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Cusp form philosophy

The irreducible unitary (infinite-dimensional) representations of
a semisimple Lie group and the complex representations of a
finite group of Lie type have common features governing them.
”Philosophy of cusp forms”:
Theme popularized famously by Harish-Chandra in a paper
titled “Eisenstein series over finite fields”.
Classical theory of cusp forms contain a philosophy which can
also be adopted to the study of representations of finite groups
of Lie type.
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T.A.Springer wrote a more detailed exposition titled “Cusp
forms for finite groups”, Algebraic groups and related finite
groups, Springer LNM, 1968).
A brief, rough description of the philosophy following Springer:
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Consider the finite group G (k) for a reductive, algebraic group
G over a finite field k .
The group algebra C[G (k)] of G (k) is the set of
complex-valued functions on G (k) under the convolution
product.
For each k-parabolic subgroup P = MU of G and each
function f in the group algebra, define

fP(g) :=
∑

u∈U(k)

f (gu) ∀ g ∈ G (k)

If fP is the zero function for every proper k-parabolic subgroup
P , one calls f a cusp form.
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The subset C (G ) of all cusp forms, forms a two-sided ideal in
C[G (k)].
If P = MU is a k-parabolic subgroup and V is any
representation of M(k) occurring in C (M), then one can
extend it to P(k) by extending trivially on U . It turns out that

this induces a representation Ind
G(k)
P(k) (V ) of G (k) which is

independent of the choice of P containing M as a Levi
component and depends only on the equivalence class of V .
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Here, and elsewhere, we abuse notation to write IGM(V ) to
mean the representation induced from P(k) after extending
the representation V of M(k) trivially on U(k).
C[G (k)] decomposes into a direct sum of two-sided ideals IP
where the irreducible representations of G (k) occurring in IP
are the constituents of IGM(V ) as V varies over the irreducible
representations of M(k).

B.Sury Howlett-Lehrer’s theorem from 1979-80



Therefore, one may break up the study of representations of
G (k) into two problems :
(i) determine C (G ) and
(ii) decompose IGM(V ) into irreducibles for V ∈ C (M), where
M is the Levi component of a proper parabolic k-subgroup of
G (with the understanding that C (M) is “known” for proper
k-parabolic subgroups).
As these Levi subgroups are groups of the same type as G and
have smaller rank, this would give an inductive procedure to
determine all representations of G .
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The first problem was solved by Deligne-Lusztig and the
second one by Howlett & Lehrer; we discuss the latter.
Roughly speaking, their result shows that the centralizer
algebra (also called a generalized Hecke algebra) of an induced
representation of a cuspidal representation (= cusp form) for a
proper parabolic k-subgroup, is a twisted form of the group
algebra of a “ramification group” - which is ‘almost’ a
reflection group.
The Howlett-Lehrer theorem gives a presentation of the Hecke
algebra which implies an isomorphism with a suitable group
algebra (this had been conjectured earlier by Springer).
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Howlett-Lehrer’s presentation theorem has been generalized by
Geck-Hiss-Malle to representations in positive characteristic
also; their presentation is not as neat but Ackermann later
gave a proof to show that a very similar presentation exists.
A classial result of Mackey shows :
The irreducible representations of G (k) occurring in IGM(V ) are
in bijection with the simple modules of the centralizer algebra
of IGM(V ) in C[G (k)].
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Notations and setting

Recall:
A group G has a split (B ,N)-pair of characteristic p > 0 and
Weyl group W , if G has a (B ,N)-pair with Weyl group W , B
is the semidirect product of a normal p-subgroup U and the
subgroup T = B ∩ N is an abelian group of order prime to p
and T =

⋂
n∈N nBn−1.

The finite groups of Lie type of characteristic p and
semi-simple algebraic groups over Fp have split (B ,N)-pairs of
characteristic p.
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G - reductive algebraic defined over a finite field k of
characteristic p; we look at complex representations of the
finite group GFrob = G (k).
An irreducible character χ of G (k) is cuspidal if∑

u∈U(k) χ(up) = 0 for every proper parabolic k-subgroup

P = UM of G and each p ∈ P(k).
Using Frobenius reciprocity, equivalently:
< χ, 1

G(k)
U(k) >= 0 for every proper parabolic k-subgroup

P = UM of G and also:∑
u∈U(k) χ(ug) = 0 for all g ∈ G (k) and P = UM any proper,

standard parabolic k-subgroup of G .
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For each parabolic k-subgroup P of G , each irreducible
character φ of M(k) extends to an irreducible character φP(k)

by extending it trivially on U(k).
Induced it to G (k) (usually called parabolic induction or
Harish-Chandra induction).
The actual induction from M(k) to G (k) gives representations
which are too big.
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Easy fact:
Let χ be an irreducible character of G (k). Then, there exists a
standard parabolic k-subgroup P = UM and a cuspidal
irreducible character φ of M(k) such that < χ, φ

G(k)
P(k) >6= 0.

