P (t) =
∑n

r=−n ar
∑m(r)

k=0
(irt)k

k!

satisfies, for t ∈ [0, 1],

|P (t)− f(t)| = |P (t)− F (t)| < ε

2
+

n∑

r=−n

ε

4n + 2
= ε.

This proves Weierstrass’s theorem.

An application to moments :
Here is an application of Weierstrass’s theorem which is useful in probability
theory where one works with moments.

Theorem (Hausdorff) :
Let f, g : [a, b] → C be continuous functions. Then, if equality of the moments

∫ b

a
xrf(x)dx =

∫ b

a
xrg(x)dx

holds for all r ≥ 0, then f ≡ g on [a, b].
Proof.
Working with h = f − g, it suffices to show that if all moments of h vanish,
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then hmust be the zero function. Now, for any polynomial P (x), we have∫ b
a P (x)h(x)dx = 0. Let {Pn} be a sequence of polynomials converging uni-

formly on [a, b] to the function h(x). Since {Pn(x)h(x)} converges uniformly
on [a, b] to the function |h(x)|2, we have

∫ b
a |h(x)|2 = 0. As the integrand is

real and non-negative throughout the interval, it must be zero.

The following example shows that Hausdorff’s theorem is invalid if we go to
infinite intervals.

Counterexample on [0,∞).
The moments of the non-zero, real-valued, continuous function

h(x) = exp(−x1/4)Sin(x1/4)

on [0,∞) are zero.
To get a positive function as an example, one can look at g(x) = max(h(x), 0).

Lord Kelvin on compasses and tides :
Two practical applications of polynomial approximation emerged from the
work of Lord Kelvin. One was the problem of correcting a magnetic compass
mounted in a ship (which usually has a lot of iron and steel components). If
a true angle of θ to the north is given by the compass as f(θ) (that is, with
with an error g(θ) = f(θ)− θ), then it makes sense to approximate g(θ) for
small θ by a trigonometric polynomial of degree 2, say

g(θ) = a0 + a1Cos(θ) + a2Cos(2θ) + b1Sin(θ) + b2Sin(2θ).

The point is that by taking a few readings in the port by comparing with
known directions θ, one can easily compute the ai’s and the bi’s. Experiments
have shown that this approximation is reasonable - the value of the error
g(θ) can usually be determined upto 2 or 3 degrees. Kelvin also designed
a compass which can easily be corrected along these lines and was used
extensively until the second world war.
The other situation to which Lord Kelvin applied the idea of approximation
by trigonometric polynomials is to the prediction of tides. The height h(t)
of the tide at time t is known to be a sum of certain periodic functions
h1(t) + h2(t) + · · · + hN(t). For instance, h1(t) might have, as period, the
rotation of the earth with respect to the moon, h2(t) may have its period to be
that of the rotation of the earth with respect to the sun etc. Approximating
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the hi’s by trigonometric polynomials, one has an approximation of the form

h(t) ≈ a0 +
N∑

r=1

(arCos(mrt) + brSin(mrt)).

If one has a record of the value h(t) over a long range [S, S + T ] one can
compute the coefficients from the easily-proved formulae :

2

T

∫ S+T

S
h(t)Cos(mrt)dt → ar,

2

T

∫ S+T

S
h(t)Sin(mrt)dt → br

as T →∞. The computations of these integrals can be carried by numerical
integration, an area to which polynomial approximation applies, as we will
show later. Incidentally, the numbers mr’s are selected from the frequencies
of the form kλ where 2πλ−1 is the period of earth’s rotation with respect
to the moon etc. Experimentally though, it turns out that one needs to
take T large. Very remarkably, Lord Kelvin also built a machine known as a
harmonic-analyser to compute the coefficients ai’s and bi’s from the records of
measured h(t). This was Government-funded and was used purely to replace
brain by brass - hence, it has a claim to be a forerunner of computers which
came 20 years later.

