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A famous theorem by Lagrange says that any positive integer a is expressible
as a sum of four squares of integers. Positivity is a key concept implicitly
used here. Thus, one could analyse questions of this nature over real numbers
where there is a notion of positivity. For example, let us consider real poly-
nomials possibly in more than one variable. We write f ∈ R[x1, · · · , xn] to
mean that it is a real polynomial in n variables. The analogue of the hypoth-
esis that a ≥ 0 in positive integers, would then be all f such that the function
f > 0 for all values of x1, x2, · · · , xn ∈ R. Let us call such f as positive semi-
definite (henceforth written psd for brevity). The 21-year old Minkowski
presenting his Inaugural Dissertation in July 1885 on quadratic forms made
the bold conjecture that there must exist homogeneous, real, psd polynomi-
als of any degree > 2 in n > 2 variables which are not sums of squares of
homogeneous real polynomials. At the public defense of this Dissertation,
it was the task of Hilbert to attack it but the defense ended with Hilbert
declaring that he “was convinced by Minkowski’s exposition that already for
n = 3 there may well be such remarkable forms, which are so stubborn as to
remain positive without allowing themselves to submit to a representation as
sums of squares of forms.” In 1888, Hilbert proved Minkowski’s ‘conjecture’
giving examples where a psd real polynomial f cannot be written as a sum
of squares of polynomials. He studied it further and considered the prob-
lem of representing any psd f ∈ R[x1, · · · , xn] as sums of squares of rational
functions (elements of R(x1, · · · , xn) ). In 1893, he proved that this does
happen for n = 2 (this corresponds to the 3-variable homogeneous case of
Minkowski’s conjecture). In 1899, he proved the remarkable ‘result’ that, any
segment of length f(x1, · · · , xn) which can be constructed from given lengths
x1, · · · , xn by using a ruler and compass, can already be constructed without
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a compass, provided f(y1 · · · , yn) is a totally real algebraic number for any
y1, · · · , yn ∈ Q. His ‘proof’ of this result required the truth of the (at that
time) unproved assertion that any psd rational function in Q(x1, · · · , xn) is
a sum of squares of rational functions in Q(x1, · · · , xn). This was a further
motivation for him to formulate in his famous 1900 address the 17th problem
which is the question :
If f ∈ R[x1, x2....xn] is psd, is it necessarily a sum of squares of rational
functions in R(x1, x2, · · · , xn) ?
Note that, if instead of R, we consider C, which does not have an order, then
we see that every polynomial in C[x1, x2....xn] is a sum of squares of rational
functions. The 17th problem was solved by E.Artin in 1926 in the affirma-
tive. He proved it as an existence theorem. His remarkable proof opened
up the new subject of model theory and nowadays his argument is viewed
as a special case of Tarski’s transfer principle. The proof also brought into
the forefront the real spectrum of rings such as R[x1, · · · , xn] and started the
subject of real algebraic geometry. The proof works for more general ‘real-
closed’ fields (to be defined below) and such fields were studied by Artin and
Schreier in a paper in the same volume where Artin’s solution of Hilbert’s
17th problem was published. Indeed, the Artin-Schreier paper is from page
85 to 99 and is followed by Artin’s paper from page 100 to 115.
We just mention a few words about the connection of Artin-Schreier’s 1926
work with mathematical logic. Tarski proved later in 1948 that the theory
of real-closed ordered fields admits ‘quantifier elimination’ in the language
of ordered rings. That is, every ‘formula’ is equivalent to a quantifier-free
formula. Thus, the theory of real-closed fields is ‘model-complete.’ In other
words, if E ⊆ F are real-closed fields, then an ‘elementary sentence’ about
ordered fields with parameters in E, holds good in F if and only if it holds
in E. This is crystallized as Tarski’s transfer principle which asserts that
every elementary sentence about ordered fields which holds in R also holds
in every real-closed field.