In fact, this standard parabolic PJ corresponds to the minimal
subset J of the set of k-simple roots such that
(χUJ(k), 1

G(k)
UJ(k)) 6= 0.
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Look at the permutation module
1
G(k)
U(k) = C[G (k)/U(k)] = C[G (k)]eU where the idempotent

eU = 1
|U(k)|

∑
u∈U(k) u. It can be shown (using the Mackey

formula and induction on the semisimple rank) that it is

isomorphic to 1
G(k)
V (k) where M is the Levi subgroup of two

different parabolic k-subgroups UM and VM .
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In fact, if UM is a standard k-parabolic, VM is a k-parabolic
with w (VM) standard, then the map

C[G (k)]ewVw−1 → C[G (k)]eU ; x 7→ xewVw−1weU

is an C[G (k)]-isomorphism. This will yield a
C[G (k)]− C[M(k)]-bimodule isomorphism.
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The theorem of Mackey alluded to is :
Let H be any finite group and let χ1, χ2 be characters of
complex representations of subgroups Q1,Q2. Write χH

i for
the induced characters on H and, for each x ∈ H, write xχ2

for the character of xQ2 defined as

xχ2(xq2) = χ2(q2)

If R is a set of double coset representatives for Q1\H/Q2,
Mackey’s formula asserts that

(χH
1 , χ

H
2 )H =

∑
x∈R

(χ1,
x χ2)Q1∩xQ2

In particular, if σi are irreducible, then the dimension is the
cardinality of the set of Q1 − Q2 double coset representatives
x for which xσ1 is equivalent to σ2.
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For an irreducible, cuspidal (complex) representation (V , φ) of
M(k) (trivial on U(k)), denote the induced module as IGM(φ).
It is C[G (k)]eU ⊗C[M(k)] V and is usually realized as a space of
functions:

IGM(φ) = {f : G (k)→ V |f (pg) = φ(p)(f (g))}

with the right action by G (k).
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The above discussion shows that we have two problems to
solve:
(i) Construct the irreducible cuspidal representations of G (k);
(ii) Decompose the representations IGM(φ) of G (k) induced by
cuspidal irreducible representations of M(k) for Levi subgroups
M of proper parabolic k-subgroups.
The work of Deligne-Lusztig studied in the workshop addresses
the first problem. The irreducible cuspidal representations are
realized on the étale cohomolgy groups of Deligne-Lusztig
varieties.
We discuss the second problem now.
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The corresponding endomorphism ring
H(M , φ) := EndC[G(k)]I

G
M(φ) is called the Iwahori-Hecke

algebra of φ.
Its study tells us about the submodules and quotients of IGM(φ).
In particular, standard representation theory gives:
The simple C[G (k)]-submodules of H(M , φ) are in bijection
with the isomorphism classes of simple components of IGM(φ)
(see proposition below).
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Note first:
An irreducible representation of PJ(k) for a standard parabolic
k-subgroup PJ , is isomorphic to C[PJ(k)]e for some primitive
idempotent e in this group algebra.
The induced representation IGMJ

(φ) of G (k) is thus isomorphic
to C[G (k)]e which means that the centralizer algebra
H(MJ , φ) is isomorphic to eC[G (k)]e.

B.Sury Howlett-Lehrer’s theorem from 1979-80



Proposition.
Call χJ , the character of IGMJ

(φ). Then, the restriction map
sending characters of C[G (k)] to characters of
H(MJ , φ) = eC[G (k)]e, is a bijection between irreducible
characters χ of G (k) satisfying (χJ , χ) 6= 0 and irreducible
characters of eC[G (k)]e. In particular, the dimension of an
irreducible representation E of H(MJ , φ) is (χJ , χE ) where χE

is the restriction of χ on C[G (k)] to eC[G (k)]e.

B.Sury Howlett-Lehrer’s theorem from 1979-80



Proof.
Denote the left C[G (k)]-module IGMJ

(φ) by M0 for short; it is a
simple module.
We claim that HomC[G(k)](C[G (k)]e,M0) ∼= eM0.
In fact, if a homomorphism belonging to the left side takes e
to m, then e = e2 goes to em which means m = em ∈ eM0.
Thus, associated to any homomorphism α in
HomC[G(k)](C[G (k)]e,M0), we have the element α(e) ∈ eM0.
Conversely, given m ∈ eM0, we have clearly em = m and so,
there is a unique α in HomC[G(k)](C[G (k)]e,M0) with
α(e) = m.
Now, dim eM0 = dim HomC[G(k)](C[G (k)]e,M0) = (χJ , χ).
We need to show that eM0 which is clearly an eC[G (k)]e -
module, is also simple as such.
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Suppose 0 6= m ∈ eM0. Clearly, em = m which means

eC[G (k)]em = eC[G (k)]m = eM0.

Thus, we have shown that eM0 is simple as an
eC[G (k)]e-module as well.
The character of this simple eC[G (k)]e-module is given by the
trace map on eC[G (k)]e and since tM0 ⊆ eM0 for any
t ∈ eC[G (k)]e, we have

χ(t) = traceM0(t) = traceeM0(t)

This means that χ restricted to eC[G (k)]e is the character of
the irreducible eC[G (k)]e-module eM0.
One may also show that each irreducible character of
eC[G (k)]e is the restriction of an irreducible character of
C[G (k)] by breaking up the corresponding primitive
idempotent in eC[G (k)]e as a sum of orthogonal idempotents
in C[G (k)] and obtaining a contradiction.
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Examples

Let G = GLn and |k | = q. Then, M = T , the diagonal
subgroup, V is the trivial C[M(k)]-module. Then the
Iwahori-Hecke algebra H(M , φ) has n − 1 generators
T1, · · · ,Tn−1 and the relations:

T 2
i = q.1 + (q − 1)Ti

TiTj = TjTi for |i − j | > 1

and the braid relations

TiTi+1Ti = Ti+1TiTi+1 (1 ≤ i ≤ n − 2)
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The main contention of Howlett-Lehrer’s work that we are
discussing is that the endomorphism algebra H(M , φ) can be
naturally identified with the Iwahori-Hecke algebra associated
to a certain ‘extended’ Coxeter group W (M , φ).
Consequently, by a general result due to Tits, it is a
deformation of the group algebra of W (M , φ).
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Recall: Given a Coxeter group W with the Coxeter matrix
(mij)i ,j≤r and an r -tuple (v1, · · · , vr ) ∈ Cr with vi = vj
whenever si , sj are conjugate, the Iwahori-Hecke algebra
H(W , v1, · · · , vr ) with parameter (v1, · · · , vr ) is defined by r
generators Ts1 , · · · ,Tsr and relations