Application to differentiability of Fourier series :
Another direct consequence of polynomial approximation is that under some
conditions, the Fourier series can be differentiated term by term. This is :

Theorem.
Let f : T → C be continuous. If the series

∑
n∈Z |nf̂(n)| converges, then f

is a C1-function, and the series
∑n

r=−n irf̂(r)exp(irt) → f ′(t) uniformly as
n →∞.
Proof.
Consider the sequence of functions fn(t) = Sn(f, t) :=

∑n
r=−n f̂(r)exp(irt) on

the circle. Since |f̂(r)| ≤ |r||f̂(r)| for r 6= 0, the comparison test shows that∑n
r=−n |f̂(r)| converges as n → ∞. We claim that fn(t) → f(t) uniformly

on the circle. Given any ε > 0, there is n0 depending on it such that for all
m ≥ n ≥ n0 and all t on the circle, one has

| ∑

n≤|r|≤m

f̂(r)exp(irt)| ≤ ∑

n≤|r|≤m

|f̂(r)exp(irt)| = ∑

n≤|r|≤m

|f̂(r)| < ε.
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Thus, by Weierstrass’s M-test, fn(t) does converge uniformly to some func-
tion g(t). Since fn(t)’s are continuous, so is g(t).
As

∑n
r=−n f̂(r)exp(irt) → g(t) uniformly, for any k ∈ Z, we get

n∑

r=−n

f̂(r)exp(i(r − k)t) → g(t)exp(−ikt)

uniformly. Hence,

f̂(k) =
n∑

r=−n

f̂(r)
1

2π

∫
exp(i(r − k)t)dt → 1

2π

∫
g(t)exp(−ikt)dt = ĝ(k)

as n → ∞. Thus, g = f since a continuous function with all Fourier coeffi-
cients zero is the zero function.
Note that the above analysis applies to the functions

f ′n(t) =
n∑

r=−n

irf̂(r)exp(irt)

because of the hypothesis that
∑n

r=−n |r||f̂(r)| converges as n → ∞. We
conclude that f ′n(t) converge uniformly to a continuous function h(t).
Finally, using the following standard fact for our sequence fn, the result
follows :
if {gn}n are C1-functions from the circle such that gn → g and g′n → h
uniformly as n →∞, then g is in C1 and g′ = h.

How bizarre are continuous functions ?
In contrast with the previous theorem where some conditions forced differ-
entiability, there are continuous functions which are nowhere differentiable,
as Weierstrass showed. One can imagine the effect this must have had those
days when everyone thought a continuous function could fail to be differen-
tiable only at a very few points. Weierstrass’s example is :

Example :

The series
∑n

r=0
Sin((r!)2t)

r!
converges uniformly on T as n →∞ to a function

h(t) which is continuous and nowhere-differentiable.

This example was a fore-runner of various pathological examples like Peano’s
space-filling curve (a continuous, surjective function from R to R2). Lest we
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think that these are bizarre and useless, it should be borne in mind that
these ideas were the ones which led to the study of random functions and
Brownian motion which have so many practical applications.
We mentioned earlier that an example due to Du Bois-Reymond in 1876
shattered the then-prevalent hope that the Fourier series of any continuous
function must converge at every point. Stalwarts like Dirichlet, Riemann,
Weierstrass and Dedekind had earlier believed this would indeed be true.
Later, in 1926 Kolmogorov produced examples of a Lebesgue integrable (but
not even Riemann integrable, let alone continuous) functions whose Fourier
series diverged at every point. After that, opinion began to swing towards the
belief that there could be continuous functions whose Fourier series diverged
everywhere ! Finally, in 1964, Carleson proved the very surprising result that
the Fourier series of a continuous function (indeed, of an L2-function) must
converge at all points except for a set of measure zero !