The basic idea of Artin’s theorem can be described roughly as follows. Al-
though R (or more generally, any ‘real-closed field’) has a unique notion of
positive elements, the function field R(x1, · · · , xn) has several possible no-
tions of positivity. If f is not a sum of squares in R(x1, · · · , xn), then there
would be some ordering (equivalently, a concept of positive elements) on
R(x1, · · · , xn), under which f would be negative. Then, there would be a
‘specialisation’ f(a1, · · · , an) which would be negative. This last step is the
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key one and is a form of the Tarski transfer principle. Our aim is to discuss
Artin’s proof in detail and the discussion will avoid the language of model
theory etc. Some properties of polynomials over the real field like the inter-
mediate value theorem and others were proved by Sturm in the 1880’s and go
through for all real-closed fields. These are used by Artin in his proof. For a
more model-theoretic treatment of Artin’s theorem, see [DP ]. Our proof is
based on the discussions in [J ] and [N ]. See [L] for a slightly different proof.

Hilbert’s 17th problem for n = 1 :
The proof for n = 1 is really simple and we give it now. In this case, in
fact, we even have polynomials g and h such that every psd f ∈ R[x] can be
written as f = g2 + h2.
Proof :
We first notice that every real root (if at all it exists) occurs with even
multiplicity . To see this write: f(x) = (x − α)ng(x) where α ∈ R and
g(α) 6= 0. So if n is odd, then (x−α)n and hence f would change sign in the
neighbourhood of α, which contradicts the fact that f is psd. Hence each
real root occur in with even multiplicity and we may write:

f(x) = c
∏

(x− αi)
2ni

∏
(x− βi)

ni

∏
(x− β̄i)

ni

where αi ∈ R and βi 6∈ R, c ∈ R Let

h(x) =
∏

(x− βi)
ni

∏
(x− αi)

ni .

So, f(x) = ch(x) ¯h(x) ; Now, h(x) = p(x) + iq(x) for p, q ∈ R So, f(x) =
c(p(x)2 + q(x)2) = (

√
cp(x))2 + (

√
cq(x))2.

Necessity of rational functions - an example :
Here is an example to show that for general n, it is not sufficient to work
with polynomials. Consider

f(x, y) = (x2 + y2 − 3)x2y2 + 1 ∈ R[x, y].

Clearly f is psd, as
x2+y2+ 1

x2y2

3
≥ 1. Suppose, if possible, f = f 2

1 +f 2
2 +· · ·+f 2

n

with fi ∈ R[x, y]. For all i ≤ n, deg fi ≤ 3, as the total degree of f is 6.
Since f(x, 0) = f(0, y) = 1, each fi(x, 0) and fi(0, y) is a constant. Thus
fi(x, y) = ai + xy(bi + cix + diy)∀1 ≤ i ≤ n. Now f = Σf 2

i ; so the coefficient
of x2y2 in Σf 2

i is −3. Hence Σb2
i = -3, which is a contradiction .
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Hilbert’s identities :
Let us contrast the above situation with the following identities involving
higher powers over R. We have :

(x2 + y2)3 =
4

5
(x6 + (

x + y√
2

)6 + y6 + (
y − x√

2
)6).

More generally , one has the remarkable identities due to B.Reznik :

(x2 + y2)s =
22s

v
(
2s
s

)
v−1∑
j=0

{Cos(jπx/v) + Sin(jπy/v)}2s.

Interestingly, the analogues of the above identities over Q are unknown in
explicit form (this is known as the champagne problem) but the existence
of such identities over Q are already proved by Hilbert. In fact, in 1981-82
E.Becker proved the existence of identities of the form

(x2k
1 + · · ·+ x2k

n )l = f 2kl
1 + · · ·+ f 2kl

m

for some rational functions fi over Q.

Higher powers - examples :
Consider f(x) = x4 + nx2 + 1. It is a fact that it is a sum of 4-th powers
in R(x). On the other hand we claim that f is not a sum of squares of
real polynomials if n is large. To see this, suppose, if possible, that f =∑N

i=1(ai + bix)4. Comparing the coefficients of x2 we have

n = 6
N∑

i=1

a2
i b

2
i .