T 2
si

= vi .1 + (vi − 1)Tsi (i ≤ r)

Tsi Tsj · · · = Tsj Tsi · · · (i 6= j)

where the last relations have mij terms on each side.
When the vector (v1, · · · , vr ) = (1, · · · , 1), this is just the
group algebra of W .
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The special case of Howlett-Lehrer’s theorem describing the
Hecke algebra H(M , φ) when the corresponding parabolic
subgroup is a Borel subgroup and the representation φ is
trivial, was proved earlier by Iwahori and Tits; it shows that
the above presentation holds with the parameters
vi = [B : B ∩ siBs−1

i ] for all i ≤ r .
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Proof of Iwahori-Tits theorem

For this proof, we will write G etc. instead of G (k) for
simplicity.
The set B\G is a C-basis of IGT (1) = C[B\G ].
Using this basis, we obtain a matrix representation of G .
A basis of H = EndC[G ]I

G
T (1), is indexed by the orbits of G on

B\G × B\G .
In fact, if O is an orbit, then the basis element TO has (i , j)-th
entry to be 1 or 0 accordingly as to whether (i , j) belongs to
O or not.
The orbits of are in bijection with B\G/B ; BxB corresponds
to the orbit of (xB ,B). By the Bruhat decomposition,
B\G/B is in bijection with W . Thus H has basis Tw := TOw

where Ow is the orbit of (wB ,B) as w ∈ W varies.
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Now TxTy =
∑

z∈W axyzTz .
So, axyz is the entry at the position (zB ,B) in TxTy . It is easy
to check that

axyz = |zBx−1B ∩ ByB |/|B |.

Let us compute T 2
s . So, x = y = s. Then

zBsB ⊆ BzsB ∪ BzB .
Moreover, assz 6= 0 only if zs = s (i.e. z = 1) or z = s.
So ass1 = |BsB |/|B | = [B : sBs−1 ∩ B].
Als, asss = |sBsB ∩ BsB |/|B | = [B : sBs−1 ∩ B]− 1 since
sBsB ⊆ B ∪ BsB and B ∩ BsB = ∅.
This completes the proof.
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For G = SL2, the irreducible representation V of M = T is
1-dimensional and, therefore, IGM(φ) has dimension
|SL2(k)/B(k)| = q + 1. The Coxeter group corresponding to
H(M , φ) is a subgroup of the Weyl group W (SL2,T ) ∼= Z/2Z.
There are two cases:
Case (i): W (M ,V ) is trivial.

In this case H(M , φ) = C and IGM(φ) is a simple module.
Case (ii): W (M ,V ) = W (SL2,T ).

In this case H(M , φ) = C[W (G ,T )] and IGM(φ) is a direct sum
of two simple modules.
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Intertwining operators between induced modules

To get a basis for the Iwahori-Hecke algebra, we first find its
dimension.
Indeed, if χ is the character of an irreducible, cuspidal
representation φ of MJ(k) (where J is a set of k-simple roots),
Mackey’s formula above (with H = G (k),Q1 = Q2 = PJ(k))
tells us:

(χ
G(k)
PJ(k), χ

G(k)
PJ(k))G(k) =

∑
w∈NJ,J

(χPJ(k),
w χPJ(k))wPJ(k)∩PJ(k)

where for any two subsets I , J of the set of k-simple roots,
NI ,J is a set of (WI −WJ)-representatives (equivalently
(PI (k)− PJ(k)) representatives).
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Using this, one can prove that the above sum is the cardinality
of the ramification group

{w ∈ W : w(J) = J ,w χ = χ}

Note that wχ = χ is the same as the assertion that wφ is
equivalent to the representation φ.
So, dim H(MJ , φ) = |{w ∈ W : w(J) = J ,w χ = χ}|.
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Thus, we will have a basis element Bw corresponding to each
element w so that w(J) = J ,w χ = χ.
The group {w ∈ W : w(J) = J ,w χ = χ} is not a reflection
group itself but contains a large reflection subgroup which will
be useful in determining the product of elements Bw (yet to be
defined!) in EndC[G(k)]I

G
MJ

(φ).
We will need to go ‘outside’ to operators which intertwine
between the spaces IGM(φ) and IGMw(J)

(wφ).
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Before defining these intertwining operators, we introduce a
notation.
We sometimes write w for a lift of w in N . We fix once for all
a choice as follows.
The choice of lifts w̄ can be made so that for any reduced
expression w = s1s2 · · · sk , we have w̄ = s̄1 · · · s̄k .
Therefore, if w ,w ′ have lifts w̄ , w̄ ′, and if
l(ww ′) = l(w) + l(w ′), then the lift of ww ′ is the product
w̄ w̄ ′.
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Proposition

Let w be such that w(J) = I for some subsets I , J of k-simple
roots. Let φ be an irreducible, cuspidal representation of MJ

and wφ be the corresponding irreducible, cuspidal
representation of MI (k) = wMJ(k)w−1. Then, for f ∈ IGMJ

(φ),
the map θw (f ) : G (k)→ V defined as

θw (f ) : x 7→ 1

|UI (k)|
∑

u∈UI (k)

f (w−1ux)

lies in IGMI
(wφ). Moreover,

θw : IGMJ
(φ)→ IGMI

(wφ)

is a homomorphism of C[G (k)]-modules.
In the definition, we have written f (w−1ux) to mean
f (w̄−1ux), and wφ for w̄φ etc.
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Proof.
For m ∈ MI ,