We will now give an important application of Weierstrass’s approximation
theorem called the Riemann-Lebesgue lemma. To motivate it, recall the
convolution of two functions f, g : R → C defined by

(f ∗ g)(x) =
∫ ∞

−∞
f(x− y)g(y)dy

is a ‘smoothing’ operator. For instance, if f is continuous and bounded, and
g is Riemann integrable on each finite [a, b] and satisfies

∫∞
−∞ |g(x)|dx < ∞,

then f ∗g is continuous and bounded. One has similar (and somewhat better)
results for the convolution of functions on the circle. For two continuous
functions on the circle, the n-th Fourier coefficient of their convolution is
the product of the corresponding Fourier coefficients. In fact, the set of
all continuous functions forms a commutative ring under the operations of
pointwise addition and of convolution. That it does not have an identity is
a consequence of the :

Riemann-Lebesgue lemma :
Let f : T → C be continuous. Then, f̂(n) → 0 as |n| → ∞.

Before proving this lemma, let us point out :

Corollary (C(S1) has no identity) :
There is no continuous function g on the circle so that g ∗ f = f for every
continuous f .
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For, if there were, then one would have ĝ(n)f̂(n) = f̂(n) for all n. For the
function f(t) = exp(int), we would have ĝ(n) = 1 for all n, which would
make it rather difficult (!) for ĝ(n) to converge to zero as |n| gets arbitrarily
large.

Proof of Riemann-Lebesgue lemma.
For any ε > 0, using Fejer’s trigonometric version of the Weierstrass theorem,
we have a trigonometric polynomial P (t) =

∑n
r=−n arexp(irt) so that

Supt∈T |f(t)− P (t)| < ε.

For |N | > n, P̂ (N) = 0 and so

|f̂(N)| = | ̂(f − P )(N)|

=
1

2π
|
∫

(f − P )(t)exp(iNt)dt| ≤ 1

2π

∫
|(f − P )(t)|dt ≤ ε.

Lemma (Mean square convergence) :
Let f : T → C be continuous, and as before,

(Snf)(t) =
n∑

−n

f̂(r)exp(irt).

Then,
||f − Snf ||2 → 0 as n →∞.

Of course, we note that mean square convergence does not imply even point-
wise convergence; there are examples.
Proof.
By the trigonometric version of the Weierstrass approximation theorem,
given ε > 0, there is a polynomial Pn(t) =

∑n
r=−n arexp(irt) such that

|Pn(t)− f(t)| < ε. Therefore,

||Pn − f ||22 =
1

2π

∫
|Pn(t)− f(t)|2dt ≤ ε2.

If N > n, then SN(Pn) = Pn; so

||f − SN(f)||2 ≤ ||f − Pn||2 + ||Pn − SN(Pn)||2 + ||SNf − SNPn||2
≤ ||f − Pn||2 + ||SN(f − Pn)||2.
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But, by using how minimisation problem is solved in an inner product space
(discussed in our linear algebra lectures), it follows that ||SNg||2 ≤ ||g||2 for
all g. Thus, we have

||f − SNf ||2 ≤ 2ε

which proves the lemma.

Application to Gaussian quadrature :
We discuss an interesting application to quadrature. The method of approxi-
mating an integral by the interpolating polynomial at some points was viewed
carefully by Gauss. He showed that this approximation is exact for polyno-
mials of degree < 2n if the n points are the zeroes of the Legendre polynomial
Pn(x) = 1

2nn!
dn

dxn (x2−1)n. More precisely, he proved that if x1, · · · , xn are the
zeroes of Pn(x) then there exist some a1, · · · , an so that, for any polynomial
P (x) of degree ≤ 2n− 1,

∫ 1

−1
P (x)dx =

n∑

r=1

arP (xr).

Note that each ak > 0 as seen by applying Gauss’s theorem to the polyno-
mial P (x) =

∏
i6=k(x − xi)

2 of degree 2n − 2 and observing that the right
side becomes akP (xk). Also, applying the Gauss theorem to the constant
polynomial P ≡ 1, we have

∑n
r=1 ar = 2.