Also, we have 1 =
∑N

i=1 a4
i and 1 =

∑N
i=1 b4

i . Using the Cauchy-Schwarz
inequality now, we see immediately that

n ≤ 6
N∑

i=1

a4
i

N∑
i=1

b4
i = 6.

We now proceed towards the discussion of Artin’s famous theorem which
answers Hilbert’s 17th problem affirmatively. The method he used was devel-
oped together with Schreier and answers the question for more general fields
than R. We proceed to define these more general fields now.
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Definitions and remarks :

(I) A field K is formally real if
∑n

i=1 a2
i = 0 implies that ai = 0 for all

1 ≤ i ≤ n. Equivalently, −1 cannot be written as sum of squares in K. As
one can see immediately, R, Q are formally real while C is not. Another
example is R(x).
Note that a formally field must have characteristic zero because if it were a
prime p, then 12 + · · ·+ 12 = 0 where the sum has p terms.
We shall see below that formally fields are exactly the class of fields for which
there is a notion of positivity or ordering. This result of Artin and Schreier
needs the notion of real-closed fields which is defined in what follows now.
(II) A formally real field K is said to be real-closed if no finite extension of K
(other than itself) is formally real. Equivalently, if a formally real field has
the properties : (i) the square roots of positive elements exist, and (ii) every
odd degree polynomial over it has a root in it, then it is real-closed.
It is a very interesting fact that if the algebraic closure R̄ of a field R is a
finite, proper extension, then R is real-closed and R̄ = R(

√−1). One can
prove this by using the characterisation above.
(III) A subset P of a field K which is closed under the addition and the
multiplication of K is called an ordering or a positive cone if K = P ∪ −P
and P ∩ (−P ) = {0}. If such a P exists, then K is said to be an ordered field
and that P and −P are respectively the sets of all the positive and all the
negative elements. Note that as each a in K is either positive or negative, its
square a2 is in P.P ⊂ P or (−P ).(−P ) = P.P ⊂ P . Hence, nonzero squares
are in P and, therefore,

∑
K2 (defined as the set of finite sums of squares)

is a subset of P . Note K is obviously formally real because 1 ∈ ∑
K2 ⊂ P

(and so −1 6∈ P ).
Moreover, clearly P − {0} is a subgroup of index 2 in K∗. Conversely, for a
field K, if K∗ has a subgroup Q of index 2 which is additively closed, then
Q ∪ {0} is an ordering in K.
Given an order P , one can define a ≥ b if a− b ∈ P .
(IV) An element a of a field K is said to be totally positive if a ∈ ∩Pi, for all
orderings Pi of K.
(V) One defines Zariski open sets as the complements in Rn of the sets of
roots of the polynomials in R[x1, x2, ...., xn].

Examples of orderings :
(i) For any subfield K of R, take P = {x ∈ K : x ≥ 0}.
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(ii) For K = Q(x), take P = {f/g : f(π)/g(π) ≥ 0}. Notice that we could
have taken any transcendental number instead of π as well.
(iii) For K = R(x), take P = {f/g : a > 0 where fg = axl+ higher powers
}. In this ordering, note that x is infinitely smaller than every positive real
number !
(iv) For K = R(x), take P = {f/g : top coefficient of fg is > 0} ∪ {0}. In
this case, note that x is infinitely larger than every real number !

Lemma 1 :
(i) If a field K is not formally real and has characteristic different from 2,
then every element of K is a sum of squares.
(ii) Any formally real field K is an ordered field and conversely.
(iii) A real-closed field R has a unique ordering. Indeed, in this case P =∑

R2 = R2 (squares). Moreover, any automorphism f R is order-preserving.
Proof :
(i) If −1 =

∑
a2

i , then any t = ((1 + t)/2)2 +
∑

(ai(1− t)/2)2.
(ii) As we already saw in (III) above that an ordered field (with an ordering
P ) is formally real because all squares are in P and, in particular, 1 ∈ P and
so −1 6∈ P .
Conversely, let us suppose that K is a formally real field. Consider S =∑