θw (f )(mx) =
1

|UI (k)|
∑

u∈UI (k)

f (w−1umx) =

1

|UI (k)|
∑

u∈UI (k)

f (w−1m(m−1um)x) =

1

|UI (k)|
∑

u∈UI (k)

f (w−1mux)

since m−1um runs over UI (k) when u does. Thus,
θw (f )(mx) = 1

|UI (k)|
∑

u∈UI (k) f ((w−1mw)w−1ux) =

φ(w−1mw)(θw (f )(x)).
Therefore, θw does map the induced module of φ to the
asserted induced module. That θw is a homomorphism of
C[G (k)]-modules, is immediately seen from its definition.
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The special case of the proposition when J = I and wφ is
equivalent to φ occurs when w is in the ramification group
W (J , φ) = {w : w(J) = J ,w φ ∼ φ}. In this case, if V is the
representation space of φ, then for each w ∈ W (J , φ), there is
an invertible linear automorphism e(w) of V such that

wφ(p) = e(w)−1φ(p)e(w) ∀ p ∈ PJ(k)

Moreover, the map e(w) is unique up to scalars by Schur’s
lemma since φ is irreducible. We are now in a position to
define relevant elements of the Hecke algebra using the θw and
the e(w) for w ∈ W (J , φ).
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A basis for H(M , φ)

Proposition.
For w ∈ W (J , φ) where φ is an irreducible, cuspidal
representation of MJ(k), and for f ∈ IGMJ

(φ), define

Bw (f ) : G (k)→ V ; x 7→ e(w)(θw (f )(x))

Then Bw ∈ H(MJ , φ)(= EndC[G(k)]I
G
MJ

(φ)) for each
w ∈ W (J , φ) and form a basis as w varies over the
ramification group W (J , φ).
The Proof that Bw ’s belong H(MJ , φ) is straightforward; let
us show that {Bw : w ∈ W (J , φ)} form a linearly independent
set.
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Proof

Let
∑

w bwBw (f )(x) = 0 for all x ∈ G (k), f ∈ IGMJ
(φ).

Recall IGMJ
(φ) = {f : G (k)→ V |f (mug) = φ(m)(f (g))}.

For 0 6= v ∈ V , consider the map fv in IGM(φ) mapping x to
φ(x)v if x ∈ P(k) and to 0 otherwise.
Now

∑
w bwBw (fv )(w1) = 0 for all w1 ∈ W (J , φ). That is,∑

w

bwe(w)
1

|UJ(k)|
∑

u∈UJ(k)

fv (w−1uw1) = 0 ∀ w1 ∈ W (J , φ).

In the above sum, we may consider only those w for which
w−1uw1 ∈ PJ ; that is, w1 ∈ UjwPJ . This means
w1 ∈ WJwWJ .
Now, the normalizer NW (WJ) = CJWJ with CJ ∩WJ = (1)
where CJ := {w : w(J) = J}. As both
w ,w1 ∈ CJ ≤ NW (WJ), we have from w1 ∈ WJwWJ that
wWJ = w1WJ and so, w = w1.
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Thus, each of the above equations has only one term
corresponding to w = w1 and, gives

1

|UJ(k)|
bw1e(w1)

∑
u∈UJ(k)

fv (w−1
1 uw1) = 0 ∀ w1 ∈ W (J , φ)

By the definition of fv , we get

1

|UJ(k)|
bw1e(w1)

∑
u∈UJ(k)∩w1PJ(k)

φ(w−1
1 uw1)v = 0 ∀ w1 ∈ W (J , φ)

It can be seen using w1(J) = J that
UJ ∩w1 PJ = (UJ ∩w1 UJ)(UJ ∩w1 MJ) = UJ ∩w1 UJ as
UJ ∩w1 MJ) = (1). As φ(w−1

1 uw1) = Id if
u ∈ UJ(k) ∩w1 UJ(k), we have

|UJ(k) ∩w1 UJ(k)|
|UJ(k)|

bw1e(w1)v = 0 ∀ w1 ∈ W (J , φ)

As e(w1) is an invertible linear transformation, e(w1)v 6= 0
and, we get bw1 = 0 for all w1.
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BwBw ′ for l(ww ′) = l(w) + l(w ′)

Proposition.
Let l(ww ′) = l(w) + l(w ′),w ′(∆J) ⊂ ∆ and ww ′(∆J) ⊂ ∆.
Then, θww ′ = θwθw ′ .
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It is convenient to introduce the following notation before the
proof of the proposition.
For w ∈ W , let Uw denotethe product of all root subgroups
Uα(k) for α > 0 such that w(α) < 0.
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Proof of proposition

Note firstly that θw ′ maps IGMJ
(φ) to IGMw′J

(w
′
φ) which, in turn,

is mapped by θw to IGMww′J
(ww

′
φ).