For any function f , write Gn(f) =
∑n

r=1 arf(xr) with xr, ar as in Gauss’s
result. The following beautiful theorem was proved by Stieltjes :

Theorem (Stieltjes) :
Let f be any continuous function on [−1, 1]. Let Pd denote the space of
polynomials of degree ≤ d. Then,
(a) |Gn(f)− ∫ 1

−1 f(x)dx| ≤4 inf{supt∈[−1,1]|f(t)− P (t)| : P ∈ P2n−1}.
(b) Gn(f) → ∫ 1

−1 f(x)dx as n →∞.
Proof.
(a) Let P ∈ P2n−1. By Gauss’s theorem, Gn(P ) =

∫ 1
−1 P (x)dx. Therefore,

|Gn(f)−
∫ 1

−1
f(x)dx| ≤ |Gn(f)−Gn(P )|+ |

∫ 1

−1
f(x)dx−

∫ 1

−1
P (x)dx|

≤
n∑

r=1

ar|(f(xr)− P (xr))|+ |
∫ 1

−1
|f(x)− P (x)|dx ≤ 4 supt∈[−1,1]|f(t)− P (t)|.
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This proves (a).
(b) Weierstrass’s approximation theorem shows

inf{supt∈[−1,1]|f(t)− P (t)| : P ∈ P2n−1} → 0

as n →∞; this proves (b) immediately.

Bernstein’s constructive proof :
A constructive proof of Weierstrass’s theorem was given by Sergei Bernstein
in 1911. His result is :

Theorem (Bernstein) :
Let f : [0, 1] → R be continuous. For each natural number n, consider the
corresponding Bernstein polynomial of f given by

Bn(x; f) =
n∑

r=0

(
n

r

)
xr(1− x)n−rf(r/n).

Then, the sequence Bn(x; f) converges uniformly on [0, 1] to f(x).

Heuristic idea of proof :
Before proceeding to prove the theorem rigorously, we stop for a moment
to reflect on the statement. We have placed the weights

(
n
r

)
xr(1 − x)n−r at

the points r/n to the values of f and these weights add up to 1. One could
imagine this as follows. Consider a dartboard of unit area and for any fixed
x between 0 and 1, consider a region of area x coloured black. If n darts are
thrown at the board at random, and if r of them land in the black region,
a reward of f(r/n) rupees is given. What would the average winnings be
as the number n of throws increases ? Since xr is the probability of r darts
landing in the black region, and (1− x)n−r is the probability that the other

n−r darts landing outside the black region and
(

n
r

)
is the number of ways of

choosing r darts from the n thrown, the probability of getting exactly r darts
in the black region is the product of these three numbers. The expectation
(or average winnings) is precisely the number Bn(x; f). As the number n
of trials increases, it is more and more probable that the proportion r/n of
darts landing in the black region gets closer and closer to the whole area x
and thus, the expectation gets closer and closer to f(x).

Proof of Bernstein’s theorem.
A crucial property of Bernstein polynomials is Bn(x; C) = C for a constant
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polynomial C; indeed,

Bn(x; C) = CBn(x; 1) = C
n∑

r=0

(
n

r

)
xr(1− x)n−r = C.

The other useful property of the Bernstein polynomials which is clear from
their definition is :
Bn(x; g) ≥ Bn(x; h) if g ≥ h; in particular, Bn(x; g) ≥ 0 for a positive
function g.
Let ε > 0 be given. Now, on the compact interval [0, 1], f is automatically
uniformly continuous; so ∃δ > 0 such that, for all x, y ∈ [0, 1],

|x− y| ≤ δ ⇒ |f(x)− f(y)| ≤ ε.

Put M = Sup{|f(x)| : x ∈ [0, 1]}. Fix x0 ∈ [0, 1]. We will try to bound
the function f − f(x0) above by a positive, nonconstant function. If x ∈
[x0 − δ, x0 + δ], then this is easy as |f(x)− f(x0)| ≤ ε. If |x− x0| > δ, then
we simply look at the bound

|f(x)− f(x0)| ≤ 2M < 2M(
x− x0

δ
)2.