K2. We know −1 6∈ S. Clearly, S is closed under addition and multiplica-
tion. By Zorn’s lemma, there is a subset P of K containing S, closed under
addition and multiplication, −1 6∈ P and P is maximal with respect to these
properties. To show now that P is an ordering, we need only check that
P ∪−P = K. Note that the other property P ∩ (−P ) = {0} is automatically
true; otherwise, x = −y ∈ P ∩ (−P ) implies that −1 = x/y ∈ P unless
x = y = 0.
Let x ∈ K,x 6∈ P . Observing

(P − xP ).(P − xP ) ⊆ P − xP + x2P ⊆ P − xP

we note that −1 6∈ P − xP ; otherwise, writing −1 = p1 − xp2, we have

x = (1 + p1)p2
1

p2
2

∈ P,

a contradiction. Thus, P −xP contains P and has all those properties which
P has and with respect to which P was chosen to be maximal. This forces
P − xP = P . Hence −x ∈ P ; in other words, K = P ∪ (−P ). So, P is an
ordering on K. Thus (ii) is proved.
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(iii) Of course R2 ⊆ P for any ordering P as a2 = (−a)2 ⊆ P.P ⊆ P .
Conversely, given any P , if a ∈ P were not in R2, then R(

√
a) cannot be

formally real. Writing −1 =
∑

(bi + ci

√
a)2, we get −a ∈ ∑

R2 ⊆ P . Thus,
a ∈ P ∩ (−P ), a contradiction. So R2 = P is the unique ordering. Note
that R2 ⊆ ∑

R2 ⊆ P implies all are equal. Finally, any automorphism of R
preserves R2 = P , and thus is order-preserving.

Now we can state Artin’s theorem which solves Hilbert’s 17th problem affir-
matively.

Theorem (Artin) :
Let R be any real closed field and f ∈ R[x1, x2, ....., xn]. If f is psd (positive
semi-definite), then f = Σg2

i for some gi ∈ R(x1, x2, ....., xn).

The proof depends on many other results of independent interest as we shall
see.

Proposition 1 (characterisation of squares) :
Let K be a field of characteristic 6= 2. Then, an element a ∈ K∗ is a sum of
squares in K ⇔ a > 0 is totally positive.

An example :
Before proving the above proposition, let us discuss it for the field F = Q[

√
2].

First, we claim that the only orders of F are:

P1 = {a + b
√

2|a + b
√

2 ≥ 0}
and

P2 = {a + b
√

2|a− b
√

2 ≥ 0}.
If P is an order then Q>0 ⊂ and

√
2 ∈ P or −P. If

√
2 ∈ P , then P1 ⊂ P ,

which implies that Ṗ = Ṗ1 since both have index 2 in F ∗. Hence P = P1.
If -
√

2 ∈ P , then a similar argument shows that P = P2. Now P1 ∩ P2 =
{a+ b

√
2|a ≥ 0, a2 ≥ 2b2}. Now, P1∩P2 = ΣF 2 as, for any c, d ∈ Q, we have

(c + d
√

2)2 = c2 + 2d2 + 2cd
√

2 ∈ P1 ∩ P2. Hence ΣF 2 ⊂ P1 ∩ P2.
Now suppose a + b

√
2 ∈ P1 ∩ P2. If b = 0, then a ≥ 0 is in Q; hence

a ∈ ΣQ2 ⊂ ΣF 2.
If b < 0 and if we can write a − b

√
2 as a sum of squares, then by taking

”conjugates” we can see that a + b
√

2 is also a sum of squares. So, we may
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assume b > 0. Consider the square

(x +
b
√

2

2x
)2 = x2 +

b2

2x2
+ b
√

2.

Now x2 + b2

2x2 attains its minimum at x = b√
2

and, this minimum value is

b
√

2 ≤ a.
Hence we can find a rational q such that q2 + b2

2q2 ≤ a. Then

a + b
√

2 = (q +
b
√

2

2q
)2 + (a− q2 − b2

2q2
) ∈ ΣF 2.

So, we have checked the proposition in case of the field Q[
√

2].