Moreover, θw which was defined as
θw (f ) : x 7→ 1

|UI (k)|
∑

u∈UI (k) f (w−1ux) (where w(J) = I ) has
also the expression

θw (f )(x) =
1

|UI (k) ∩ Uw−1|
∑

u∈UI (k)∩Uw−1

f (w−1ux).
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The latter expression for θw is obtained from its definition by
factorizing each element u ∈ UI as a product with
u1 ∈ UI (k) ∩ Uw0w−1 , u2 ∈ UI (k) ∩ Uw−1 .
Indeed, UI (k) ∩ Uw0w−1 being the product of root subgroups
Uα with α > 0,w0w−1(α) < 0, α 6∈ ΦI , the conjugate
w−1UI (k) ∩ Uw0w−1w is the product of Uw−1(α) with α as
above and so, lie in UJ as w−1(α) > 0,w−1(α) 6∈ ΦJ . Thus,
the elements w−1u1w ∈ UJ(k) and we have

f (w−1u1u2x) = f (w−1u1ww−1u2x) = f (w−1u2x)

Writing out θwθw ′(f )(x) and using the lemma below, one can
prove the proposition.
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A combinatorial lemma

Lemma
Let w ,w ′ ∈ W such that l(ww ′) = l(w) + l(w ′). Then

w (Uw ′J ∩ Uw ′−1)(Uww ′J ∩ Uw−1) = Uww ′J ∩ U(ww ′)−1

with uniqueness.
This lemma is easy to prove by looking at the root subgroups
occurring on both sides and showing that those occurring in
the two subgroups on the left side are disjoint and their union
is the set of those appearing on the right side.
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Indeed, since UK for any subset K of roots is generated by the
root subgroups corresponding to the positive roots outside
ΦK , the set S of roots contributing to Uww ′J ∩ U(ww ′)−1 is :

α > 0, (ww ′)−1(α) 6∈ ΦJ , (ww ′)−1(α) < 0

Similarly, the set S1 of roots corresponding to Uww ′J ∩Uw−1 is :

α > 0, (ww ′)−1(α) 6∈ ΦJ ,w
−1(α) < 0

and the set S2 of roots corersponding to Uw ′J ∩ Uw ′−1 is:

β > 0,w ′−1(β) < 0,w ′−1(β) 6∈ ΦJ

so that the set w(S2) of roots corresponding to
w (Uw ′J ∩ Uw ′−1) is:

w−1(α) > 0,w ′−1w−1(α) < 0,w ′−1w−1(α) 6∈ ΦJ

Clearly, S = S1 t w(S2).
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We wish to determine what information this lemma gives
about the product Bw ,Bw ′ .
Recall that for w ∈ W (J , φ), Bw (f )(x) = e(w)(θw (f )(x))
where e(w) is a linear automorphism of the vector space V
underlying φ. However, it is useful to extend this view of e(w)
to that of an operator : IGM(φ)→ IGM(w

−1
φ) by

e(w)(f ) : x 7→ e(w)(f (x)).
The verification that e(w)(f ) ∈ IGMJ

(w
−1
φ) is straightforward.

Indeed, more generally, for any w ′, e(w) defines a
C[G (k)]-module homomorphism from
IGMJ

(w
′
φ)→ IGMJ

(w
′w−1

φ).
Therefore, for w ∈ W (J , φ), we can write Bw as e(w) ◦ θw , a
C[G (k)]-module homomorphism of IGMJ

(φ) to itself.
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A compatibility property easily verified :
Let w ,w ′ ∈ W (J , φ). Then e(w) ◦ θw ′ : IGMJ

(φ)→ IGMJ
(w
′w−1

φ)
equals θw ′ ◦ e(w).
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Recalling that for w ∈ W (J , φ), e(w) is uniquely defined up
to scalars such that wφ(m) = e(w)−1φ(m)e(w) for all
m ∈ MJ(k). So, for w ,w ′ ∈ W (J , φ),

ww ′φ(m) = e(ww ′)−1φ(m)e(ww ′)

On the other hand,

ww ′φ(m) =w ′ φ(w−1mw) = e(w ′)−1φ(w−1mw)e(w ′)

= e(w ′)−1(wφ)(m)e(w ′) = e(w ′)−1e((w)−1φ(m)e(w)e(w ′)

Thus, the right sides of the two expressions for ww ′φ(m) along
with the uniqueness implies that there is a non-zero complex
number λ(w ,w ′) such that

e(w)e(w ′) = λ(w ,w ′)e(ww ′)

We can now prove:
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Proposition.
Let w ,w ′ ∈ W (J , φ) with l(ww ′) = l(w) + l(w ′). Then,
BwBw ′ = λ(w ,w ′)Bww ′ .
Proof.
Consider the sequence of maps

IGMJ
(φ)

θw′→ IGMJ
(w
′
φ)

e(w ′)→ IGMJ
(φ)

θw→ IGMJ
(wφ)

e(w)→ IGMJ
(φ)

This is
BwBw ′ = e(w) ◦ θw ◦ e(w ′) ◦ θw ′

= e(w) ◦ e(w ′) ◦ θw ◦ θw ′

= λ(ww ′)e(ww ′)θww ′ = λ(w ,w ′)Bww ′
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λ(w ,w ′) for general w ,w ′ ∈ W (J , φ)

In order to extend the definition of λ(w ,w ′) to all pairs w ,w ′

in W (J , φ) (not just those for which l(ww ′) = l(w) + l(w ′),
we proceed as follows.
The idea is that the representation φ of MJ(k) can be
extended with the help of the e(w)’s to a projective
representation of a group containing MJ(k).
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Indeed, consider the subgroup K (J , φ) of NG (MJ) which is
generated by MJ(k) and the lifts w̄ as w varies over W (J , φ).
This subgroup satisfies K (J , φ)/MJ(k) ∼= W (J , φ).
Define φ̄ on K (J , φ) by mw̄ 7→ φ(m)e(w̄).
It can be checked using Schur’s lemma that φ̄(k1k2) is a scalar
multiple of φ̄(k1)φ̄(k2) for k1, k2 ∈ K (J , φ).
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There exists a function λ : W (J , φ)×W (J , φ)→ C∗ such that

e(w̄1)e(w̄2) = λ(w1,w2)e(w1w2)