Hence, we have for every x, the bound |f(x)− f(x0)| ≤ 2M(x−x0

δ
)2 + ε.

Using the remark about Bn(x; g) being monotonic in g, we then have

|Bn(x; f − f(x0))| ≤ Bn(x; 2M(
x− x0

δ
)2 + ε) =

2M

δ2
Bn(x; (x− x0)

2) + ε.

Hence,

|Bn(x; f)− f(x0)| = |Bn(x; f − f(x0))| ≤ 2M

δ2
Bn(x; (x− x0)

2) + ε.

Now,

Bn(x; (x− x0)
2) = x2 +

1

n
(x− x2)− 2x0x + x2

0 = (x− x0)
2 +

1

n
(x− x2).

Feeding this is the previous inequality, we have

|Bn(x; f)− f(x0)| ≤ 2M

δ2
(x− x0)

2 +
2M

δ2n
(x− x2) + ε.
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Putting x = x0 and observing that the maximum value of x0 − x2
0 is 1/4, we

get

|Bn(x0; f)− f(x0)| ≤ M

2δ2n
+ ε.

For large n, one has the first term M
2δ2n

< ε so that

|Bn(x0; f)− f(x0)| ≤ 2ε.

This proves the theorem.

Reflecting on Bernstein’s proof :
It is clear that the idea of the proof is geometric and very simple. For a
continuous f ∈ C([0, 1]), and x0 ∈ [0, 1], and ε > 0, continuity of f implies
there exists an interval (x0−δ, x0 +δ) in which (x−x0)

2 +(f(x0)+ε) > f(x).
Thus, we will have a parabola of the form p(x) = a(x − x0)

2 + (f(x0) + ε)
which majorizes f in [0, 1] but has the value f(x0) + ε at x0. Therefore,
f(x) is the pointwise infimum of parabolas as above. Going from ‘pointwise’
to ‘uniform’ amounts to reducing to the case of infimum of finitely many
parabolas; this is accomplished if we tolerate some error.

Before we start with the generalization due to Marshall Stone of Weierstrass’s
theorem, we briefly discuss the very interesting question of approximation by
integral polynomials. These results are due to Le Baron Ferguson and the
proofs are very easy (see [F ]) but we do not give them here.

Chebychev is special :
It is a well-known fact that among all monic polynomials of a given degree
n on [−1, 1] the unique polynomial which has the least sup norm is the
Chebychev polynomial Tn(x) = 1

2n−1 Cos(n Cos−1(x)). For a general interval
[a, b], the corresponding polynomial is

Pn(x) = 2((b− a)/4)nCos(n Cos−1[(2x− b− a)(b− a)]).

Note that it has sup norm at least 2 if b − a ≥ 4. Therefore, as any non-
constant integral polynomial is the product of its top coefficient (an integer)
and a monic polynomial, we have the first observation :
On an interval [a, b] with b− a ≥ 4, each nonconstant integer polynomial has
sup norm ≥ 2.
Using this, we see that if f is any continuous function on an interval [a, b] of
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length ≥ 4 and if it is uniformly a limit of integral polynomials Pn(x), then
the Cauchy property implies that Pn(x) is eventually a constant sequence
and is, therefore, equal to f(x). In other words, :
Theorem (uninteresting approximation in length ≥ 4) :
On an interval of length at least 4, the only continuous functions approx-
imable uniformly by integral polynomials are those polynomials themselves.

On the other hand, the problem becomes more interesting for intevals of
smaller length. In fact the following theorem is a quite easy consequence of
Bernstein’s proof above :

Theorem (intervals of length 1) :
A continuous function f on [0, 1] is a uniform limit of integral polynomials
if and only if f(0), f(1) are integers. In particular, Sin(x) is not, while
Sin(πx) is a limit !
This is obviously carried over to any interval of the form [n, n + 1].