Proof of proposition 1 :
If a = Σa2

i ; a 6= 0, then a > 0 for all orderings of R. Conversely, assume
that a 6= 0 is not a sum of squares in R. Let R̄ be an algebraic closure
of R and consider the set of subfields E of R̄ in which a is not a sum of
squares. By Zorn’s Lemma, there is a maximal element (say F ) such that
F is formally real. We have used the fact that if a field is not formally real
and has characteristic different from 2, then every element of K is a sum of
squares.
We claim that −a is a square in F. For, otherwise the subfield F [

√−a] of
R̄ properly contains R, and so a is a sum of squares in F [

√−a]. Hence, we
have bi and ci ∈ F , such that a = Σ(bi + ci

√−a)2. This gives Σbici = 0 and
a = Σb2

i − aΣc2
i . Therefore, a(1 + Σc2

i ) = Σb2
i and 1 + Σc2

i 6= 0 (since F is
formally real). Then if c = 1+Σc2

i ; a = Σb2
i c
−1 = Σb2

i (1+Σc2
i )c

−2. So, a is a
sum of squares in F , contrary to the definition of F . Hence −a = b2; b ∈ F ,
and so a = −b2 is negative in an ordering of F . So a 6∈ ∩Pi, where Pi are all
the orders.

Real-closures and Sturm’s work :

A real-closure of an ordered field K is an algebraic extension L which is real-
closed and its (unique) ordering extends the given one on K.
A key point is that a real-closure not only exists but it is unique in a sense
to made clear below. These results follow from ideas due to Sturm from the
1880’s which enables us determine the number of roots of a polynomial over
a real-closed field (Sturm proved them for R but the same proofs go through
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for any real-closed field.
To descibe these ideas and results of Sturm, we introduce some notations
first.
Let R be a real-closed field. As it has a unique ordering, it makes sense to
write notations like (a, b), [a, b] etc. that one uses for real intervals and the
notation |a| for the positive element among ±a. Let f = c0 + c1x + · · · +
cn−1x

n−1 + xn ∈ R[x]. We write |a| in R to mean the obvious element - it is
a or −a according as a ∈ P or −a ∈ P . The familiar algorithm to find the
GCD of two polynomials, when applied to f and f ′, goes as follows :

f0(x) = f(x), f1(x) = f ′(x),

fi−1(x) = gi(x)fi(x)− fi+1(x)

with deg fi+1 < deg fi for i ≥ 1.
This sequence f0, f1, · · · has come to be known nowadays as the standard
sequence of f . Looking at the smallest l for which fl+1 = 0, note that
fl = GCD(f, f ′). Let Vr denote the number of changes of sign among
f0(r), f1(r), · · · , fl(r) - for counting this, one may simply drop all terms which
are zero.
Then, we have the following easy :

Lemma 2 :
Let M = max (1, |c0| + · · · + |cn−1|). Then every root of f in R belongs to
[−M,M ].
Proof :
If a ∈ R is a root of f such that |a| ≤ 1, there is nothing to prove. Suppose
therefore that |a| > 1. Taking absolute values in

−a = cn−1a
−1 + · · ·+ c1a

−(n−2) + c0a
−(n−1),

we get | − a| ≤ |cn−1|+ · · ·+ |c1|+ |c0|. This proves the lemma.

The following result has the same proof as for R which Sturm gave in the
1880’s. It is crucially used by Artin and Schreier in proving the existence of
real-closures and their uniqueness properties.

Lemma 3 (Sturm) :
Let R be a real-closed field and f ∈ R[x]. Then, the number of roots of f in
any (a, b) such that f(a)f(b) 6= 0, equals Va − Vb.
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Theorem (Artin-Schreier) :
Any ordered field has a real-closure. If K1, K2 are ordered fields with re-
spective real-closures R1, R2, then any order isomorphism from K1 onto K2

uniquely extends to an isomorphism of the fields R1 and R2. Further, this
extension is an order-isomorphism. In particular, an automorphism of a
real-closure R of an ordered field K, which is identity on K must be the
identity.

Finally, we state the main theorem.