It is straightforward to check:
Lemma.
λ : W (J , φ)×W (J , φ)→ C∗ is a 2-cocycle.
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The above cocyle is uniquely determined only up to
coboundaries. It is convenient to make a particular choice of
the cocycle as follows.
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Proposition.
The 2-cocycle λ : W (J , φ)×W (J , φ)→ C∗ can be chosen to
satisfy:
(i) λ(w , 1) = λ(1,w) = 1 for all w;
(ii) λ(w ,w−1) = 1 for all w;
(iii) λ(w1,w2) = 1

λ(w−1
2 ,w−1

1 )
= λ(w−1

2 w−1
1 ,w1) for all w1,w2;

(iv) λ(w1,w2) is a |W (J , φ)|-th root of unity for each w1,w2.
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We give the idea of the proof.
The 2-cocycle λ is cohomologous to λ′ defined as

λ′(w1,w2) := ξw1ξw2ξ
−1
w1w2

λ(w1w2)

for any non-zero scalars ξw ’s. The replacement of each e(w̄)
by ξwe(w̄) changes λ to λ′ as above. Thus, we need to choose
the scalars ξw so that λ′ would satisfy the proposition. The
choice will be facilitated by introducing, for each
w ∈ W (J , φ), a matrix R(w) ∈ Ml(C) with l = |W (J , φ)|,
defined as R(w)(wy , y) = λ(wy , y) and R(w)(x , y) = 0
otherwise. It turns out that

R(w1)R(w2) = λ(w1,w2)R(w1,w2)

Taking new matrices R ′(w) := ξwR(w) where ξw so chosen
that detR ′(w) = 1,R ′(w−1) = R ′(w)−1,R ′(1) = I , the λ′

corresponding to R ′ satisfy the proposition.
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A reflection subgroup of W (J , φ)

The previous discussions already show that the structure of the
Hecke algebra is connected closely with the group W (J , φ).
We shall observe:
There is a large normal subgroup of W (J , φ) which is the Weyl
group of a quotient root system of the root system for W .
This basically follows from results proved by Howlett in an
earlier paper describing a reflection group inside the normalizer
of a parabolic subgroup of a Weyl group.
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If W has its natural Coxeter representation on the vector
space E , then for each subset J of simple k-roots, look at the
subspace EJ spanned by the roots in ∆J .
We produce a root system on the quotient space E/EJ

∼= E⊥J .
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It can happen that a k-root α outside ∆J may still have the
property that ∆J ∪ {α} lies in some simple root system.
For instance, consider any k-root α 6∈ ∆J such that
∆J ∪ {α} ⊂ w(∆) for some w ∈ W .
Then, ∆J ∪ {α} lies in some simple system (may not be ∆)
and we can define a nice element of the Weyl group as:
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Define w(α) := (w0)J∪α(w0)J where w0 denotes the longest
element in the corresponding Coxeter group.
Key observation:
If α satisfies the above property, then w(α) takes ∆J into
itself if and only if it is of order 2.
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The proof uses a certain involution on the set I parametrizing
the k-simple roots, called the opposition involution.
This is an involution i 7→ ī determined by the property that
w0(αi) = −αī (call αi and αī opposed to each other).
Indeed, the condition w(α)(∆J) ⊆ ∆J , is equivalent to the
condition that ∆J is self-opposed inside ∆J ∪ {α}.
Thanks to the above observation, one naturally defines

Ω := {α ∈ Φ−∆J : ∆J∪{α} ⊆ w(∆) for some w ,w(α)2 = 1}
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In other words:
Ω is the set of roots α outside ∆J for which ∆ ∪ {α} forms a
simple system inside which ∆J is self-opposed.
Define RJ =< w(α) : α ∈ Ω} and Ω = {α : α ∈ Ω}, we have
the theorem:
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Theorem.
(i) The map α 7→ α from Ω to Ω is 1-1;
(ii) the elements of Ω normalized to unit vectors form a root
system of a group with a split BN-pair;
(iii) w(α) acts on Ē := E/EJ as reflection in the hyperplane
orthogonal to α;
(iv) RJ acts faithfully on Ē and is the Weyl group of Ω.
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B2
w for w = w(α)

We obtained a reflection subgroup RJ of W (J , φ).
Now, we derive an expression for B2

w where w is one of the
generators w(α) of RJ .
The basic idea is to replace the whole of G by the parabolic
k-subgroup PI where the subset I of simple k-roots is defined
from ∆J ∪ {α} = ∆I .
This enables one to restrict an element Bw with w = w(α), to
the subspace Ind(J , I ) of IGMJ

(V ) consisting of those functions
from G (k) to V whose supports are contained in PI (k).
Then, Ind(J , I ) considered as an C[MI (k)]-module is the
analogue of IGMJ

(V ) in MI .
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The corresponding C[MI (k)]-endomorphism algebra of this
module Ind(J , I ), has dimension equal to the order of

WI (J , φ) := {w ∈ WI : w(J) = J ,w φ = φ}

The last-mentioned group is either trivial or has order 2 (when
w(α) ∈ W (J , φ), this is the nontrivial element).
In the latter case, let us compute B2

w with w = w(α). Towards
this, we go back to the definition of Bw which involves θw .
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Recall for any w ∈ W (J , φ), the operator θw which maps
H(MJ , φ) to H(w(J),w φ).
Indeed, for n = w̄ , we have

θn(f )(g) =
1

Uw(J)(k)|
∑

u∈Uw(J)(k)

f (n−1ug)

Applying this to the element n(α) = w(α) and its inverse,
where α ∈ ∆−∆J , we have

H(MJ , φ)
θn→ H(Mw(α)(J),

n(α) V )
θn−1→ H(MJ , φ)

where n = w(α).
So, the composite θn−1θn ∈ H(MJ , φ) for n = w(α).
As the action of this composite on IGMJ

(V ) is given by the
action on the subspace Ind(J , I ), we have:
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Lemma.
For α ∈ ∆−∆J , there exist complex numbers ξ, η such that
θn−1θn is ξId or ξId + ηBw where w = w(α) and n = w̄ .
Further, if w(α) ∈ W (J , φ) (hence it has order 2), then
B2
w(α) = ξB1 + ηBw(α).