The problem becomes even more interesting for the interval [−1, 1] when
the condition for approximability of f turns out to be : f(−1), f(0), f(1) are
integers and f(−1)+f(1) is even. With a careful analysis, Le Baron Ferguson
finally proves the following result. First, for any subset I of R, he forms the
set J(I) consisting of all algebraic integers in I all of whose conjugates lie in
I. For example, J([−1, 1]) = {−1, 0, 1} and J([−√2,

√
2]) = {±√2,±1, 0}.

He proves the pretty theorem :

Theorem (integral polynomial approximation in length < 4):
Let f be a continuous function on an interval I of length < 4. Then, f is
uniformly approximable by integral polynomials if and only if the interpolating
polynomial for f on J(I) is integral.

Stone’s turn :

Weierstrass’s theorem was generalized to compact Hausdorff topological spaces
by Marshall Stone in 1937. For instance, if one has a closed disc in the plane,
then the question as to whether continuous functions on it can be approxi-
mated (uniformly) by polynomial functions is answered affirmatively by such
a generalization. Stone published another proof in 1948 - this appeared in
Mathematics Magazine, a journal of undergraduate education ! This gener-
alization to subalgebras of the algebra of continuous functions on a compact,
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Hausdorff space has come to be known as the Stone-Weierstrass theorem; as
a matter of fact, the version for algebras follows from a version for function
lattices. Ultimately, the proof depends on the Taylor series of the function√

1− t; more precisely, on the fact that
∑∞

n=0 |
(

1/2
n

)
| < ∞. First, we define

the spaces occurring in the Stone-Weierstrass theorem.

Definitions.
Let K be a compact metric space. The set C(K) of continuous functions
f : K → R forms a Banach algebra under the norm ||f ||∞ := Supt∈K |f(t)|.
A subset A of C(K) is said to be a subalgebra with unity if it is a real subspace
of C(K), contains the constant function 1 and the product of any two of its
elements. Note that such an A contains all constant functions. One says that
A separates points if, for any two distinct points x 6= y in K, one can find a
function f ∈ A so that f(x) 6= f(y). It is clear from the definition that if A
is a subalgebra of C(K) containing unity and separates points of K, then its
closure in C(K) also has all these properties. In addition, it is closed.
Note that for any compact interval [a, b] in R, the set of all real polynomial
functions on [a, b] is a subalgebra with unity which separates points of [a, b].
It is clearly not closed.

Stone-Weierstrass theorem.
Let K be a compact metric space, and let A ⊆ C(K) be a closed subalgebra
with unity which separates points of K. Then, A = C(K).

It is enough to take K to be a compact topological space and the whole
proof goes through. However, we will see that the exact analogue of the
Stone-Weierstrass theorem is not true over complex numbers but, will hold
with an additional assumption; in fact, the above Stone-Weierstrass theorem
implies the correct complex version.

Lemma (on Taylor series of
√

1− t) :
The Taylor series of f(t) = (1− t)1/2 at 0 converges absolutely and uniformly
to f(t) on [−1, 1].
Proof.
Formally, one would write

√
1− t = 1−∑∞

n=1 ant
n where

an = (−1)n−1

(
1/2

n

)
=

(−1)n−1

n!

n−1∏

k=0

(1/2− k) =
(2n− 2)!

22n−1n!(n− 1)!
.

Since an ≥ 0 and the ratio an+1

an
converges to 1, the ratio test clearly tells us
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that the series converges pointwise for each t ∈ (−1, 1). Checking similarly
that the derivative of the series converges pointwise, simple manipulations
and an application of Stirling’s formula limn→∞ n!√

2πnn+1
2 e−n

= 1, tells us that

the series converges uniformly on [−1, 1] to f(t).

A subset L of C(K) is said to be a lattice if, for all f, g ∈ L the functions
(f ∨ g)(x) := max(f(x), g(x)) and (f ∧ g)(x) := min(f(x), g(x)) are in L as
well.