Artin’s theorem (in a slightly generalized form) :
Let K be an ordered field such that K has a unique ordering and such that
K is dense in its real-closure K∗. Call Q the prime field of K. Let us write
L := K(x1, · · · , xn) as K(x) for short. Let f ∈ L such that f(a1, a2, ....an) ≥
0 for all ai ∈ Q for which f is defined (f is defined over the Zariski open
set corresponding to its denominator). Then, there exist gi(x) ∈ L such that
f =

∑
gi(x)2. The converse is true and obvious.

Towards the proof, we introduce a few notations and make a few preliminary
observations.
A subfield K of an ordered field L is said to be dense if each interval (a, b)
of L contains a point of K.
For an ordered field K, we denote by K∗ its real-closure. Now, the ordering
on K extends to an ordering on L = K(x1, · · · , xn) - to see this, just observe
that since K∗(x1, · · · , xn) is formally real, it has an ordering which extends
the unique ordering of K∗; but then its restriction to K(x1, · · · , xn) is an
ordering extending the given ordering on K.
Denote by L∗, the real-closure of L = K(x1, · · · , xn). The whole trick now
is to be able to go back and forth between K and L by means of the nice
properties that their real-closures K∗ and L∗ have. With the above notations,
we prove the following two lemmata which are key steps in the proof of the
theorem :

Lemma 4 :
If f(x1, · · · , xn, Y ) ∈ L[Y ] has r distinct roots in L∗, then there are g1, · · · , gm

in L with the property that whenever a1, · · · , an ∈ K with

g1(a1, · · · , an), · · · , gm(a1, · · · , an)

having the same signs (in K) as the sequence g1, · · · , gm (in L), there are
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precisely r distinct roots of f(a1, · · · , an, Y ) inside K∗.
Proof :
We write f(x1, · · · , xn, Y ) = c0 + c1Y + · · ·+ crY

r with ci ∈ L. The gi’s will
be defined in terms of the cj’s and some specializations of the variable Y in
f . Let us consider the standard sequence for f as a polynomial in Y ; say
f0, f1, · · · , fl. If m denotes 1 +

∑ |ci| (note that this is in L), we consider
gi’s to be the sequence made up of :- (i) all the coefficients of f0, · · · , fl, (ii)
all fi(Y = ±m), and (iii) all fi(Y = ±m)/fj(Y = ±m) with i < j and
fi(Y = ±m) 6= 0.
Then, lemmata 2 and 3 imply that V−m(f)−Vm(f) = r. But, if a1, · · · , an ∈
K with the sequence gi having the same signs (in L) as gi(a1, · · · , an) (in K)
for the above choice of the gi’s shows that

V−m(a1,··· ,an)(f(a1, · · · , an, Y ) = V−m(f),

Vm(a1,··· ,an)(f(a1, · · · , an, Y ) = Vm(f).

Observing that the ci’s are also among the gj’s, all the roots of f(a1, · · · , an, Y )
in K∗ are bounded between −m(a1, · · · , an) and m(a1, · · · , an). This com-
pletes the proof.

Lemma 5 :
Suppose fi(x1, · · · , xn, Y ) ∈ L[Y ]; 1 ≤ i ≤ r are monic polynomials. Suppose
b1 < · · · < br are roots in L∗ of the corresponding fi’s. Then, there are
elements g1, · · · , gm ∈ L with the property that whenever a1, · · · , an ∈ K
with g1(a1, · · · , an), · · · , gm(a1, · · · , an) having the same signs (in K) as the
sequence g1, · · · , gm (in L), there are b∗1 < · · · < b∗r in K∗ which are roots of
corresponding fi(a1, · · · , an, Y ) ∈ K[Y ].
Proof :
Consider the field M = L(b1, · · · , br,

√
b2 − b1, · · · ,

√
br − br−1), which is a

finite extension of L.
Being in characteristic zero, we have M = L(b) for some b.
Write g(x1, · · · , xn, Y ) = c0 + c1Y + · · ·+ cs−1Y

s−1 + Y s ∈ L[Y ] with ci ∈ L,
for the minimal polynomial of b over L. The elements bi,