Proof.
The first statement is already discussed before the statement.
For the latter assertion, one just uses the definition of Bw in
terms of θw and the 2-cocycle λ chosen earlier to conclude
that B2

w(α) = θn−1θn. One point to note is that since

w(α) ∈ W (J , φ) in the latter assertion, this means that its
square is 1 and thus, we use the property λ(w ,w−1) = 1 for
w = w(α).
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The determination of the constants ξ, η can be done by
choosing the action on conveniently chosen functions in
IGMJ

(V ).
Indeed, ξ can be determined by computing Bw (f )(g) (with v a
non-zero in V and the function f ∈ Ind(J , I ) given by
fv (1) = v and g = 1).
Taking f = fv and g = 1 (and observing that fv is zero outside
PJ), one obtains ξ (see lemma below).
Similarly, taking f = fv and g = w(α), we can determine η.
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Lemma.
With w := w(α) ∈ W (J , φ), we have B2

w = ξB1 + ηBw with

ξ =
1

|Uw (k)|
,

ηIdV =
1

|Uw (k)|
e(n)−1

∑
φ(n−1u′nun)

where n = w̄ and the last sum is over all u, u′ ∈ Uw (k) such
that n−1u′nun ∈ PJ(k).
Further, η

ξ
is an algebraic integer.

Write Ind(w) for the number 1
|Uw (k)| .
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A conceptually simpler expression for η is given as:
Proposition.
Let α ∈ ∆−∆J and suppose w = w(α) is in W (J , φ). Let

J ∪ {α} = I , say. Then, the induced character χ(φ)
MI (k)
PJ(k)∩MI (k)

splits into the sum of two irreducible characters χ, χ′. Their
degree are related by χ′(1)/χ(1) = pc for some integer c ≥ 0.
Moreover, we have the expression

η = ± pc − 1√
pc Ind(w)

Notice that η = 0 if and only if the degrees of χ, χ′ are the
same.
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Ramification group as a semidirect product

In the earlier discussion where we got hold of a reflection
group corresponding to a certain set Ω of roots, we didn’t
bring in the representation V (that is, the ramification group
W (J , φ)). It is natural to consider the effect of elements of
this group on the roots in Ω; in particular, whether elements in
Ω are permuted. Further, as we saw in the previous section,
for such an α, the degrees of the two irreducible characters of
the bigger Levi subgroup arising from ∆ ∪ {α} have ratio (say,
pα) to be a power of p (possibly 1). If we know that elements
w of W (J , φ) carry Ω into Ω, we can ask the relation between
pw(α) and pα. The basic observation is:
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Lemma.
If α ∈ Ω is such that w(α) ∈ W (J , φ), then for any
w ∈ W (J , φ), we have w(α) ∈ Ω and w(w(α)) ∈ W (J , φ).
Further, pw(α) = pα.
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In view of this lemma, we have w(Γ) ⊆ Γ where

Γ := {α ∈ Ω,w(α) ∈ W (J , φ), pα = 1}

Thus, Γ consists of all roots α outside ∆J such that ∆J ∪ {α}
is contained in some simple system of roots, w(α) is in
W (J , φ) and has order 2 (that is, it takes ∆J to itself, and
pα = 1. If Γ+ is the set of positive roots in Γ, then we define

C (J , φ) := {w ∈ W (J , φ) : w(Γ+) = Γ+}

and R(J , φ) to be the subgroup of W generated by all w(α)
for α ∈ Γ. using the fact that Ω is a root system (in E/EJ)
with reflection group generated by w(α) as α varies over Ω,
we have:
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Proposition.
(i) R(J , φ) is normal in W (J , φ) and
W (J , φ) = R(J , φ)C (J , φ) with R(J , φ) ∩ C (J , φ) = 1.
(ii) R(J , φ) is a reflection subgroup of W (J , φ) with root
system Γ := {α : α ∈ Γ} (inside the vector space E/EJ).
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The multiplication BwBw ′ for general w ,w ′

There may exist simple systems which are W -equivalent to ∆J

without being equal to it.
Define Ĵ to be the set of all subsets J ′ of the indexing set of
the simple k-roots such that ∆J′ = w(∆J) for some w ∈ W .
Members of Ĵ are said to be associated with J .
For any J ′ associated to J , one has elements w(α, J ′) in W
for any α outside J ′ for which ∆J′ ∪ {α} is contained in a
simple system of roots.
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The following proposition which can be proved using the
combinatorics of the Weyl group will evidently prove useful:
Proposition.
If both J ′, J” are associated to J and w(∆J′) = ∆J”, then

w = w(αr ) · · ·w(α1)

with αi ∈ ∆, and l(w) =
∑r

i=1 l(w(α1)) where J1, · · · , Jr are
associated to J with w(α1)(∆Ji ) = ∆Ji+1

, J ′ = J1, J” = Jr+1.
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If we write out the product of θw and θw ′ using the above
proposition, one will obtain the product of Bw and Bw ′ .
Recall that we have a positive system Γ+ of roots which
defines a simple system Λ. We denote by Λ the set of roots
α ∈ Γ for which α ∈ Λ. It can be checked that:
Λ is precisely the set of all α ∈ Γ+ such that α is the only
positive root in Γ which is sent to a negative root by w(α).
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Theorem.
BwBw ′ = ( ind(w)ind(w ′)

ind(ww ′)
)1/2λ(w ,w ′)Bww ′ in each of the

following three cases:
(i) either w ∈ W (J , φ),w ′ ∈ C (J , φ) or
w ′ ∈ W (J , φ),w ∈ C (J , φ);
(ii) w ∈ W (J , φ),w ′ = w(α) with α ∈ Λ and w(α) > 0;
(iii) w ′ ∈ W (J , φ),w = w(α) with α ∈ Λ and w−1(α) < 0.
Finally, for α ∈ Λ, we have
B2
w(α) = 1

ind(w(α))
± pα−1

(pαind(w(α)))1/2 Bw(α).
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A neater basis