Proposition (on subalgebras being lattices) :
Let A ⊆ C(K) be a closed subalgebra with unity. Then,
(a) if f ∈ A, and f ≥ 0, then

√
f ∈ A,

(b) if f ∈ A then |f | ∈ A,
(c) A is a lattice.
Proof.
(a) follows from using F = f

||f ||∞ and applying the previous lemma to
√

1− (1− F ).
We omit details.
(b) Noting |f | = √

f 2, this follows from (a).
(c) As f ∨ g = 1

2
(f + g + |f − g|) and f ∧ g = 1

2
(f + g − |f − g|), the result

follows from (b).

Proof of Stone-Weierstrass theorem.
Let ε > 0 let f ∈ C(K). For fixed points s 6= t in K, there is some h ∈ A so
that h(s) 6= h(t). Now, for any real u, v look at the function

Hu,v(x) := v + (u− v)
h(x)− h(t)

h(s)− h(t)

on K. Clearly, it is in A and Hu,v(s) = u,Hu,v(t) = v.
Let us take u = f(s), v = f(t) and call the corresponding Hu,v as fs,t.
Thus, fs,t ∈ A and fs,t(s) = f(s), fs,t(t) = f(t). We keep s fixed and vary t.
Then the sets

Ut := {v ∈ K : fs,t(v) < f(v) + ε}
are open and contain t. Thus, K = ∪tUt and using compactness of K, there
are elements t1, · · · , tn ∈ K such that

K = ∪n
i=1Uti .
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Take hs := min(fs,ti ; i ≤ n). The proposition tells us that hs ∈ A, hs(s) =
f(s) and hs < f + ε. If we define

Vs := {v ∈ K : hs(v) > f(v)− ε},

then Vs is open and K ⊂ ∪s∈KVs. By compactness, there are s1, · · · , sm ∈ K
so that

K ⊂ ∪m
i=1Vsi

.

Putting g = max(hsi
; i ≤ m), we have g ∈ A and

f − ε < g < f + ε.

This is just the statement ||f − g||∞ < ε. Hence A is dense in C(K). But, it
is assumed to be closed; hence A = C(K), which completes the proof.

It is quite easy to deduce the Tietze extension theorem for compact metric
spaces from the above theorem. Tietze’s theorem asserts that if Y is a closed
subset of a compact metric space X, then every continuous function on Y can
be extended to a continuous function on the whole of X while preserving the
uniform norm.

Counterexample over C :
That the exact analogue of the real Stone-Weierstrass theorem fails for com-
plex numbers can be seen by using a little bit of complex analysis. One argu-
ment using complex integration goes as follows. We claim that for ε ∈ (0, 1),
there is no complex polynomial P (z) such that |z̄−P (z)| < ε for all z on the
unit circle T : |z| = 1. Indeed, assuming the existence of such a P , we have∫
T zP (z)dz = 0. But, then

1 =
∫

T
|z|2dz =

∫

T
(z(z̄ − P (z)) + zP (z)) = 0

a contradiction.
Here is a different argument which avoids integration but uses the maximum
modulus principle on the disc D = {z : |z| ≤ 1}. On T , if z̄ = 1/z were ap-
proximated by a polynomial P (z), then by the maximum modulus principle,
we would have

supT |1/z − P (z)| = supT |1− zP (z)| = supD|1− zP (z)| ≥ 1
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which rules out any possibility of the left hand side going to zero.
This example shows that the complex polynomials on T are not dense in
C(T,C) although they separate points. Thus, the following version is the
correct complex analogue of Stone-Weierstrass theorem and can be deduced
trivially (by looking at (f + f̄)/2, (f − f̄)/2i for f ∈ A) :

Complex Stone-Weierstrass theorem :
Let K be a compact metric space, and let A ⊆ C(K,C) be a closed subalgebra
which contains constants and the complex conjugates of all its elements and
separates points. Then A = C(K,C).
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