√
bj+1 − bj and

1/
√

bj+1 − bj have polynomial expressions in b over L; we write

bi = b′i(x1, · · · , xn, b) ,

√
bj+1 − bj = ej(x1, · · · , xn, b) ,
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1/
√

bj+1 − bj = e′j(x1, · · · , xn, b)

where b′i(x1, · · · , xn, Y ), ej(x1, · · · , xn, Y ), e′j(x1, · · · , xn, b) ∈ L[Y ].
Now, as bi is given to be a root of fi, the polynomial
Fi(x1, · · · , xn, b

′
i(x1, · · · , xn, Y )) vanishes at Y = bi which means that it must

be divisible (in L[Y ]) by the minimal polynomial g(x1, · · · , xn, Y ).
Let us write, therefore,

Fi = gf ′i ∈ L[Y ] · · · · · · · · · (1)

for some polynomials f ′i ∈ L[Y ].
Similarly, on using the facts that the polynomials b′j+1−b′j−(e′j)

2 and eje
′
j−1

in L[Y ] vanish at Y = b, we have some polynomials hj, h
′
j ∈ L[Y ] with

b′j+1 − b′j − (e′j)
2 = ghj · · · · · · · · · (2)

and
eje

′
j − 1 = gh′j · · · · · · · · · (3)

in L[Y ].
Analogously to the previous lemma, let g1, · · · , gm ∈ L be the sequence
of polynomials made up of : (i) all of the coefficients (in L) of all the
fi, f

′
i , g, hj, h

′
j, b

′
i, ej, e

′
j, and (ii) all the polynomials obtained by applying the

previous lemma to g(x1, · · · , xn, Y ).
Then, for a1, · · · , an ∈ K as in our hypothesis here, the previous lemma im-
plies that g(a1, · · · , an, Y ) has a root a∗ in K∗ since g(x1, · · · , xn, Y ) has a
root b in L∗.
Thus, (1) implies that b∗i := b′i(a1, · · · , an, a

∗) is a root of fi(a1, · · · , an, Y ).
Using (2) and (3), we get that

ej(a1, · · · , an, a∗)e′j(a1, · · · , an, a∗) = 1

(so ej(a1, · · · , an, a
∗) 6= 0) and

b∗j+1 − b∗j = (ej(a1, · · · , an, a
∗))2 > 0 in K∗.

This completes the proof.

Finally, before proving the main theorem, we recall a few abbreviations we
shall use for convenience. For a field K, we shall use the notation x to
stand for n algebraically independent elements x1, · · · , xn over K and write
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f(x) to stand for a rational function in x1, · · · , xn over K. Further, if L =
K(x1, · · · , xn), then we write a polynomial in a variable Y over L as g(x; Y ).
If a1, · · · , an ∈ K, wealso write f(a) and g(a; Y ) with the obvious meanings.

Proof of Artin’s theorem :
Suppose there do not exist such gi(x)’s. Then, we know from proposition 1
that f(x) < 0 in L for some ordering of L extended from the ordering of K.
We claim that we can find a1, · · · , an ∈ Q such that f(a) < 0. We proceed
as follows.
The idea is to apply induction on the number n of variables. It is clearly true
when there are no variables (that is if n = 0). Assuming the result holds for a
fixed n ≥ 0, we prove it for n+1 now. As mentioned before starting the proof,
we will denote (x1, · · · , xn), (a1, · · · , an) etc. by the symbols (x) and (a). The
(n + 1)-th variable xn+1 will be denoted by Y . L denotes K(x1, · · · , xn) as
before. In other words, f(x, Y ) is our rational function; we may assume that
it is in L[Y ], by multiplying with the square of the denominator if necessary.
Further, it suffices to prove the theorem for the monic irreducible factors and
the coefficient of the highest degree term of f in L[Y ], say f1, · · · , fr. So,
we may assume fi ∈ L or fi ∈ L[Y ] is monic, irreducible for i ≤ r. Suppose
b1 < b2 < · · · < bs are all the roots of