It turns out to be convenient to change the basis Bw by scalar
multiples so that the multiplication rules look much neater.
For instance, for α ∈ Λ, recall that the last statement of the
above theorem gives

B2
w(α) =

1

ind(w(α))
+

εα(pα − 1)

(pαind(w(α)))1/2
Bw(α)

for εα = ±1.
Define

Tα = εα(pαind(w(α)))1/2Bw(α)

Then, we will get

T 2
α = pα1 + (pα − 1)Tα
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We wish to define Tw for w ∈ R(J , φ) by writing w as a
product of elements of the form w(α).
Here the key is:
Lemma.
Let w ∈ R(J , φ) have the two reduced expressions
w = w(α1) · · ·w(αr ) = w(β1) · · ·w(βr ). Then,

Tα1 · · ·Tαr = Tβ1 · · ·Tβr
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This shows that we can define Tw for w ∈ R(J , φ).
Define Tw for w ∈ C (J , φ) as Tw = ind(w)1/2Bw .
Finally, for any w ∈ W (J , φ), one can write uniquely as
w = w1w2 with w1 ∈ C (J , φ),w2 ∈ R(J , φ) and define
Tw = Tw1Tw2 .
It turns out that Tw is a scalar multiple of Bw for any w as
proved by induction on the number of roots in Γ+ made
negative by w . We have:
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For w ∈ W (J , φ), Tw = εw (pw ind(w))1/2Bw where εw is some
root of unity and pw =

∏
α∈Γ+,w(α)<0.

To state the multiplication formulae of the Tw ’s, we will
consider the 2-cocycle µ(w ,w ′) (cohomologous to the
λ(w ,w ′) chosen earlier) defined as

µ(w ,w ′) = εwεw ′ε
−1
ww ′λ(w ,w ′)

This 2-cocycle satisfies the property:
If x , x ′ ∈ C (J , φ),w ,w ′ ∈ R(J , φ), then
µ(xw , x ′w ′) = λ(w ,w ′). In particular, this is 1 if either x or x ′

is 1.
We state the final theorem now.
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Theorem.
(i) TwTw ′ = µ(w ,w ′)Tww ′ if (w ,w ′) or
(w ′,w) ∈ W (J , φ)× R(J , φ);
(ii) Let α ∈ Λ,w ∈ W (J , φ),w ′ = w(α). Then,
TwTw ′ = Tww ′ or pαTww ′ + (pα − 1)Tw accordingly as to
whether w(α) > 0 or < 0.
(iii) Let α ∈ Λ,w ∈ W (J , φ),w ′ = w(α). Then,
Tw ′Tw = Tw ′w or pαTw ′w + (pα − 1)Tw accordingly as to
whether w−1(α) > 0 or < 0.
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Hecke algebra as twisted group algebra

Tits constructed generic algebras of this type and proved the
important theorem that any two specializations which are
semisimple must be isomorphic.
More precisely, in our context, consider a variable tα
corresponding to each α ∈ Λ such that tα = tw(α) for each
w ∈ W (J , φ).
That is, we have an indeterminate for each W (J , φ)-orbit in Λ.
Then, there is a unique associative algebra A(tα) over the
polynomial ring C[tα;α ∈ Λ] which has a basis aw for each
w ∈ W (J , φ) such that the multiplication is given by the
formulae as in the above theorem with tα in place of pα for
each α.
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An algebra homomorphism σ : A(tα)→ C is called a
specialization.
The specialization tα 7→ pα gives our hecke akgebra H(MJ , φ).
The specialization tα 7→ 1 gives the deformed group algebra of
W (J , φ).
As these algebras are semisimple, Tits’s theorem implies that
the Hecke algebra H(MJ , φ) is isomorphic to the deformed
group algebra C[W (J , φ)]µ.
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There is a relation between the irreducible characters of the
generic algebra and those of its specializations.
This provides a way to compute the degree of irreducible
characters of G (k) if the degrees of irreducible cuspidal
characters of the Levi subgroups MJ are known.
It has been proved later by Lusztig & Geck that the cocycle µ
is actual trivial cohomologically.
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Lawrence Morris proved a generalization of Howlett-Lehrer’s
theorem in the context of irreducible, admissible
representations of a p-adic group.
The analogous Hecke algebra consists of smooth, compactly
supported End(V)-valued functions on the group, where V is a
cuspidal representation of the finite group of Lie type P/U
with P, a parahoric subgroup.
The proof, although based on Howlett-Lehrer’s proof, is
substantially more complicated. Thus, one may refer to
Howlett-Lehrer theory rather than just a theorem.
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(FINALLY:)
To find all reps of G (Fq)′s,

here’s what everyone argues.
“Get each cuspidal one (for each Levi),

induce and decompose (no casualties heavy)
and that would be the end of the news!”’

Footnote: If some ends are Lus - ztig them as you have to
draw De-ligne somewhere!

THANK YOU FOR LISTENING !
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