∏r
i=1 fi(x, Y ) in L∗. Renumbering

the fi’s and repeating them, if necessary, we may assume that bi is a root of
fi(x, Y ) for i ≤ s and that fi ∈ L for r ≥ i > s.
Let g1(x), · · · , gt(x) denote all those elements of L obtained as : (i) those
elements of L obtained by applying lemma 4 to each fi, or (ii) all those
elements of L obtained by applying lemma 5 to the polynomials fi(x, Y )
and roots bi’s for i ≤ s, or (iii) the elements fi for r ≥ i > s, or (iv) the
discriminants di(x) of all the fi(x, Y ) for i ≤ s.
By the induction hypothesis, we can find a1, · · · , an ∈ Q such that gi(a) and
gi(x) have the same signs for i ≤ t and such that

∏s
i=1 di(a) 6= 0. Clearly, for

r ≥ i > s, we have that fi(a) and fi(x) have the same signs.
Let us look at the fi’s with i ≤ s now. Suppose bi1 , · · · , bini

are the roots of
fi inside L∗. In our notation, this means that some fj can coincide with fi

only if j = ik for some k ≤ ni. Applying lemma 5 to these roots, we have
roots b∗1 < · · · b∗s of f1(a, Y ), · · · , fs(a, Y ). Then b∗i1 < · · · b∗ini

are roots of

fi(a, Y ). But then lemma 4 implies that they are all the roots of fi in K∗.
Writing fi(x, Y ) =

∏
j qij(x, Y ).

∏
k(Y − bik) with qij(x, Y ) ∈ L∗[Y ] monic

irreducible and of degree > 1. Therefore, qij must be of the form (Y +p)2 +q
for some p, q ∈ L∗, q > 0. By the choice of a, since the discriminants do not
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vanish, the fi(a, Y ) have no multiple roots. Thus,

fi(a, Y ) =
∏

j

qij(a, Y ).
∏

k

(Y − b∗ik)

with qij(a, Y ) irreducible in L∗[Y ] since b∗ik are the only roots of fi in K∗.
Hence, we must have qij(a, an+1) > 0 for any an+1. In other words, the signs
of fi(a, an+1) and fi(x, Y ) are determined by k and k′ such that b∗u < an+1

if and only if, u < k and bu < Y if and only if, u < k′. Hence, it suffices to
choose an+1 ∈ Q such that k = k′. This completes the proof.

Remarks in conclusion :

Tarski’s model-theoretic method can be summed up in this context as the
following theorem :
Let R1 and R2 be real closed fields having a common ordered subfield F ; i.e.,
the orderings on F induced by R1 and R2 are identical. Suppose that we have
a finite set S of polynomial equations, inequations (that is, statement of the
form f 6= 0) and inequalities (that is, statements of the form f > 0) with
coefficients in F. Then S has a solution in R1 if and only if it has a solution
in R2.
Hilbert’s 17th problem can also be restated in terms of Witt groups of
quadratic forms and is intimated related to the so-called Pfister local-global
principle. Roughly, this can be described as follows. For a field K, one has
the commutative ring W (K) of similarity classes of regular quadratic forms
- f, g are similar if they are isomorphic upto adding copies of the hyperbolic
plane. The operations are the orthogonal sum and the tensor product. It
turns out that the possible positive cones in K are in bijective correspon-
dence with those prime ideals of W (K) which have characteristic zero. The
bijection is through the so-called signature map which counts for a diagonal
form

∑
aiX

2
i , the difference

|{i : ai > 0}| − |{i : ai < 0}|.

Using this terminology, Artin’s theorem can be stated as :
Consider a real-closed field K, and 0 6= f ∈ K[x1, · · · , xn]. Suppose that, for
each anisotropic vector a ∈ Kn, the signature of the form X2 − f(a)Y 2 is
zero. Then, the form X2 − fY 2 over K(x1, · · · , xn) has image in the Witt
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group to be of finite order.
As a matter of fact, Pfister’s local-global principle alluded to above says that
the finite order elements in the above Witt group of the function field can be
identified with the kernel of the signature homomorphism. In this language,
it is easy to generalize Artin’s theorem to the case of any even number of
non-zero polynomials in place of the single polynomial f .
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